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ABSTRACT

In this paper, we describe a general technique for optimitie
relative weights of feature sets in a support vector mactsiviM)
and show how it can be applied to the field of speaker recagniti
Our training procedure uses an objective function that niaps
relative weights of the feature sets directly to a clasdificamet-
ric (e.g. equal-error rate (EER)) measured on a set of rgidata.
The objective function is optimized in an iterative fashieith re-
spect to both the feature weights and the SVM parametershiee
support vector weights and the bias values). In this papese
this procedure to optimize the relative weights of varioulssets
of features in two SVM-based speaker recognition systersgsa
tem that uses transform coefficients obtained from maxinilen |
lihood linear regression (MLLR) as features [1] and anothai
uses relative frequencies of phone n-grams [2, 3]. In aksathe
training procedure vyields significant improvements in bBER
and minimum DCF (i.e. decision cost function), as measured o
various test corpora.

1. INTRODUCTION

In recent years, the field of speaker recognition has bee@&ig-
nificantly from the use of SVMs. For example, in 2001, Campbel
et al. demonstrated an SVM-based analog to the traditigmal a
proach of modeling cepstral features with Gaussian mixtud-

straightforward. Similarly, the problem of incorporating“com-
bining” different features (or entire feature sets) in agnSVM
can also pose a significant challenge.

In this paper, we focus on training linear kernels for two SVM
based systems: a system that uses MLLR-based featuresd1] an
another that uses relative frequencies of phone n-grandj.[BEpr
the experiments in this paper, the MLLR features and the @imen
gram features are both divided into a small number of sub®éts
then train relative weights for each subset of features aedhe
ensemble of weighted features to train SVM-based speakdr mo
els. We use an iterative approach to train the relative weifgir
the feature subsets, where we attempt to minimize the EER ob-
tained on some training set.

2. KERNEL TRAINING

Given a kernel functionKe(:,-), where® = {u1,...,pur}is
some set of kernel parameters, we would like to ti@ito mini-
mize the EER that we obtain whéfie (-, -) is used to train SVM-
based speaker models on a particular task and feature setsé\Ve
an iterative approach to traid, B, and®, where.4 andB repre-
sent the set of support vector weights and bias values €lph&”

and “beta” values) for a set of speaker models. Given sortialini
A, we train® and B using an objective function that minimizes
EER computed on some set of training data. Then we use the opti

els (GMMs) [4]. This approach has been widely adopted and mized® in Ke(-,-) to train new values fo4 andB (i.e. we train
currently forms one of the central components in a number of SVM-based speaker models). This process can be repeaied unt

state-of-the-art speaker recognition systems. Other ®dbed
approaches include work on modeling prosodic features [B].
2003, Campbell et al. introduced an SVM-based approachsfor u
ing phone n-grams to train speaker models [2], which wasesubs
quently extended in [3]. A similar approach has also beetiegpp
to word n-grams [6]. More recently, Stolcke et al. used MLLR-
based features in an SVM to perform speaker recognition [1].

no further improvements in EER are achieved. The final, &in
kernel function is then used for testing.

In the following subsections, we provide a set of definitions
followed by a derivation of the objective function that weedso
train © for a given.4. We also describe how is initialized and
briefly outline an approach for optimizing the objective dtian.

One issue common to each of these techniques is the question

of how to design effective kernels for different types ofttea sets
(e.g. phone n-grams, cepstral features, etc.). A numbeyabiife-
specific kernels have been proposed in the literature. Faonple,
Campbell et al. introduced a kernel for count-based featuarf2],

which tends to work well on SVM-based phone n-grams [2,
However, for other, more abstract feature sets like the MIcbR
efficients used in [1], choosing an appropriate kernel isldas
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3],

2.1. Definitions

LetT = {T1,...,Tn} be a set of target speaker models, and
let S; be the corresponding speaker for maod@igl For everyT;, let
Xi 4 and X; ¢ be data sets for trainingl and Ke, respectively.
Both data sets are composed of positive and negative exaitgle
feature vectors) fof;. Let
1, z € S;
yiz) = { —1, otherwise.



We definef;(z; 0, A, B) to be the SVM-based scoring function
for speaker model’; using kernelKe (-, -):
fi(2;0,A,B)=b; + Y ai(ae)yi(@n) Ko (T, 2),

ztrn€X; 4

0<ai(zt) <CV ztr € X540 (1)

In the above equatior; represents the bias term for the SVM,
anda; (z¢,) represents the “alpha” weight applied to feature vector
zt». The hyperparamete€, represents the tradeoff between the
regression and margin-maximization components in an SVM. A
was mentioned earlier, we usé to represent the set @f;(z,)
terms for allz:, € X; 4 and for alli € {1,...,M}. Similarly,

B = {b1,...,bu} represents the set of bias values for the speaker

models. Note that equation (1) provides the general forntHer
scoring function in an SVM.

