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Abstract—This paper presents novel methods for generative, dis-
criminative, and hybrid sequence classification for segmentation of
Turkish word sequences into sentences. In the literature, this task
is generally solved using statistical models that take advantage of
lexical information among others. However, Turkish has a produc-
tive morphology that generates a very large vocabulary, making
the task much harder. In this paper, we introduce a new set of
morphological features, extracted from words and their morpho-
logical analyses. We also extend the established method of hidden
event language modeling (HELM) to factored hidden event lan-
guage modeling (fHELM) to handle morphological information.
In order to capture non-lexical information, we extract a set of
prosodic features, which are mainly motivated from our previous
work for other languages. We then employ discriminative classifi-
cation techniques, boosting and conditional random fields (CRFs),
combined with fHELM, for the task of Turkish sentence segmen-
tation.

Index Terms—Prosodic and lexical information, sentence seg-
mentation, Turkish morphology.

1. INTRODUCTION

ANY useful results have been obtained by applying
M statistical language modeling techniques to English
(and similar languages)—in speech recognition, parsing, word
sense disambiguation, part-of-speech (POS) tagging, etc. How-
ever, languages that display a substantially different behavior
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than English, like Turkish, Czech, Hungarian (in that, they
have agglutinative or inflective morphology and relatively free
constituent order) have not been studied extensively using
statistical approaches. In these languages, due to their richer
morphology, the vocabulary size for a given corpus size is
much larger than other languages [1], [2]. While this causes
a data sparseness problem, the statistical models that look at
only words are also blind to the information encoded in the
morphology. Usually, the combined effect of these problems is
a reduction in language processing performance.

Similarly, in spite of all the advances in discriminative
classification techniques in the machine learning community,
discriminative sequence classification is still a challenge. Re-
searchers have proposed various techniques such as maximum
entropy Markov models [3] or conditional random fields [4],
[5]. However these techniques are typically not very successful
in efficiently handling continuous valued features hence it
is a common practice to discretize such features [6]. On the
other hand, for generative sequence modeling, hidden Markov
models (HMMs) still dominate the field; however usually only
one level of states is employed. For example, for automatic
speech recognition (ASR), typically word sequences are mod-
eled for the language model [7]. With the advances in graphical
models, factored language models (FLMs) handling bundles of
features for each sample have been proposed [8]. FLMs have
been successfully used for ASR of inflectional languages such
as Arabic [9].

In this paper, we address the problem of exploiting morpho-
logical information in statistical classification models for sen-
tence segmentation of Turkish speech. Our contributions are
threefold: First, we extend the hidden event language models
to factored hidden event language models and combine them
with classification models. Second, we introduce a new set of
morphological features, extracted from words and their morpho-
logical analyses. Third, we extract a set of prosodic features,
which are mainly motivated from our previous work for other
languages, for the task of Turkish sentence segmentation.

In the next section, we briefly summarize the related work
on sentence segmentation of speech. Then, we present our
approach, mainly the generative, discriminative, and hybrid
modeling techniques, and we describe the feature sets for
segmenting Turkish speech into sentences. Finally, we provide
experimental results showing the effectiveness of the proposed
techniques for this morphologically rich language.
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II. SENTENCE SEGMENTATION

Sentence segmentation for speech aims at finding sentential
unit boundaries in a stream of words, output by a speech recog-
nizer. It is a preliminary step for many speech processing appli-
cations, such as parsing, machine translation and information
extraction, which generally assume the presence of punctua-
tion. One typically leverages the word sequence generated by
a speech recognizer and prosodic cues such as pitch, energy and
pause duration in order to segment the audio in sentences.

Previous work on sentence segmentation has considered this
task as a word boundary classification problem, by determining
whether or not two consecutive words are separated by a
sentence boundary. The features used are mainly limited to
words neighboring the boundary [10]-[12], with the exception
of [13], who included a reranking phase using sentence-level
features. [14] showed that for segmentation of speech into
sentences, prosodic and lexical cues provide complementary
information. [15] evaluated different modeling approaches
(HMM, maximum entropy, and conditional random fields) and
various prosodic and textual features, in both conversational
telephone speech and broadcast news speech.

