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ABSTRACT

In this work, we have investigated the performance of 2D Gabor
features (known as spectro-temporal features) for speaker recogni-
tion. Gabor features have been used mainly for automatic speech
recognition (ASR), where they have yielded improvements. We ex-
plored different Gabor feature implementations, along with differ-
ent speaker recognition approaches, on ROSSI [1] and NIST SRE08
databases. Using the noisy ROSSI database, the Gabor features per-
formed as well as the MFCC features standalone, and score-level
combination of Gabor and MFCC features resulted in an 8% relative
EER improvement over MFCC features standalone. These results
demonstrated the value of both spectral and temporal information
for feature extraction, and the complementarity of Gabor features to
MFCC features.

Index Terms— Speaker recognition, Gabor features, ROSSI
database, spectral and temporal modulation

1. INTRODUCTION

The 2D Gabor features have been a more recent development in
speech processing applications. They were developed to model cer-
tain stimuli to which the neurons of the mammalian auditory cortex
are sensitive. These stimuli consist of both spectral and temporal
modulation frequencies [2]. Different neurons are sensitive to stim-
uli of different temporal and modulation frequencies, and many stim-
uli span more than 200 ms temporally, which far exceeds the span
of typical acoustic features such as Mel Frequency Cepstral Coeffi-
cients (MFCCs). Because 2D Gabor functions (or filters, that span
both the spectral and temporal dimensions) are found to success-
fully model such stimuli [3], systems based on such Gabor filters
attempt to emulate the underlying signal processing strategies of the
mammalian auditory system. These Gabor-based systems are able
to well-perceive human voices even in the presence of channel and
environmental noise.

2D Gabor features were first used by Kleinschmidt et al. in 2002
for automatic speech recognition (ASR), with considerable ASR im-
provements [4]. Recently, they were used to improve the robustness
and word error rate of ASR systems, especially in adverse acous-
tic conditions [5][6]. While Gabor features have been successfully
applied to speaker identification (using a set of 26 speakers) [7], to
the best of our knowledge, they have yet to be applied using larger
databases in the NIST SRE framework. Furthermore, recent devel-
opments in Gabor feature extraction led to further improvements to
Gabor feature-based ASR systems [5][6].

In this work, we have attempted to employ 2D Gabor features
for large-scale speaker recognition in the NIST SRE framework, and
investigated some recent developments in Gabor feature extraction.
Our goal was to determine if a fixed set of 2D Gabor filters would

respond differently to voices from different individuals, resulting in
speaker discriminativeness of the filter responses, and whether or
not Gabor features could complement MFCC features. This work
mainly focused on handling the number of variables involved in Ga-
bor feature extraction, which could potentially produce Gabor fea-
tures sets that are significantly different from one another. For ex-
ample, because of the large sets of spectral and temporal modulation
frequencies (typically well over 1,000, and potentially infinite) that
could be used for Gabor feature extraction [6], dimensionality re-
duction was important to ensure that the final set of Gabor feature
dimensions were not overly redundant with one another. While such
dimensionality reduction techniques have been streamlined for ASR,
we investigated such techniques for speaker recognition. We ex-
plored the Gabor features on traditional GMM-UBM [8] and GMM-
SVM [9] speaker recognition approaches, as well as the i-vector ap-
proach. The Gabor features were explored for both the noisy ROSSI
database, as well as a subset of the SRE08 male telephone database.
Because the ROSSI database lacked sufficient development data for
the i-vector approach, only the GMM-UBM and GMM-SVM ap-
proaches were applied to the ROSSI database.

This paper is organized as follows: Section 2 describes the
databases used, Section 3 describes the 2D Gabor features, Section
4 describes the experiments and results, and Section 5 provides a
discussion and summary of our work.

2. DATASET

The ROSSI database, which contains various types of channel and
environmental noise typically with 10 dB SNR per conversation side
(or utterance), was first used in this work. The ROSSI database con-
versation sides consist of roughly 50 seconds of monologue landline
or cellular phone speech, recorded in various noisy environmental
conditions. The breakdown of the development, training and testing
conversation sides are shown in table 1.

A total of 200 speakers were used. 100 of those speakers were
used to train speaker models, and the other 100 contributed only to
impostor trials. Amongst the 200 speakers, 55% were male while
45% were female. There were a total of approximately 2,000 true
speaker trials, and 410,000 impostor trials. Amongst the trials,
50% were gender-matched, 67% were channel-matched, 29% were
condition-matched, and 20% were channel- and condition-matched.

Gabor feature performance on the NIST SRE08 male telephone
database (with 1,600 conversation sides, 500 speakers, 12,000 trials,
and 1,200 true speaker trials) was also investigated. 90 speakers and
900 conversation sides from NIST SRE04 were used as development
data. All conversation sides were ∼2.5 minutes long, containing
speech from one speaker only.