We useJ;t (0, 4, B) andJ; (©, A, B) to represent the classi-
fication error obtained on speaker mofglfor positive examples
and for negative examples, respectively. These are defgied a

THO,A4B) = 3 1(filz0,4,8) <0),
i z€X; 0
s.t. zES;

T©,A4B) =—— > 1(fi(z:0,4,8)>0),
Ni z€X; 0
s.t. ©¢S;

wherel(z) denotes the indicator function efand where

]\/vz+ = Z 1(z € Si),

z€X; 0
No= Y 1z ¢S
:cEXi’g

In the above equations, tHé" and N, terms normalize the clas-
sification error for every positive (negative) trial by tlweal num-
ber of positive (negative) trials iX; .

2.2. Objective Function for Training ©

Our approach for optimizin® is to minimize the EER computed
on the training data given the current parameterizatiod df.e.
thea; (z) terms). We use model-normalized EERvhere the total
error contributed by speaker modglis normalized by the number

of trials in X; e, and all models are assumed to have equal priors.
This leads to the following optimization problem:

1 M . -
— E J;7(0,A4,B) +J; (0,A,B)
2M 1:1( )

min
0,8
y ()

>_Ji (0,4,B)

i=1

M
st Y J(0,4,8) =
i=1
Note that in (2), we not only optimize ové, but also over3
(i.e. we assume that th® terms are free parameters). For the
experiments in this paper, we used the following modifiecioer
of the above optimization problem:

1
©.8 2M

st. JH(®,A,B)=J(0,4,B) Vi

JH(©,A4,B)+J; (0,A B
;(1( )+ i ( )) -

Here, instead of minimizing the model-normalized EER cotagu
over the set ofll speaker trials, we minimize the average of the
individual per-modelEERs. Since the latter minimization is sim-
ply a more constrained version of the original problem in (8¢
minimization in (3) provides an upper bound on (2). We als@no
that (3) is generally easier to evaluate than (2). To seewldsan
rewrite (2) as

Iél)iél EER(LAj U (fi(m;@,A, B), yi(z), z)), 4)

i=lz€X; o

and (3) as

M
mei)n%ZEER< U (f:(2:0,4,8), (=), i)). 5)

i=1 z€X; 0
In the above equation& ER(S) represents a function that com-
putes themodel-normalizedEER over some sef of score/label
pairs, where each pair is annotated with modek I allow for
model-normalization. Note that (4) requires us to compbe t
model-normalized EER oveall speaker trials while simultane-
ously minimizing with respect t#8. On the other hand, in (5), the
minimization overB is performed implicitly by computing EERs
on a per-model basis. As a possible alternative to the dgect
function in (5), (one which we have opted not to use in this re-
port), we note thai3 could also be kept fixed at every training
iteration, in which case our objective function would talke form
of (4), except that we only minimize ové.

2.2.1. Training Relative Weights for Feature Subsets

We are interested in training linear kernels for combiniagaus
subsets of features (i.e. we want to optimize the relativighite
that we apply to each feature subset prior to training SVMVsgY.
the experiments in this paper, we assume that the featuce $pa
divided into L subsets. Thus, the kernel functidkie (-, -), takes
the following form

L

Ko(@tr,a) = Y pi(@ene , 20, (6)
=1

wherepu, represents the weight assigned to feature subséhe
feature vectorsg:, andz, are defined as

T T
) xtr,L I
T T
s TL .

Here,z,, andz, are thefth subsets of feature vectats, andz,
repectively.

[T T
Ttr = |Ttp 1y Tip2, """

[ T
T= Ty, Ty, -

2.3. Initializing A

For the experiments in this paper, we initialized théz) values
so that the SVM weight vectaw; for target model; is simply the
difference between the average of the positive trainingrgtes
and the average of the negative training examplegforThis is
achieved by the following assignment:

1
Toox, iwesy W ES
ai(ze) = e SR ‘o
Yoex; 4 @ESi)’ t 5.



2.4, Optimizing the Objective Function

The objective function for trainin@® given the current parame-
terization of A is defined by plugging equations (1) and (6) into
the optimization problem in (5). For the experiments in thaper,
we optimized (5) with respect © by performing a simple search
over|[0, 1]%. Our procedure for optimizing (5) is essentially an it-
erated grid search, where the search range is narroweccaéer
iteration. Since this paper is primarily focused on the fobof
deriving an objective function fd® (as opposed to a discussion of
how to solve it), we will forego a detailed discussion on optia-
tion. Instead, we focus in the following sections on desogithe
actual experiments that we performed.

3. EXPERIMENT I: PHONE N-GRAM SYSTEM

For our first experiment, we trained relative weights to comab
feature subsets in an SVM-based phone n-gram system similar
the one described in [3]. This system uses relative fredesruf
phone n-grams derived from an open-loop, lattice phonediego
as a basis for building feature vectors.