There is also related work for sentence boundary detection
in languages other than English, for example, in Czech [16]
where an HMM approach was used, and in Chinese [17], [18]
where a maximum entropy classifier was used with mostly
textual features. [12] used lexical and prosodic features with
several classifiers, including maximum entropy and boosting
for English and Mandarin. [19] investigated the use of the same
set of prosodic features and feature selection for English, Man-
darin, and Arabic. [20] used syntactic dependency structure
and support vector machines for sentence boundary detection
in Japanese. [21] is the first work that used morphological
features for sentence segmentation of Turkish; our work, in a
way, extends that work to also include prosodic features and
more sophisticated classification models. That study relied only
on generative models, i.e., hidden event modeling, and trained
two separate language models, one using words, the other using
morphological analyses of the words, and then computed the
weighted combination of the posteriors obtained from each
model.

Sentence segmentation has also been studied according
to various other aspects. [22] showed the benefits of
speaker-adapted models and [23] focused on domain adap-
tation. Sentence segmentation can be optimized to improve
downstream tasks, such as speech translation [24], [25] or infor-
mation extraction [26]. For instance, [24] has shown about 10%
relative BLEU score improvements for machine translation
(MT), when using a sentence segmentation optimized for MT,
in comparison to fixed length sentences. [26] has shown similar
results for information extraction, and that a 4% relative gain
on entity and relation extraction can be obtained by optimizing
punctuation for these tasks.

III. APPROACH

In the literature, typically sentence or dialog act segmentation
is treated as a boundary classification problem where the goal is

Fig. 1. Conceptual hidden event language model for sentence segmentation.

finding the most likely boundary tag sequence, ¥ = Y;...Y,
given the features, X = X ... X}

argmax P(Y|X). (1)
v

To this end, generative, discriminative, or hybrid models have
been used. Below we summarize these approaches and explain
how we extend them to handle the speech input of morpholog-
ical languages.

A. Factored Hidden Event Language Models

We propose using factored language models with hidden
event language models. Below, first we describe the Hidden
Event Language Model (HELM) and the FLM and then de-
scribe how we combine them.

1) Hidden Event Language Models: The most popular gen-
erative model for sentence segmentation is the hidden event lan-
guage model, as introduced by [27]. The HELM was originally
designed for speech disfluencies, such as deletion (DEL) and
repetition (REP). The approach was to treat such events as extra
meta-tokens. To ease the computation, an imaginary “no disflu-
ency” (NODF) token is inserted between two words, in cases
the word preceding the boundary is not part of a disfluency. The
following example is a conceptual representation of a sequence
with disfluencies:

... she NODF got REP got NODF real NODF lucky . . .

For sentence segmentation, sentence boundaries are simply
treated as hidden events, and the word sequence is augmented
with fictitious sentence boundary tokens (S for sentence
boundary, N for else). So an example would be as follows:

... she N got N real N lucky S however N there N were
N...

Note that this is different from using an HMM as is typi-
cally done in similar tagging tasks, such as POS tagging [28]
or named entity extraction [29]. For sentence segmentation, the
conceptual model is depicted in Fig. 1. In this model, one state
is reserved for each of the boundary tokens, S and IV, and the
rest of the states are for generating words. It has been shown that
the HELM outperforms the conventional HMM approach, since
it allows an explicit point to emit the boundary token, hence can
incorporate nonlexical information via combination with other
models as presented in the next subsection [14].

The most probable boundary token sequence is obtained
simply by Viterbi decoding using only lexical features, i.e., the
language model, to model P(X,Y), where X’ and Y represent
all the words (X; = (W;)) and boundary tokens, respectively,

argmax P(Y|X) = argmax P(X,Y) 2)
v v
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Fig. 2. Example factored language model seen as a directed graphical model
over words W and morphological factors M. The arrows indicate the factors
used for estimating the probabilities.

2) Factored Language Models: Factored language models
aim to model a sequence of feature sets, extending the conven-
tional language modeling. In other words, the goal is building
probabilistic language models using the subsets of feature sets
(or factors).

Factored language models have been successfully used for
ASR [9] of inflectional languages, by defining factors or feature
sets consisting of surface forms, stems, morphological analyses,
etc., of the words.