Development
Environmental Channel # of conv. sides # of hours
Condition
Office Landline 200 2.8
Office Cellular 50 0.7
Public place Cellular 50 0.7
Vehicle Cellular 50 0.7
Roadside Cellular 50 0.7
Total – 400 5.6

Training and testing
Environmental Channel # of conv. sides # of hours
Condition
Office Landline 300 4.2
Office Cellular 300 4.2
Public place Cellular 300 4.2
Vehicle Cellular 300 4.2
Roadside Cellular 150 2.1
Total – 1,350 18.9

Table 1. Description of channel and environmental condition infor-
mation of conversation sides in the ROSSI database.

3. GABOR FEATURE EXTRACTION

In this section, we describe the characteristics of the Gabor features.
Feature extraction was based on the approach described in [6], one of
the most recent state-of-the-art approaches that resulted in the suc-
cessful application of Gabor features to noise-robust ASR. The fea-
tures were first calculated by convolving the log mel spectrogram of
speech with a set of 2D Gabor filters. Each Gabor filter g(n, k) is a
product of a complex sinusoid s(n, k) with a Hann envelope func-
tion h(n, k) (the Gabor filters are hence complex functions), defined
as follows:

s(n, k) = exp[iωn(n− n0) + iωk(k − k0)]

h(n, k) = 0.5 − 0.5cos

(
2π(n− n0)

Wn + 1

)
cos

(
2π(k − k0)

Wk + 1

)
The ωn and ωk terms represent the time and frequency modula-

tion frequencies of the complex sinusoid, while Wn and Wk repre-
sent time and frequency window lengths of the Hann window. We
used the same set of 59 2D Gabor filters as used in [6], first pro-
posed in [10]. The set of filters were selected to cover a wide range
of modulation frequencies, and for their transfer functions to exhibit
constant overlap in the modulation frequency domain, which approx-
imated orthogonal filters thereby limiting the redundancy of the fil-
ter output. The filter bank parameters (e.g., filter spacing, lowest
and highest modulation frequencies in time and frequency dimen-
sion) were determined empirically based on a speech recognition
task in [10]. In that work, the lowest non-zero temporal modulation
frequency was 6 Hz. A slightly modified set of parameters that also
covered modulations between 2-4 Hz [6] was used, because frequen-
cies in this range were often found to be important in speech-related
tasks. Figure 1 illustrates the 59 Gabor filters.

For each feature frame, each 2D Gabor filter was convolved with
a set of 23 log mel spectrum frequency bands, with frequencies rang-
ing from 64 to 400 Hz, producing 59x23=1,357 initial feature di-
mensions. Because the 2D Gabor filters were complex, the 1,357
feature values were hence complex, and the real components of the
feature values were used (this resulted in superior ASR performance,
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Fig. 1. Real components of the set of 59 2D Gabor filters.

as shown in [6]). The 1,357 real feature dimensions were reduced
to 449 through selective sampling of filter outputs, producing a 449-
dimensional feature vector, which was still too large for standard
speaker recognition modeling approaches to handle effectively.

The 449-dimensional Gabor features were reduced to a final set
of 32 dimensions using a Multi-Layer Perceptron (MLP), followed
by a log transformation, followed by Principle Component Analysis
(PCA). The inputs to the MLP were the 449-dimensional features,
and the outputs were a set of MLP output posteriors of an intermedi-
ate dimension. The top 32 PCA eigen-dimensions of the MLP output
posteriors were retained, resulting in the final set of 32 dimensions.
The reason that PCA was used on top of MLP dimensionality re-
duction was to obtain a set of orthogonal output feature dimensions
(because the MLP output dimensions represented posterior proba-
bility distributions, they were correlated with one another). Figure 2
illustrates a simplified view of this process.

Gabor Features: Implementation 

449-dim 
vector 

Principal 
Component  
Analysis 
(PCA) 

Log 
transform 

32-dim 
vector 

Multi-layer 
Perceptron 
(MLP) 

449-dim 
vector 

Principal 
Component  

Analysis 
(PCA) 

Log 
transform 

32-dim 
vector 

Multi-layer 
Perceptron 

(MLP) 

Fig. 2. Simplified view of the Gabor feature dimensionality reduc-
tion approach.

