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Abstract

We performed automated feature selection for multi-stream
(i.e., ensemble) automatic speech recognition, using a hill-
climbing (HC) algorithm that changes one feature at a time if
the change improves a performance score. For both clean and
noisy data sets (using the OGI Numbers corpus), HC usually
improved performance on held out data compared to the initial
system it started with, even for noise types that were not seen
during the HC process. Overall, we found that using Opitz’s
scoring formula, which blends single-classifier word recogni-
tion accuracy and ensemble diversity, worked better than en-
semble accuracy as a performance score for guiding HC in cases
of extreme mismatch between the SNR of training and test sets.

Our noisy version of the Numbers corpus, our multi-layer-
perceptron-based Numbers ASR system, and our HC scripts are
available online.
Index Terms: speech recognition, feature selection, ensemble

1. Introduction
The usual architecture of a multi-stream automatic speech
recognition (ASR) system is a set of classifiers acting in parallel
on the same classification problem, producing parallel streams
of classifier output which are then combined. Such an archi-
tecture is often referred to as an ensemble of classifiers in the
pattern recognition literature. Diversity (disagreement between
members of the ensemble) is necessary for an ensemble to per-
form better than its best individual member. A popular way to
create diversity in an ensemble ASR system is to provide a dif-
ferent feature vector to each classifier. This leads to the problem
of ensemble feature selection (EFS): given a pool of available
features, what features should be used by each classifier?

Published work on EFS for ASR that we are aware of has
dealt with indivisible blocks of features, so that a feature vector
must contain either all the features in a block or none of them
(see section 2.3 of [1] for a survey). In this work, we performed
EFS at the level of individual features. For example, the feature
vector of each classifier in an ensemble may contain both some
MFCC features and some PLP features, while leaving out other
features, and a feature may appear in the feature vectors of more
than one classifier.

We carried out EFS using a hill-climbing (HC) approach
previously used outside the ASR field [2]. In this approach, ini-
tially chosen feature vectors are iteratively improved by adding
or removing a single feature at a time to or from a feature
vector if the change improves a performance score. The pro-
cess is stopped when no more performance improvement can
be achieved by the algorithm.

This paper presents key results from [1][3], while [1] also

included experiments using the ISOLET corpus to evaluate the
random subspace method [4] and HC.

2. Data sets and ASR approach
2.1. The OGI Numbers corpus

The OGI Numbers corpus [5] consists of strings of spoken num-
bers collected over telephone connections. We used version 1.3
of the corpus, divided into a 6 hour training set and two 2 hour
test sets. We called the first test set thedevelopment set, since
we used it as test data for guiding the HC process, and the sec-
ond test set theevaluation set, since we used it as held-out data
for final performance evaluation.

2.2. Our noisy version of the Numbers corpus

We created a noisy version of the corpus by adding one of ten
different noise types to each utterance at one of six different
signal-to-noise ratios. We will refer to this version of the corpus
asnoisyand to the original corpus asclean. Four noise types
were used for all three sets (training, development, and evalua-
tion), and each of the other noise types was only used in one set
(with two of these noise types per set). Thus, there was a mix
of matched noise types (shared across all sets) and mismatched
noise types (only found in one set).

The design of our noisy corpus was heavily influenced by
the Aurora 2 benchmark [6], with the additional goal of separat-
ing development test data used for feedback to improve systems
from held out evaluation data used to report final results [7].

We have provided scripts and noise recordings [8] other re-
searchers can use to make their own exact copy of our noisy
version of Numbers, starting from a copy of the clean corpus.

2.3. Our use of multi-layer perceptrons (MLPs)

We used a “hybrid connectionist” ASR approach [9], in which
MLPs are used for acoustic modeling within an HMM. While
Gaussian mixture model based systems are more common than
MLP based systems, MLPs have often handled novel feature
types particularly well [10]. Our results using MLPs are made
more relevant to researchers using GMM-based systems by past
work on the “tandem” approach, which can be used as a bridge
between them [11][12].

We used one MLP per stream. We combined the outputs
of the MLPs by combining posterior probabilities at the frame
level. We did this using a common approach: taking the geo-
metric mean of the posterior probabilities for each phone across
MLPs [13] (for numerical reasons we calculated this through
taking the arithmetic mean of logarithmic probabilities).



