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ABSTRACT simulated classifier were replaced with forward-backward

This paper describes a simple method for significantly im-pmb""bIIItIes by aligning HMM models composed from ref-

proving Tandem features used to train acoustic models for onee word sequences.  Suicfealized Tandem features

large-vocabulary speech recognition. The linear actveti allowed for a tremendous gain in ASR performance; slight

at the outputs of an MLP classifier were modified accordind) ro(E;dgc:l?:sgoSJfr:(i:IZtlr%?sr\élr:tcueaU\)//o?gTrlgr?;ecﬂ atlilo?]rsr(;(r)srh art
to known reference labels: where necessary, the activafion ' P P

the output unit corresponding to the correct phone label wagf the labeled training data, they should not have been-avalil

increased in order to make an accurate classification. Th%ble for test data. To avoid cheating we therefore tried us-

. L : . Ing the simulated classifier exclusively during trainingdan
technigue was inspired by another experiment that detenin applied the normal MLP on test data. Surprisingly, this mis-

a lower error bound on ASR performance within the Tan- . . ) .
b match did not deteriorate performance but instead provided

dem framework. By simulating an idealized classifier with . .
forward-backward phone posterior probabilities, we obser considerable improvement over the standard Tandem proce-
' .dure. Inspired by this result, we developed a simple techmniq

a best-case scenario in which nearly all errors were elimlf r preparinacorrected Tandem features based on linear out
nated. Although this performance is not practically achiev or preparingcorrec andem leatures based o ear out-

able, the experiment demonstrated the validity of the Tande put activations of an ML.P’ and demonstrated significant im-
processing approach and suggested that considerable gamé)vement on a Mandarin broadcast news ASR task.

are possible by improving the MLP phone classifier.

" . 2. MANDARIN BROADCAST NEWS ASR SYSTEM
Index Terms— speech recognition, feature extraction,

multilayer perceptrons, Hidden Markov models Our experiments are based on the Mandarin broadcast news
ASR system described in [6], simpler than our state-of-the-
1. INTRODUCTION art implementation [7] developed as a multi-site collatiora

for the DARPA GALE project. SRI's DECIPHER recognizer

The predominant and successful framework for automatigvas configured for word-based modeling, although all ASR
speech recognition (ASR) utilizes Hidden Markov Modelsresults are reported as character error rates (CER).
(HMM) with Gaussian Mixture Models (GMM) parame- The training set (Mandarin Hub4) comprised 30 hours of
terizing continuous distributions of acoustic featuresdah television shows, carefully transcribed including spedae
on a short-term spectral envelope. Tandem acoustic featubels. Test data are from the DARPA EARS RT-04 evaluation
extraction [1] was introduced to leverage the discrimirati (eval04) and the DARPA GALE 2006 evaluation (eval06).
power of a multi-layer perceptron (MLP) classifier, produc-  Automatically-segmented utterances were clustered and
ing an alternative feature representation based on lotial esassigned pseudo-speaker labels. Standard acousticef®atur
mates of phone posterior probabilities. Such MLP-derivedvere based on mel-frequency cepstral coefficients, warped
features have been used for large-vocabulary ASR [2, 3Jwith vocal tract length normalization and mean-and-varéan
complementing other discriminative methods such as MPHEormalization applied on a per-speaker basis. Since Man-
parameter estimation [4] and fMPE feature transforms [5]. darin is a tonal language, it was useful to additionally in-

The feature extraction front-end can be decoupled frontlude a smoothed log-pitch estimate [6]. Adding two tempo-
sophisticated back-end modeling and decoding, so a systeral derivatives resulted in a 42-dimensional acousticufieat
designer can conveniently view Tandem processing as a modector, which we will simply reference as “MFCC".
ular unit to be optimized independently. To this end, we first ~ Within-word triphone HMM models were based on a 72-
devised an exploratory experiment in which the MLP wagphone inventory comprising consonants and tonal vowels. Pa
simulated to be at its optimum, providing essentially perfe rameters were shared across 2000 states clustered with a pho
classification of phonetic speech units. The outputs of tha@etic decision tree, and observation distributions were-mo



:Bt_4l%l e I?I cee FI Ttta Table 1. Comparison of Tandem features from two phone
classifiers: an idealized simulation and a trained MLP. €har
MLP acter error rate reported on the CCTV subset of eval04.

Feature|| Train | Test | CCTVCER

5 MFCC - - 11.7
linear ——1 Tandem| MLP MLP 9.1

Tandem| idealized| MLP 8.6

1 Tandem|| idealized | idealized 4.7

softmax transformation to enable a probabilistic intetgre
tion; however, we have found it is generally better to use
1Tt the MLP outputs prior to this nonlinearity, as in Section 5.
Note that in both cases the MLP was trained using a softmax
nonlinearity to determine the cross-entropy error criteri
Because the HMM-GMM acoustic models operated un-
Fig. 1. Tandem feature extraction: a multi-layer percep-ger an assumption of diagonal covariance, a Karhunen-Loeve
tron estimates phone posterior probabilities, which aesty  Transform (Principal Components Analysis) was applied for
formed for better Gaussian modeling, then concatenatéd wilprthogonalization and also to rank and reduce the dimension
a standard ASR feature vector to serve as an HMM's acoustigiity to 32. The resulting vector of transformed MLP outputs
observations. The softmax-logarithm transformation may bwas then concatenated with the MECC features described pre-
omitted, using linear activations at MLP outputs. viously, resulting in a 74-dimensional Tandem feature.