Keeping the dimensionality reduction framework, we explored
different approaches to MLP training in an attempt to obtain Gabor
features tuned for the speaker recognition task. The first approach
was to simply use a pre-trained MLP (from the work of [6]) with 56
phone posteriors as outputs, trained on the Aurora2 database. Two
additional MLP training approaches were investigated. These ap-
proaches used speaker classes as MLP output labels, determined via
the clustering of the development data’s supervectors. The super-
vectors consisted of the GMM mean parameters obtained from MAP
adaptation of a 128-mixture UBM to each of the conversation sides,
using MFCC features C0-C12 + ∆ + ∆∆. The first clustering ap-
proach involved K-means clustering of the supervectors, while the



second involved bottom-up hierarchical clustering. In these two ap-
proaches, each development conversation side was associated with
one speaker label for MLP training. Both clustering approaches clus-
tered the development conversation sides into a set of 56 speaker
clusters, to be consistent with the pre-trained MLP for ASR.

Finally, we investigated using the MLP training labels derived
from the UBM mixture likelihoods, where the label for each frame
corresponded to the UBM mixture with the highest likelihood (as-
suming that all mixtures had equal prior). For this approach, the
effects of varying the number of UBM mixtures were examined, and
the number of MLP output dimensions varied according to the num-
ber of UBM mixtures.

4. EXPERIMENTS AND RESULTS

Speaker recognition experiments for the Gabor features were ini-
tially run using the well-established GMM-UBM and GMM-SVM
speaker recognition approaches. Because of the relatively small size
of the ROSSI database, 128-mixture GMM models were used for
all system implementations, with mean- and variance-normalized
MFCC features C0-C12 + ∆ + ∆∆. The GMMs were trained using
the open-source ALIZE toolkit [11], the SVMs were implemented
using the SVM light toolkit [12] (with wrapper scripts from SRI),
and MFCC features were extracted using HTK [13]. The SHOUT
speech/non-speech detector [14] (which trains a speech, non-speech,
and silence model per conversation side) was used to extract the
speech regions of each conversation side. The Gabor- and MFCC-
based GMM-SVM systems were combined at the feature level. For
experiments using the NIST SRE08 dataset (where SRE04 was used
as development data), the performance of the Gabor features using
the i-vector approach, as described in [15], was also investigated.

Experiments were performed using each of the MLP training ap-
proaches described in Section 3. The approach using the pre-trained
MLP on the Aurora2 database, with phone posteriors as outputs, is
denoted as phone-mlp; the approach using k-means clustering for
speaker class-based MLP training is denoted as kmeans-mlp; the ap-
proach using bottom-up hierarchical clustering is denoted as botup-
mlp, and the approach using UBM likelihoods is denoted as ubmllk-
mlp. For the latter approach, the optimal speaker recognition perfor-
mance was obtained using a 76-mixture UBM to extract the Gaus-
sian labels, resulting in 44 distinct labels. Hence, the Gabor feature
dimensions were first reduced from 449 to 44 via the MLP, then to
32 via PCA. Table 2 shows the experimental results on the ROSSI
database, for all features and systems. Note that the GMM-UBM
approach was used to determine the optimal MLP training method.

According to the results, the ubmllk-mlp approach labeling
method produced the lowest EER among all the MLP-training ap-
proaches for the GMM-UBM system: 9.5% EER for Gabor features
standalone, and 9.2% EER for Gabor+∆ features. The Gabor+∆
features achieved the same EER (9.2%) as the MFCC baseline.
Using the pre-trained MLP based on phone posteriors (phone-mlp
approach) produced a 17.7% EER, which was lower than the EERs
(20.7% and 21.7%) that resulted from the two clustering-based ap-
proaches (kmeans-mlp and botup-mlp, respectively). The results
indicated a high EER variability associated with the MLP-based
dimensionality reduction approaches, as the methods by which the
final 32 dimensions were obtained had large impacts on speaker
recognition performance, and would warrant further investigation.
The results also suggested that the Gabor features were able to
perform well in the presence of channel and environmental noise,
present in the ROSSI database.

Feature-level combination of the Gabor+∆ and MFCC features

Feature MLP training System EER (%)
MFCC – GMM-UBM 9.2
Gabor phone-mlp GMM-UBM 17.7
Gabor kmeans-mlp GMM-UBM 20.7
Gabor botup-mlp GMM-UBM 21.7
Gabor ubmllk-mlp GMM-UBM 9.5

Gabor+∆ ubmllk-mlp GMM-UBM 9.2
MFCC – GMM-SVM 7.6

Gabor+∆ ubmllk-mlp GMM-SVM 7.6
Gabor+∆ ubmllk-mlp GMM-SVM 7.2
+MFCC

Table 2. Gabor feature results on the ROSSI database, for differ-
ent feature implementations (based on MLP training variants), and
speaker recognition approaches. The last row shows feature-level
combination.

was also investigated using the GMM-SVM system, in which the
MFCC supervectors were concatenated with the Gabor+∆ supervec-
tors. Here, the GMM-SVM approach was used over the GMM-UBM
approach, because the former could more successfully handle com-
binations of higher-dimensional features. The Gabor+∆ and MFCC
combination produced a 7.2% EER, a 5% relative EER improvement
over both the Gabor+∆ and MFCC GMM-SVM systems standalone,
as shown in table 2.