2.4. Our Numbers ASR system

Our scripts and configuration files for Numbers ASR using
multi-layer perceptrons, based on the open source Quicknet
toolkit and noway decoder [14], can be downloaded at [8].

We used part of the training set as cross-validation data for
early stopping during the MLP training process and as a test
set for tuning decoder parameters using a grid search. We re-
peated decoder parameter tuning whenever we made a change
to feature vectors, MLP topology, or the training condition (i.e.,
changing between clean and noisy training).

As an experimental control, we always chose the number
of MLP hidden units so that the total number of acoustic model
parameters in each system was about 806,400 (corresponding
to 3600 hidden units for a single-MLP MFCC or PLP system).
For a system with more than one MLP, this total was the sum
of the number of parameters for all the MLPs, and the number
of hidden units for each MLP was chosen so that the number of
parameters for each MLP was approximately equal. When fea-
ture vector sizes changed during HC, we adjusted hidden layer
sizes to satisfy these requirements.

Partway through this project, we noticed that we could
improve ASR accuracy by making some adjustments to MLP
training and duration modeling [1][8], but for comparability we
kept our original settings for all experiments.

3. Hill-climbing procedure
The pseudocode below, titled HILLCLIMBING, corresponds
to the version of HC used in this paper.

In some of our experiments, HC scored candidate feature
vectors by ensemble word recognition accuracy. In the other ex-
periments, it scored them by the formulafitnesss = accs+α∗
divs, wheres identifies a stream,accs is the single-stream (i.e.,
non-ensemble) accuracy of that stream, anddivs is that stream’s
contribution to ensemble diversity. (In the pseudocode listing,
scoring is represented by the CALCULATESCORE function.)
The α parameter provides an adjustable trade-off between ac-
curacy and diversity, but for simplicity we always usedα = 1.
This formula was introduced by Opitz [15].

At first glance Opitz’s formula may be less intuitive than en-
semble accuracy. The authors of [16] used ensemble accuracy
to guide ensemble feature selection, and mentioned that over-
fitting was sometimes a problem; they suggested the inclusion
of a diversity term in the scoring formula as a response. While
Opitz’s formula is presumably still prone to overfitting of indi-
vidual classifiers, it may have an advantage in that an ensemble
of overfitted classifiers is not necessarily an overfitted ensem-
ble. In fact, some work (e.g. [17][18][19]) suggests that over-
fitting of individual classifiers may actually help ensemble per-
formance in some situations. We setaccs to the single-stream
word recognition accuracy of streams. We calculateddivs by
calculating the pairwise diversity between streams and each
other stream, and then averaging the pairwise diversities. We
defined pairwise diversity as the number of word hypotheses
that differ divided by the total number of words.

In all HC experiments, our feature pool contained 39 MFCC
features, 39 PLP features, and 28 MSG (Modulation-filtered
SpectroGram) features. In order to see the effect of varying
ensemble size, in some experiments we used three MLPs per
ensemble and in some we used five. When using three MLPs
we sometimes started off by assigning features to MLP ran-
domly using the random subspace method (RSM) [4]. In the
other cases we started off with each of the three MLPs using

a particular feature extraction algorithm. That meant one MLP
using the MFCCs, another using the PLP features, and a third
using the MSG features. When the three initial feature vectors
were chosen by RSM we also used 39 features for the first two
MLPs and 28 features for the third MLP. When we used five
MLPs, the MLPs initially used 13 static MFCCs, 26 dynamic
(delta and delta-delta) MFCC features, 13 static PLP features,
26 dynamic PLP features, and 28 MSG features respectively.

HILL CLIMBING (FS, S, N)

1 � FS: the set of feature vectors (already initialized)
2 � S: the number of feature vectors (streams) in FS
3 � N: the number of features in the feature pool
4
5 � Perform hill-climbing for each stream in turn
6 for s← 1 to S
7 � Initialize this stream’s score.
8 score← CALCULATE SCORE(FS, s)
9 repeat

10 improvement← false
11 � For each feature in the feature pool
12 for i← 1 to N
13 � If featurei is in streams, remove it.
14 � If featurei is not in streams, add it.
15 SWITCH(i, FS[s])
16
17 � If the change improved the score
18 newScore←

CALCULATE SCORE(FS, s)
19 if newScore > score
20 then
21 score← newScore
22 improvement← true
23 else
24 � Undo the change.
25 SWITCH(i, FS[s])
26 until improvement = false

To speed up HC, we parallelized it using a speculative exe-
cution technique, using one four-core machine for MLP training
and MLP forward pass and another one for decoding. Despite
this, each of the ten HC experiments took weeks to run, largely
because decoder parameter tuning was very time consuming.
We repeated the tuning in every iteration of the innermost of
the three loops in the HC algorithm, which might have been
more than necessary.