More formally, the factored language model aims to estimate
the probability of a feature set sequence, A7, . . . , X, instead of a
word sequence W1, ..., W,,. Here we consider X; = (W, M;)
where M, is a morphological feature for word W;. An example
factored language model can be seen in Fig. 2. The current word
relies on not only the previous two words but also the current and
previous morphological analyses. We provide example feature
sets for Turkish in Section IV-C. More formally, it models

P(Wt|Wt717Wt727Mt7Mt71)- (3)

Even with lower-order n-gram approximations, since it may
be possible to have unseen n-gram sequences, one important
issue with FLMs is how to back off to reliably estimate such
probabilities. A new generalized parallel back-off technique was
proposed to tackle this problem [8]. Basically, the system is
given a back-off graph, which denotes the paths for back-off.
Paths in this graph can be chosen manually. In the literature,
with complex factors, methods based on genetic algorithms have
been proposed to choose the optimal back-off graph [30]. The
important point is that many back-off paths can be proposed and
the system can process them in parallel.

An example back-off dropping the most distant word is de-
fined as follows for factored language models using words W,
and morphological analyses M,

Prrr(Yi|Cy), it N(Cy, V) > 1

PYi|Ct) = {oz(Ctg ><|P]3>O(Yt|é’t), other(wise. )

“)
where Cy = Wy, My, Yy 1, W;_1, My is the original context,
C’t = Wy, My, Yy_1, M;_1 is the backed off context, Py, is the
standard maximum-likelihood estimate (with smoothing), N (-)
is the number of occurrences, and « is used to ensure that the
result is still a probability distribution.

3) From HELM to fHELM: The factored hidden event lan-
guage models are straightforward extensions of hidden event
language models and factored language models. They combine
the strength of factored language models for multifeature se-
quence modeling with the classification power of hidden event

Fig. 3. Eexample factored language model created for a hidden event language
model seen as a directed graphical model over word boundaries Y, words W,
and morphological factors M. The arrows indicate the factors used for esti-
mating the probabilities.

language models. Fig. 3 presents the factored hidden event lan-
guage model topology employed in this paper. The boundary
states still exist to potentially build hybrid models (as explained
below) and the boundary decision is made according to the fol-
lowing formula:

P(Y;|Wt7Mt71/t—17Wt—17Mt—l) (5)

where Y; indicates the boundary decision, S or IV after the word
W, with a morphological analysis of M;.

The next step for building an fHELM is creating a back-off
graph indicating the possible back-off paths in case the statistics
for the desired n-gram are not reliable. In this study, we tried
only linear graph back-off (i.e., dropping and forgetting about
one factor at a time) and fully connected graph back-off (i.e.,
backing off to all possible subsets) starting from the most distant
feature. The back-off used in the experiments drop the most dis-
tant morphological analyses in a trigram language model M;_»
and then the most distant words W;_», and so on. Then standard
Viterbi decoding may be employed to find the most probable
state sequence, i.e., the boundary decisions given the words and
their other features, such as morphological analysis. This results
in an elegant method for building a generative classifier when
multiple features are used for each sample position. Further-
more, similar to regular HELMs, it is possible to combine the
posterior probabilities obtained from other classifiers (prefer-
ably discriminative) to improve the performance even more. For
example fHELM may exploit the lexical and morphological in-
formation and then may be combined with a classifier that uses
only prosodic features.

In our experiments, the SRILM [31] toolkit is used for Viterbi
decoding and for building the conventional and factored hidden
event language models with modified Kneser—Ney smoothing
[32].

B. Discriminative Classification Models

One weakness of the hidden event language models is that
one can incorporate only streams of discrete features such as
words or morphological analyses. To overcome this obstacle,
various classification methods have been used in the literature.
In a pioneering study, decision trees were used to build segmen-
tation models to improve the performance also by using addi-
tional prosodic features [14]. With the advances in discrimi-
native classification algorithms, researchers tried using condi-
tional random fields (CRFs) [33] and boosting [34], and hybrid
approaches using boosting and maximum entropy classification
algorithms [12].
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Our system relies on boundary-wise posterior probabilities
P(Y:|X;) provided by two classifiers that can be used indepen-
dently or jointly.