Due to practical considerations, the HMM-GMM mod-
els used a relatively small training set compared to the MLP
training; in our experience, the gains due to MLP features ar
still consistent — albeit smaller— when the HMM-GMM mod-
els are trained on the same amount of data as the MLP.

eled by a diagonal covariance GMM with 32 mixture compo-
nents. Viterbi re-alignment of the training data was used fo
maximum-likelihood parameter estimation.

Recognition networks were compiled from trigram lan-
guage models trained on over one billion words, with a 60K
lexicon [7]. Two decoding passes were separated by 3-class 4. IDEALIZED TANDEM FEATURES

MLLR speaker adaptation, all operating in under 5x real time ] ] )
Our first experiment sought to determine a lower error bound

on ASR performance using Tandem features. ldealized Tan-
dem features were prepared by replacing the MLP outputs

Figure 1 depicts the general procedure for preparing Tandel(riﬁer softmax) with forward-backward phone posteriorpro

. ) . . L . abilities to simulate a classifier with “perfect” accuracy.
acoustic features. This section describes the specificgrenfi . g e ;
X ; . To simulate this ideal phone classification, we defined the
rations used for experimentation.

The MLP input layer had 378 units, representing 9 con—OUtpUtS Of. the hypot_h_ehcgl c_Iass_lfler to B%,(Q:] X, W)'

. . A the posterior probability distribution over phon€s given
text frames of 42-dimensional features similar to those de; . . . .
. : . . the entire acoustic utterancé and its corresponding word
scribed in the previous section — except based on PLP analy-

sis. Training examples were taken from an 870-hour corpu ranscriptioni?. This was computed with forward-backward

of television broadcasts (flexibly aligned to closed-cameid E'OI\an Jgrggingfeélg;eeﬁ;?e ngslrﬁggecr:raesvga;?ﬁ:gid kt)r?e
transcriptions [8]), mapping HMM states to 71 phone output P yp P y

targets — excluding thegiect phone. A fully-connected hid- word sequence and a pronunciation dictionary. To avoid nu-

. . o . merical complications due to artificial zeros in the pruned
den layer of 15,000 units contained nearly 7 milion weights o : . X
. . - . . forward-backward distributions, we lightly interpolatedth
trained with a quasi-online backpropagation algorithm.

Applying a softmax nonlinearity at the MLP’s output the MLP-derived probability distribution:
layer e}pproximatedelp(Qt|Xti4):_ the posterior proba-  p, . (Q,|X, W) = Py, (Q:|X, W) 4 0.01 Potp (Q¢| Xt4)
bility distribution over phone«); given the local acoustic
evidenceX,, centered at the current tinteand its 8 neigh- The MLP-derived distribution was chosen for interpolation
boring frames of temporal context. Subsequent conversion tintroduce realistic errors rather than arbitrary noise.
the logarithmic domain was intended to better Gaussianize The simulation ofP,ge.1 (Q:| X, W) for idealized Tandem
this distribution. The experiments in the Section 4 use thdéeatures required forced alignment to the reference ward tr

3. TANDEM FEATURE EXTRACTION



Table 2. Eliminating the MFCC concatenation and applying aTable 3. Comparison of standard and corrected Tandem fea-
full-rank KLT orthogonalization improved idealized Tamde tures derived from an MLP’s linear output activations.
features in a cheating scenario; however, the oppositeteffe
was observed for MLP-derived features.

Train & Test | +MFCC | KLT || CCTV CER

Feature| Train | Test || eval0O4| eval06

MFCC - - 19.2 30.6
Tandem MLP MLP 155 24.2

MLP yes | reduced 9.1 Tandem| corrected| MLP || 15.1 | 23.9
no reduced 9.2
no full-rank 9.7
idealized yes reduced 4.7
no reduced 3.4 We resolved this with a simple technique for correcting
no full-rank 1.8 the linear activation outputs of an MLP. Using the Viterbi-

aligned reference labels for the training data, we detezthin

for each frame whether the MLP’s classification was correct.

If the MLP’s maximal output correctly related to the aligned
scriptions. Due to difficulty in obtaining proper alignment phone, we left all the outputs unmodified for that frame. If
for all of the test data, in this section results are repootelt  the MLP's classification was incorrect, we changed the value
on the relatively easy CCTV subset of evalO4. The MLP clasat the output unit that should have had the maximal activa-
sifier was able to achieve 79.7% frame-level phone aCCUraqyon; we increased it to have the same value as the maximal
on this data, scored relative to labels from aligned refegen activation over the other output units. Unlike the prefarat
transcriptions. The simulated “perfect” classifier ackv for idealized Tandem features, this correction was a xelbti
99.2% accuracy, a less than perfect score due to slightgiscr minimal modification to the MLP outputs: it was applied only
ancies between maxima of its forward-backward distrimsio to frames which were incorrectly classified — about 20% of the
and the Viterbi-aligned reference labels. training set — and affected just one of the MLP output units.