Because of the large dimensionality of the Gabor features, it was
difficult to test the features on large NIST SRE datasets, due to large
amounts of computational time and space required to process the Ga-
bor features. This was especially true for the i-vector with LDA and
WCCN approach, because of the large amounts of i-vector develop-
ment data (at least 10,000 conversation sides per gender) required.
We thus obtained some Gabor feature results using an i-vector sys-
tem, on a subset of NIST SRE08 male telephone data (as described
in Section 2), using a set of 90 speakers and 900 conversation sides
from SRE04 for i-vector development (including T-matrix, LDA ma-
trix, and WCCN matrix training). We used the same i-vector devel-
opment data to implement an MFCC-based i-vector system for com-
parison with the Gabor-based system, but because of the lack of i-
vector development data, the MFCC-based results suffered in terms
of EER. Gabor feature extraction was performed using the MLPs
trained on the ROSSI data, because the ROSSI data provided more
optimal MLP training, in terms EER, than SRE data. This was be-
cause when the ubmllk-mlp approach was applied for MLP training
on SRE data, only a few of the Gaussian mixtures had the highest
likelihoods for all frames. Table 3 shows the SRE08 results.

Feature MLP training System EER (%)
Gabor+∆ ubmllk-mlp GMM-UBM 17.6
Gabor+∆ ubmllk-mlp i-vector 11.5

MFCC – i-vector 11.3

Table 3. Gabor and MFCC feature results on NIST SRE08 male
telephone data.

The GMM-UBM results demonstrated the applicability of the
Gabor features on SRE08 data, though the results were suspected
to improve with greater amounts of i-vector development data. The
i-vector with LDA and WCCN approach to Gabor feature-based
speaker recognition produced a 35% relative improvement over the
baseline GMM-UBM system, using the ubmllk-mlp MLP training



approach (11.5% vs. 17.6% EER). Furthermore, the Gabor features
had roughly the same performance as the MFCC features using
the i-vector approach (11.5% vs. 11.3% EER), suggesting that the
Gabor features are comparable to MFCC features in terms of per-
formance on male telephone conversational data. Note that, due to
the smaller number of GMM mixtures and small data size, only 100
i-vector dimensions were used, and 50 dimensions were kept after
LDA processing.

We also investigated the score-level combination of Gabor+∆
features with the MFCC features on the ROSSI dataset. Combina-
tion was performed using an MLP with 2 hidden nodes and 1 hidden
layer, implemented using Lnknet [16]. The EERs represent aver-
aged EER values over 100 splits amongst the trials, where each split
contained training and testing sub-splits. For each of the 100 splits,
MLP weights were trained using the training sub-split, and EERs for
each split were obtained by applying the MLP weights on the testing
sub-split. The subsampling was performed even if there was only
one system used, so that the standalone results would be consistent
with the combination results. The score-level combination results
are shown in table 4, where the ubmllk-mlp MLP training approach
was used for Gabor feature extraction. The GMM-SVM approach
was used for both the MFCC and Gabor+∆ systems.

System EER (%)
MFCC 7.6
Gabor+∆ 7.4
MFCC + Gabor+∆ 7.0

Table 4. Score-level combination results for Gabor- and MFCC-
based speaker recognition systems using the GMM-SVM approach
and ROSSI database, with 100-split subsampling

According to table 4, the Gabor features were effective in score-
level combination with MFCC features. Combining the MFCC and
Gabor systems at the score-level gave an 8% relative EER improve-
ment over the MFCC system standalone (7.0% vs. 7.6% EER), and
a 5% relative EER improvement over the Gabor+∆ system stan-
dalone. While the improvements were not significant, they never-
theless suggested that Gabor features provided complementary in-
formation to the MFCC features in score-level combination, and that
score-level combination of the two features was superior to feature-
level combination in terms of EER.

5. DISCUSSION AND SUMMARY

This work demonstrates the applicability of 2D Gabor features for
speaker recognition, and is the first known attempt to apply them
to a large dataset such as the NIST speaker recognition framework.
Using data with channel and environmental noise, we have demon-
strated that Gabor features could perform as well as MFCC features
standalone, and provide complementary information to MFCC fea-
tures for score-level combination. Because of the large number of
parameters involved in Gabor feature extraction, future gains could
potentially be achieved through better dimensionality reduction ap-
proaches, and adjustments to the spectral and temporal modulation
frequencies of Gabor features (the frequencies had been initially
tuned for ASR). Future work could also reduce the computational
costs of Gabor feature extraction, so that the features could be ap-
plied to larger NIST datasets.
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