1) Boosting: The first component is an Adaboost [35]
classifier that generates posterior probability estimations out of
weighted decision stumps (one-level decision trees)

m 1
1+ exp <—2mz szZ(Xt)>] (6)

=1

P(Yt|Xt> =

where s;(+) is a decision stump (presence of a discrete feature
or position relative to a threshold of a continuous feature) over
a single feature, w; is the weight given to that decision stump,
and m is the number of decision stumps. Adaboost is trained
by iterating over the selection of the best decision stump and
reweighing of examples where the overall classifier makes mis-
takes. The implementation used in our experiments is icsiboost.!
In all our experiments, we used boosting with 1000 iterations.
2) Conditional Random Fields: The second component of
our system uses CRFs as proposed by [4]. We use chain CRFs to
estimate the probability of a sequence of boundary events (Y =

Y7 ...Y,) given a sequence of observations (X = Xy, ..., Xp).
P(Y|%) = Z(lX) exp (;éAs(Ylyz«)) )
where
Z(X) = ZGXP (ii)\isi(yt—hyt7)(t)> . (®
v t=1 i=1

Here, s;(-) are decision functions that depend on the exam-
ples and a clique of boundaries close to Y, A; is the weight of s;
estimated on training data, and 7 (X') is a normalization factor.
Note that CRFs give the probability of the sequence of boundary
decisions. The forward—backward algorithm can be used to get
boundary-level posterior probability estimates.

For our experiments, we use the CRF++ toolkit,2 which
allows binary decision functions dependent on the current
boundary and the previous boundary. Features extracted from
X originate from a neighborhood of the boundary and match
the features used with Adaboost, though CRF++ does not
handle continuous features.3 and requires them to be quan-
tized. After experimenting with different types of quantization,
we observed that using thresholds from the decision stumps
learned by Adaboost leads to slightly improved performance,
probably due to the fact that the thresholds of decision stumps
are already optimized on dividing positive and negative classes
and the stumps embed the interaction between features (as in
Adaboost training, classifiers are chosen in order to correct
errors from previous iterations), thus this method is expected to
be better than other quantization schemes. This is similar to the
quantization method suggested by [36].

Thttp://code.google.com/p/icsiboost.
2http://crfpp.sourceforge.net/.

3This is true for just the CRF++ toolkit, and not a drawback of CRFs in gen-
eral.

C. Hybrid Generative and Discriminative Modeling

One important observation is that nonsequential discrimina-
tive classification algorithms typically ignore the context, which
is critical for the segmentation task. While one may add context
as an additional feature, or simply use CRFs, which inherently
consider context, these approaches are suboptimal when dealing
with real valued features, such as pause duration or pitch range.
Most of the previous studies simply tackled this problem by bin-
ning the feature space either manually or automatically [6].

An alternative would be using a hybrid classification ap-
proach as suggested by [14]. The main idea would use the
posterior probabilities P. obtained from the other classifiers,
such as boosting or CRF, by simply converting them to state
observation likelihoods by dividing to their priors following the
well-known Bayes rule:

arg;tnax % = arg}gmx P.(X:|Yy).

Applying Viterbi algorithm to the HMM will then returns the
most likely segmentation. In order to handle dynamic ranges
of state transition probabilities and observation likelihoods, we
apply a weighting scheme as is usually done in the literature

&)

arg max P.(X;|V;)® x P(V;)? (10)
Y:

where P(Y;) is estimated by the fHELM, « and 3 are optimized

using a held-out set.

IV. FEATURES

In the classification models, three types of features—Ilexical,
prosodic, and morphological—are used.

A. Lexical Features

The lexical features used in this work consist of six word
n-gram features for each word boundary that were also used
in our previous work for English [37]: three unigrams, two bi-
grams, and a trigram. Naming the word preceding the word
boundary of interest as the current word, and the preceding and
following words as the previous and next word respectively, the
six lexical features are as follows:

e unigrams: {previous}, {current}, {next};

* bigrams: {current, next}, {previous, current};

e trigram: {previous, current, next}.

B. Prosodic Features

The prosodic features are also transferred from the ICSI+ sen-
tence segmentation system [12]. We use about 200 prosodic fea-
tures, defined for and extracted from the regions around each
inter-word boundary. The features include the pause duration
at the boundary, normalized phone durations of the word pre-
ceding the boundary, and a variety of speaker-normalized pitch
features and energy features preceding, following, and across
the boundary. These features are an extension of similar features
described in [14]. The extraction region around the boundary fo-
cuses on either the single words or brief time windows around
the boundary. Measures include the maximum, the minimum,
or the average value in this range. Pitch features are normalized
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by speaker, using the method to estimate a speaker’s baseline
pitch values described in [14].