4. Results and discussion
We used a two-tailed matched pairs sign test to check whether
performance differences are statistical significant (which we
will abbreviate to “stat. sig.” below). For full details on sta-
tistical significance of results see [1][3]. We used a probability
of the null hypothesis of 0.05 as the significance threshold.

4.1. Main baseline and hill-climbing results

We will now discuss our main baseline results, which are in Ta-
ble 1, and our main HC results, which are in Tables2 and3.
The three-stream ensembles chosen by HC are better than most
of the baselines but there is no stat. sig. difference between
them and the all-features-concatenated baseline (row (d) of Ta-
ble 1). In the clean case, the five-stream system chosen by HC



has lower word error rate (WER) than any of the baselines, and
this is stat. sig. In the noisy case, the difference between it and
the best baseline (all features concatenated) is not stat. sig.

HC always lowered WER on the evaluation set, compared
to the initial ensemble that HC started with. In nine of ten cases
(all but row (b) of Table2) this improvement was stat. sig.

For three-stream HC, we tried both scoring formulas
(Opitz’s and ensemble accuracy) and both approaches to choos-
ing initial features (random or non-random). For clean data with
RSM initialization, Opitz’s formula was better then ensemble
accuracy (4.4% final WER vs. 4.6%) but there was no stat. sig.
difference in the other cases. For a given scoring formula used
to guide HC, it did not make a stat. sig. difference whether or
not we chose the initial feature vectors for HC randomly. So in
our five-stream experiments we used Opitz’s formula and non-
random initial feature vectors. Five-stream initial WERs were
better than three-stream initial WERs, and the same for final
WERs, and this was stat. sig. in most cases.

Experiment Clean train Noisy train
and test and test

(a) MFCC 6.5 21.4
(b) PLP 5.0 17.5
(c) MSG 7.3 16.3

(d) All features concatenated 4.5 14.7
(e) MFCC, PLP, MSG 4.9 15.7

(three MLPs)
(f) RSM (three MLPs) 4.8 17.2

(g) Five MLPs 4.5 15.6

Table 1: Baseline evaluation set WERs. In row (d), all features
in the feature pool are concatenated into a single feature vector.
Rows (e)-(g) were starting points for HC.

Experiment Clean train and test
Changes Initial Final

WER WER
(a) Hill-climbing (HC) 4 4.9 4.6

(b) HC, 2 4.8 4.6
RSM initialization
(c) HC usingα = 1 14 4.9 4.5
(d) HC usingα = 1, 17 4.8 4.4
RSM initialization

(e) HC, 5 streams, usingα = 1 45 4.5 4.2

Table 2: HC results for the clean Numbers corpus. Rows (a)-(d)
use three streams and row (e) uses five streams. The “Changes”
columns give the number of features changed (added to or
deleted from a feature vector) during HC. The “Initial WER”
columns give the initial ensemble WER on the evaluation set
before the HC algorithm has made any changes to the feature
vectors. The “Final WER” columns give the ensemble WER on
the evaluation set once HC has finished. If a value is given for
α it means that Opitz’s formula was used to guide HC. “RSM”
means that initial feature vectors were chosen randomly.

Experiment Noisy train and test
Changes Initial Final

WER WER
(a) Hill-climbing (HC) 5 15.7 14.8

(b) HC, 17 17.2 14.8
RSM initialization
(c) HC usingα = 1 20 15.7 14.8
(d) HC usingα = 1, 15 17.2 14.9
RSM initialization

(e) HC, 5 streams, usingα = 1 61 15.6 14.2

Table 3: HC results for the noisy Numbers corpus.