Table 1 summarizes the results of our exploratory experi- - Table 3 shows the experimental results using corrected

ment. Tandem features provided a gain in ASR performancgandem features for acoustic model training. For both the
relative to standard MFCC features. The simulation of an ideeva|04 and eval06 test sets, the corrected training femture
alized classifier provided a very good result, albeit clmgpti provided modest improvement over the features from unmod-
on the test data. Interestingly, the non-cheating scefrio jfied MLP outputs. Over the two sets, the statistical signifi-
which idealized features were Only used for training data Wacance of the Systems’ difference was verified by a two-tailed

better than the standard Tandem procedure, despite the 8gAPSSWE test [9]p = 0.015 (179 vs. 135 unique errors).
pected negative effect due to mismatch of conditions.

In further experiments with idealized Tandem features, we
note that it was possible to achieve even better result$iéor t 6. DISCUSSION
cheating scenario by slightly modifying the Tandem feature
extraction process. We eliminated the concatenation step, 6-1. Training with corrected Tandem features
moving the MFCC components from the Tandem feature vecy
tor. Then instead of a dimensionality reduction, we applieda
a full-rank KLT orthogonalization. Table 2 shows that this
greatly decreased the ASR error for idealized Tandem fea-
tures derived from a simulated perfect classifier; howeve
performance worsened when using a real MLP classifier.

he most important result in this work is the observation tha
n ASR system using Tandem features was significantly im-
roved by applying a small correction to the training feasur
" The correction procedure is very simple to implement and
relies only on having Viterbi-aligned reference labelstfoe
training data; this information is often readily availablg it
is typically used to prepare the one-hot encoded targets for
5. CORRECTED TANDEM FEATURES MLP training. By contrast, an alternative procedure using
forward-backward alignments — e.g. for preparing idedlize
The experiments of the previous section demonstrated thEandem features — might require a considerable amount of
potential benefit of training acoustic models with idealize extra computation and storage space. This practicalithef t
Tandem features, for which phone posteriors from an MLRapproach provides an easy way to improve existing systems
(via softmax at the output layer) were replaced by forward-using MLP-derived features; we expect to soon demonstrate
backward probabilities. However, in our experience werofte results on larger systems and other tasks.
find it best to use linear activations for the MLP outputs, so  The method might be refined with a principled approach
it would be desirable to apply an analogous technique in thiso determine the magnitude of correction. Rather than arbi-
situation. Yet it is not trivial to convert a forward-backmda trarily increasing the correct activation to equal the maadi
distribution into a vector of simulated linear activations activation, perhaps a larger increment would be better. -How



ever, itis also possible that large corrections could egeafg
the mismatch between the train and test features.
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6.2. Towards perfect feature extraction

Our cheating experiments with idealized Tandem feature
demonstrated that such an ASR front-end could reduce t
error rate as low as 1.8%. Analyzing this small amount o
remaining error, we determined that in half of the cases th
automatic utterance segmentation was directly respansib
for deletion errors — this problem in our system has since
been addressed [10]. We have therefore demonstrated that
virtually perfect ASR performance can be achieved witlelitt
more than a front-end modification. 1

To claim that perfect features lead to perfect performance[ ]
may at first seem obvious, and some researchers have com-
mented that “if you put in the answer at the beginning, of
course you'll get it back at the end”. However, this is pre- [2]
cisely the objective of Tandem feature extraction: a frame-
work for easily exploiting a rich phonetic information sira
within the constraints of a very complicated system. That th
various manipulations of Tandem processing do not corrupt[3]
the idealized input is a validation of the approach.

Itis also telling that the standard Tandem procedure had to
be modified slightly in order to greatly reduce the error from
4.7% to 1.8% CER. In a general pattern recognition view, the [4]
MFCC concatenation should add information and the KLT
reduction should remove noise. With idealized Tandem fea-
tures, however, the added MFCC components were noisy and
the truncated KLT dimensions were informative. Though not [5
currently applicable, this suggests that special conataers
might need to be examined when designing Tandem systems
with extremely accurate classifiers. 6]

Lastly, these experiments might suggest alternative ap-
proaches for efficient ASR decoding, considering that the
MLP forward pass can be much faster than real-time. With
more accurate classifiers, it may be possible to utilize lessl7]
sophisticated back-end architectures for ASR; in expartse
with idealized features, we observed that performancealid n
degrade even when the GMM models contained fewer mix-[ ]
tures and were trained on less data. Reviewers have sudgeste
another interesting experiment: to decode directly from th
idealized posteriors with a hybrid HMM/ANN system [11].

[9]

7. CONCLUSION

This paper has described a method to improve a large vocahbtOl
ulary speech recognition system usowgrected Tandem fea-

tures for acoustic model training. We also demonstrated a
hypothetical system usiniglealized Tandem features to de- [11]
termine a bound on ASR performance within this framework,
indicating that further front-end improvements have the po
tential to greatly benefit the overall system.
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