C. Morphological Features

Turkish is also a free-constituent-order language, in which
constituents at certain phrase levels can change order rather
freely according to the discourse context or text flow. How-
ever, the typical order of the constituents, especially for the news
genre, is subject-object-verb (SOV).

Let us consider a simple complete sentence “cocuk yemek
vedi” in Turkish, which means “the child ate the meal” in Eng-
lish. The correct morphological analyses are as follows:

cocuk: Noun+A3sg+Pnon+Nom (the child);
yemek: Noun+A3 sg+Pnon+Nom (the meal);
yedi: Verb+Pos (+dH) +Past+A3gg (ate).

Turkish has an agglutinative morphology with productive
inflectional and derivational suffixations [38]. The number of
word forms one can derive from a Turkish root form may be
in the millions [39]. For example, [40] shows that one can
obtain thousands of new word forms from any noun, a verb,
and an adjective root form by suffixing only three morphemes.
Morphological information in Turkish can be represented in
general form as given as follows:

root +IG{ +" DB+ 1Gy +" DB+ ...+ DB+ IG,,.

In this representation (adapted from [41]), the inflectional
groups (IGs) denote the derivational boundaries and are marked
with “ DB.” The root and derivational elements of a word are
represented by different IGs. Each IG; denotes the relevant
sequence of inflectional features. Some of these inflectional
features can be listed as follows:

+Adj: adjective, +Noun: noun, +Verb: verb, +A3sg:
3rd person singular agreement, +P1sg: 1st person singular
possessive agreement, +Pnon: no possessive agreement,
+Nom: nominative case, +Pos: positive polarity, +Past:
past tense, +Fut: future tense, +FutPart: future par-
ticiple.

consider the Turkish word
“vapabilecegim,” which consists of the morphemes
“(yap) + (abil) + (ecek) + (im)” which roughly corre-
sponds to “(do) + (able to)+ (will)+(I)” in English.
It has three potential morphological analyses:
* (yap)yap+Verb+Pos (+yAbil) DB
+Verb+Able (+yAcAk) +Fut (+yHm) +Alsg
(I’11 be able to do it);
* (yap)yap+Verb+Pos (+yAbil)” DB
+Verb+Able (+yAcAk) DB +Adj+Fut-
Part (+Hm) +P1lsg
(The (thing that) I’ll be able to do);
e (yap)yap+Verb+Pos (+yAbil)” DB
+Verb+Able (+yAcAk) DB
+Noun+FutPart+A3sg (+Hm) +P1lsg+Nom
(The one I'll be able to do).
In this example, the root is a verb but the final IGs have three
readings, that are verb, adjective, and noun, respectively.

As an example, let us

Turkish presents an interesting problem for statistical models
since the potential POS tag set size (that is, the number of pos-
sible morphological parses) is very large because of the pro-
ductive derivational morphology. Following previous work [2],
[42], our approach handles this by breaking up the morphosyn-
tactic tags into inflectional groups, each of which contains the
inflectional features for each (intermediate) derived form. To
simplify our models further, we only extract morphological fea-
tures from the final inflectional group of every word, which
marks its final category in a sentence.

The morphological features used in this work are obtained
using a morphological analyzer for Turkish [38], which outputs
all possible morphological parses for all the words. We include
the final inflectional group of every word as well as its POS tag,
without resolving the ambiguity. For factored HELM, we arbi-
trarily chose one parse since fHELMs cannot handle multiple
parses.* With CRF and boosting we used all the possible parses
as features. Boosting also exploited parse subsequences as ad-
ditional features. For the POS tag, we mark the value of the fea-
ture as unknown when the word has multiple parses. We also
include a single binary feature that checks if any of the possible
morphological parses of a word is a Verb according to its final
category. We hope, with this, to take advantage of the SOV na-
ture of Turkish. To compare this approach, we also performed
experiments with pseudo-morphological features, using the last
three letters of each word. Like the “ed” suffix in English, in
Turkish certain suffixes may indicate Verb categories.