4.2. Hill-climbing and overfitting

To investigate whether overfitting of the ensemble affected HC
performance, we compared development set ensemble accu-
racy to evaluation set ensemble accuracy at each stage of HC
(see Section 6.5 of [1] and Section 1.6 of [3]). We concluded
that performance on the Numbers evaluation set was not sig-
nificantly lowered by overfitting [7][20] to the development set
during the HC process, except perhaps in the case of the noisy
corpus with five streams.

4.3. Hill-climbing performance for unseen noises

Did HC improve evaluation set performance for all six noise
types in the evaluation set, or only for the four shared noise
types (see section2.2)? Table4 compares evaluation set WERs
for the four shared noises and the two evaluation-only noises.
In the three-stream case, HC improved on the systems that it
started from even for the evaluation-only noises. In each case,
the improvement was stat. sig. for both the shared noises and
the evaluation-only noises. The differences in WER between
the four three-stream systems chosen by HC were not stat. sig.
In the five-stream case, the difference between initial and final
WERs for five-stream HC is stat. sig. for the shared noises,
but not for the evaluation-only noises. This difference from the
three-stream case may be because the initial five-stream WER
for evaluation-only noises is 22.4%, considerably lower than for
the three-stream systems.

Experiment Shared Evaluation-only
noises noises

(a) Initial 3 streams, non-RSM 14.1 25.5
(b) Initial 3 streams, RSM 15.0 28.8

(c) Hill-climbing (HC) 13.3 23.4
(d) HC, RSM initialization 13.3 23.6

(e) HC usingα = 1 13.1 24.2
(f) HC usingα = 1, RSM init. 13.1 24.5

(g) Initial 5 streams 15.0 22.4
(h) HC, 5 streams, usingα = 1 12.7 22.7

Table 4: Evaluation set WERs for the noisy Numbers corpus,
divided into shared noises and evaluation-only noises. Rows
(a)-(f) use three streams.



4.4. Testing the features chosen by hill climbing in a heavily
mismatched condition

Are the features chosen by HC simply better features in gen-
eral, or only better if used for the condition (clean or noisy) that
HC was performed for? Tables5 and6 show the results when
we used the clean Numbers corpus for feature selection, MLP
training and decoder parameter tuning, and then tested on the
evaluation set from the noisy Numbers corpus.

All three-stream systems chosen by HC performed better
in this highly mismatched situation than the initial three-stream
systems HC started from, and this was stat. sig. in each case.
This is further evidence that improvements in performance from
HC can carry over to situations not seen during HC. Using
Opitz’s formula with non-RSM initialization gave the best per-
formance.

Both the final three-stream system in row (c) of Table6 and
the initial five-stream system in row (e) performed better than
the final five-stream system chosen by hill-climbing (this was
stat. sig.). However, the final five-stream system chosen by hill-
climbing performed better than the systems in the remaining
rows of the table (also stat. sig.).

See [1] for further mismatched condition results.

5. Conclusions
For both clean and noisy data sets, HC usually improved perfor-
mance on held out data compared to the initial system it started
with, even for noise types that were not seen during the HC pro-
cess. On the other hand, HC was quite time consuming. Perhaps
it could be sped up by doing less decoder parameter tuning.

In most cases, error rates were roughly comparable whether
we guided HC with Opitz’s scoring formula or with ensemble
accuracy. However, Opitz’s formula provided a large advantage
when there was an extreme mismatch between training and test.

It should be noted that the error rate of our baselines was
well above the best known Numbers result (2.0% for Numbers
version 1.0; see section 3.10 of [1]). However, it was compara-
ble to other published OGI Numbers results.

Finally, our HC scripts can be downloaded at [21], along
with diagrams of the initial and final feature vectors. We may
use the same location in the future if we need to publish updates
or corrections regarding our work.

Experiment WER
(a) MFCC 33.2
(b) PLP 38.0
(c) MSG 30.4

(d) All features concatenated 32.1
(e) MFCC, PLP, MSG (three MLPs) 30.5

(f) RSM (three MLPs) 30.5
(g) Five MLPs 22.9

Table 5: Baseline WERs on the evaluation set in a highly mis-
matched condition: the clean training set was used with the
noisy evaluation set. The feature vectors and MLP hidden layer
sizes are the same as in Table1.
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