The Verb information is linguistically the most important fea-
ture from the morphological analysis of Turkish. Even though
the Turkish is a free word order language, the most frequent
order is SOV. Especially in newswire and broadcast news, the
order is almost always SOV. Therefore, if one of the morpholog-
ical analyses is a verb form, this is a strong signal for a sentence
end. However, due to morphological ambiguity, words that do
not play the role of a verb can be assigned a verb analysis, as
they may be verbs in other contexts. Prosodic features are ex-
pected to be useful in these cases.

V. EXPERIMENTS AND RESULTS

A. Data Sets

In our experiments, we use the Voice of America (VOA)
Turkish Section’ part of the Turkish broadcast news (BN)
speech corpus collected at the Bogazici University BUSIM
Laboratory.6 The VOA part of the corpus contains approx-
imately 21 hours of single-channel Turkish broadcast news
speech data recorded at a 16 bit, 32-KHz sampling rate. For
sentence segmentation experiments, 42 Turkish broadcast news
programs (30 minutes each) are used. These 42 files are split
into a training set (22 files, 97330 words), a development
set (five files, 14 897 words), and a test set (five files, 15688
words). The development set is used to optimize the parame-
ters, such as probability thresholds and combination weights «

4The performance is expected to be better when a good morphological dis-
ambiguator is used. We repeated experiments by randomly choosing a parse for
each word, and the results did not change significantly.

Shttp://www.voanews.com/turkish/.

Shttp://www.busim.ee.boun.edu.tr/.
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TABLE I
AMBIGUITY STATISTICS FOR DIFFERENT LEVELS OF MORPHOLOGICAL
FEATURES: AVERAGE NUMBER OF PARSES PER WORD FOR EVERY WORD
THAT WAS PARSED BY THE MORPHOLOGICAL ANALYZER AND PERCENTAGE
OF WORDS THAT HAVE A SINGLE PARSE (L.E., UNAMBIGUOUS WORDS)

Morphological Feature | Avg. Parse/Word | % of Unamb

Full Morph. Analysis 1.95 37.0
Last IG 1.83 39.5
POS of Last IG 1.30 62.9

and 3. The vocabulary size of the training set is 19 328 words,
and 33.5% of the words in the development set vocabulary and
35.8% of the test set vocabulary are not observed in the training
data (these correspond to 14.8% and 17.3% of the development
and test set words, respectively).

There are in total 128 005 words in the training, test, and de-
velopment sets. 6.76% of these are not parsed by the morpholog-
ical analyzer, mainly because of foreign person and city names
and typos in the data. The remaining words that are parsed have
on average 1.95 parse. This drops down to on average 1.83
analyses per word if only the last inflectional group of each word
is considered, and to 1.30 if only the POS tag category of the last
IG is considered. Table I lists the average number of parses per
word as well as the percentage of words that have a single parse
in the overall data set with these different conditions.

B. Evaluation Methods

For performance evaluation, we report NIST error rate and
F-measure on forced alignment output of an automatic speech
recognizer [43]. The NIST error rate is the number of misclas-
sified word boundaries divided by the number of reference sen-
tence boundaries

fat 1y

NIST =
tp + fan

(1)

where f,, fp, and ¢, are false negative, false positive, and true
positive, respectively. F-measure is the harmonic mean of pre-
cision and recall:

2 X precision X recall

F — measure = (12)

precision+recall
where precision = ¢,/t, + f, and recall = ¢,/t, + f.. The
NIST error rate is explained in detail with examples in [44].

C. Experiments With Lexical and Morphological Features

We compare our results with a baseline of using only lexical
features for all classification methods. Tables II and III present
results with boosting, CRF, and HELM/fHELM using lexical,
morphological and/or pseudo-morphological features. In the
case of only lexical features, HELM outperforms other methods
probably because of the large number of lexical features they
must tackle due to the agglutinative nature of Turkish.

When we add morphological and pseudo-morphological (last
three letters of words) to the feature sets, we observe significant
improvements in the performance with all classifiers. This is in-
tuitive because of the morphological characteristics and SOV

TABLE II
F-MEASURE WITH BOOSTING, CRF, AND HELM/fHELM USING LEXICAL (L),
MORPHOLOGICAL (M), AND/OR PSEUDO-MORPHOLOGICAL (PM) FEATURES

Classifier F
L L+M | L+PM | L+M+PM
Boosting | 0.749 | 0.884 | 0.853 0.869
CRF 0.756 | 0.887 | 0.864 0.891
HELM 0.782 - - -
fHELM - 0.865 | 0.862 -
TABLE III

NIST ERROR RATES WITH BOOSTING, CRF, AND HELM/
fHELM USING LEXICAL (L), MORPHOLOGICAL (M), AND/OR
PSEUDO-MORPHOLOGICAL (PM) FEATURES

Classifier NIST

L L+M L+PM | L+M+PM
Boosting | 44.0(%) | 24.7(%) | 30.0(%) | 26.5(%)
CRF 43.3(%) | 24.0(%) | 26.0(%) | 21.7(%)
HELM 36.7(%) - - -
fHELM - 25.9(%) | 27.1(%) -

sentence order of Turkish. One interesting observation is that
with boosting the performance degrades when both morpholog-
ical and pseudo-morphological features are employed instead
of only one of them. CRF consistently performs a little better
than boosting. The error rate of fHELM is reduced by 26% rel-
ative compared to HELM when only lexical features are used.
This shows the effectiveness of factored hidden event language
models for generative sequence classification. Furthermore, the
relative NIST error rate reductions are even more with boosting
(44%) and CRF (50%) with morphological features. These re-
sults are shown in Tables II and III.

In order to see the effect of morphological information when
various amounts of training data is available, we also provide
learning curves for HELM and fHELM. As Fig. 4 shows, the
F-measure difference between the HELM and fHELM is larger
when less training data is used, as expected. For example, the
difference in F-Measure is doubled when only 10 000 examples
are used instead of the whole set.

Table IV presents results with the combination of discrimina-
tive and generative sequence classification methods when both
lexical and morphological features are used. The performance
is more or less the same as using only the discriminative classi-
fiers, suggesting that they probably already incorporate the in-
formation coming from hidden event language models.

D. Experiments With Prosodic Features

Since we expect the prosody to provide orthogonal informa-
tion for sentence segmentation, we first check the effectiveness
of using only prosodic features with boosting and CRF. The per-
formance happens to be very similar to what we have got using
the models trained with only lexical and morphological infor-
mation. This shows the utility of the prosodic features that were
originally designed for English.
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Fig. 4. F-measure learning curves for HELM and fHELM with various training
data set sizes.

TABLE IV
F-MEASURE AND NIST ERROR RATES WHEN COMBINING BOOSTING AND CRF
WiITH fHELM WITH LEXICAL (L) AND MORPHOLOGICAL (M) FEATURES

Classifier F NIST

Boosting(L+M) + fHELM(L+M) | 0.879 | 23.8%

CRF(L+M) + fHELM(L+M) 0.890 | 21.5%
TABLE V

F-MEASURE AND NIST ERROR RATES WHEN USING ONLY PROSODIC (P)
INFORMATION WITH BOOSTING AND COMBINING WITH fHELM USING
LEXICAL (L) AND MORPHOLOGICAL (M) INFORMATION

Classifier F NIST
CRF(P) 0.874 | 24.7%
Boosting(P) 0.862 | 27.2%
Boosting(P) + fHELM(L+M) | 0.919 | 15.8%

In order to combine prosodic information with lexical
and morphological information, we experiment with two
approaches. In the first approach, we combine the classifier
trained with only prosodic features with factored HELMs as
presented in Section III-C. Table V presents these results. Note
that, before combination, boosting and fHELMs have com-
parable performance (NIST error rates of 27.2% and 25.9%).
The hybrid model reduces the NIST error rate by 39% relative
(from 25.9% to 15.8%). This demonstrates that the information
provided by two different sets are complementary. This is
in part due to the nature of the data, i.e., broadcast news, in
which the reporters and anchor people explicitly mark sentence
boundaries with prosody.

As the second approach, we exploit the prosodic features
along with lexical and morphological information with boosting
and CRF. Table VI and VII present these results. As seen, for
both classifiers, performance improves significantly. This ap-
proach happens to provide slightly better results than the pre-
vious one when also pseudo-morphological features are used.

TABIE VI
F-MEASURE WITH BOOSTING AND CRF USING LEXICAL (L), PROSODIC (P),
MORPHOLOGICAL (M), AND/OR PSEUDO-MORPHOLOGICAL (PM) FEATURES

Classifier F
L+P | L+M+P | L+PM+P | L+M+PM+P
Boosting | 0.894 | 0.922 0918 0.927
CRF 0.895 | 0.921 0.916 0.923
TABLE VII

NIST ERROR RATES WITH BOOSTING AND CRF USING
LEXICAL (L), PROSODIC (P), MORPHOLOGICAL (M), AND/OR
PSEUDO-MORPHOLOGICAL (PM) FEATURES

Classifier NIST
L+P L+M+P | L+PM+P | L+M+PM+P
Boosting | 20.4(%) | 16.5(%) | 15.8(%) 14.7(%)
CRF 20.2(%) | 14.6(%) | 16.9(%) 15.3(%)
TABLE VIII

F-MEASURE AND NIST ERROR RATES WHEN COMBINING fHELM WITH
BOOSTING AND CRF USING LEXICAL (L), MORPHOLOGICAL (M+PM),
AND PROSODIC (P) INFORMATION

Classifier F NIST
Boosting(L+P+M+PM) + fHELM(L+M) | 0.925 | 14.8%
CRF(L+P+M+PM) + fHELM(L+M) 0.926 | 14.9%

As the final set of experiments, we have tried combining
fHELM with boosting and CRF using all the features. Table VIII
presents these results. With this final combination, the per-
formance of the hybrid model including boosting does not
improve. The performance of the one with CRF improves,
however only slightly.

VI. DISCUSSIONS

Discriminative classification approaches provide the best re-
sults for Turkish sentence segmentation using lexical, morpho-
logical, and prosodic features. While CRF results in better per-
formance with prosodic and lexical features only, boosting ben-
efits more from the morphological features. This is probably due
to the ability of boosting to handle unknown feature values. For
example, one of the morphological features is set to unknown
in case the word is morphologically ambiguous. This requires
further investigation, but a prior morphological disambiguation
step may provide benefits.

Even though in our experiments, the discriminative models
alone result in the best performance, the generative models have
potential uses for sentence segmentation. The boosting and CRF
models have access to several prosodic features, which are diffi-
cult to include in HELMs. However, usually, while there is only
little speech data available, there is significantly more data from
the written text sources, such as newspapers. In order to benefit
from both data sources, our practice for training models for sen-
tence segmentation in English has mainly been training boosting
and CRF models from the speech data and the HELMs from the
textual data (usually on the order of hundreds of millions), and
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combine the two in HELMs during the test time, resulting in the
best performance for English, as shown in [45], where for ex-
ample boosting performance with all features is improved from
an F-measure of 68.9% to 70.6% when combining boosting with
a HELM trained from textual data of millions of words.

In this paper, we have used the same data for training all
models, and investigating the use of more data for fHELMs is
part of our future work, in addition to experimenting with real
ASR output. In order to study this effect, we have done a simple
experiment combining the Boosting model trained with all fea-
tures, using 1% of the data, with fHELM. In this case, NIST
error rate of the system decreases from 29.6% (Boosting only,
with all features) to 28.5% (Boosting with all features combined
with fHELM), encouraging the use of generative methods in
combination with discriminative approaches. When 10% of the
data is used, the NIST error rate decreases from 18.8% to 18.4%.

VII. CONCLUSION

We have presented generative, discriminative, and hy-
brid classification methods using lexical, morphological, and
prosodic information for Turkish sentence segmentation. We
have shown significant improvements over a lexical baseline.

The prosodic features are mainly transferred from English
and model only word-level phenomena. They can also be im-
proved by modeling at subword level. For example, the morpho-
logical ambiguity for the sentence final words may be resolved
using morpheme-level prosodic features.

Morphological ambiguity is a problem for factored hidden
event modeling. Our future work also includes checking the ef-
fect of morphological disambiguation for this task.

Note that fHELMs can be used for similar language pro-
cessing tasks requiring sequence classification such as comma
prediction, POS tagging, and named entity extraction and can
easily be combined with state-of-the-art discriminative models.
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