We used the following linear kernel developed by Campbell et
al. in [2] to assign scaling factors to each relative fregqyen

(4, B) = i p(di|convSide 4) p(di|convSides)
V/pdi|bkg) V/p(di[bkg)

Here,p(d;i|convSides) andp(di|bkg) represent the relative fre-
qguency of phone n-graw within conversation sidel and within
the data for the background model, respectively. The abeve k
nel simply normalizes each relative frequency by the sgtuzoe
of the corresponding relative frequency in the backgrouondeh

i=1

The resultingscaledrelative frequencies are then used as features.

SRE-03
weights || EER% [ DCF
uniform

(baseline)|| 7.24 0.0291
iteration 1 7.60 0.0317
iteration 2 7.29 0.0299
iteration 3 || 7.06 0.0287
relative
improvement|| 2.5% 1.4%

Table 1. EERs and minimum DCFs for the phone n-gram system
on SRE-03

trigram-1
0.849

trigram-2
1.000

trigram-3
0.931

unigram
0.000

bigram
0.905

Table 2. final relative feature weights for each of 5 phone n-gram
classes trained on SRE-03, splits 6 through 10

models. Similarly, we used splits 4 and 5 as foreground dada a
splits 1 through 3 as background data to ti@ifor testing on splits

6 through 10. We defined one auxiliary speaker model for every
conversation side in the foreground data. Given a partiada-
versation sider; which defines auxiliary speaker modgl, z; is
used as the only positive training exampleXp 4. The remain-

ing conversation sides of speak&r (excludingz;) were used as
the positive trials inX; . We used the SVR9"t package for all
SVM training and scoring [7].

3.3. Results

Table 1 shows EERs and minimum DCF scores for our baseline

We used scaled relative frequencies based on various Order%)hone n-gram system, where the relative weights are unjfanah
of phone n-grams to define 5 subsets of features. These @®lud ,r the first three iterations of kernel training. Note thafther

unigrams, bigrams, and the top 15000 trigrams, which welie sp
into 3 subsets of 5000 trigrams each. To perform lattice phon

decoding, we used the DECIPHER speech recognition system de

veloped by SRI International. Our particular realizatiéib&ClI-

the results nor the feature weights change significantlyr afte
third iteration. As shown in table 1, the iterative trainiyiglds a
relative improvement in EER &f.5% over the baseline. The final
feature weights for testing on splits 1 through 5 are showtalie

PHER uses a vocabulary of 46 phone units. Thus, the total size) gte that these weights are virtually identical to thoseined

of the unigram and bigram subsets is 46 488 = 2116, respec-
tively. These subsets, combined with the 3 subsets of trigradd
up to a total of 17162 features.

3.1. Task and Data

for testing on splits 6 through 10). In table 2, we see thafitis,
trained relative weights are fairly uniform for all featusabsets
except the phone unigrams, which have a weight of zero.

4. EXPERIMENT II: MLLR-SVM SYSTEM

For the phone n-gram system, we performed experiments on the

1-conversation training condition of the NIST 2003 Exteshde

For our second experiment, we trained a linear kernel to amenb

Data Task (a.k.a. SRE-03), which uses phases Il and Il of the feature subsets for an MLLR-SVM system similar to the one de-

Switchboard-2 corpus. Phases Il and Il consist of apprateéty
14000 conversation sides, which are split into 10 disjogaker
sets. For our experiments, we used splits 1 through 5 to &ain
background model for splits 6 through 10 and vice versa.heart
details on the phone n-gram system can be found in [3].

3.2. Training A and ©

We used splits 9 and 10 as “foreground data” to define a smbof
iliary speaker modelg, = {T4,...,Twm}, which we used to train

O for testing on splits 1 through 5. Splits 6 through 8 were used
as the corresponding “background data” (i.e. the negataia-t
ing examples inX;, 4 and X; o) for each of the auxiliary speaker

scribed in [1]. The MLLR-SVM system uses speaker adaptation
transforms from SRI's DECIPHER speech recognition system a
features for speaker recognition. A total of 8 affine transfoare
used to map the Gaussian mean vectors from speaker-indagend
to speaker-dependent speech models. The transforms &re est
mated using maximum-likelihood linear regression (MLLER)d

can be viewed as a text-independent encapsulation of tiaepe
acoustic properties. For every conversation side, we ctergto-

tal of 12480 transform coefficients, which are normalizetidee
unit variance and then used as features. The transform -coeffi
cients can be divided into 8 subsets of 1560 features eadtrewh
each subset corresponds to one of the following phone dasse
voiced stopsunvoiced stopsroiced fricativesunvoiced fricatives



nasals retroflex phonege.g. /r/ and /er/)jow vowels(e.g. /aa/, Switchboard-2 datg SRE-04
lael, /ah/) andhigh vowele.qg. /eh/, fey/, fih/). Further informa- weights || EER% | DCF EER%| DCF
tion on the MLLR-SVM system can be found in [1]. uniform
(baseline)|| 4.75 0.0175 9.84 0.0347
4.1 Task and Data iteration 1| 4.58 | 0.0166 || 9.42 | 0.0336
iteration 2 4.53 0.0163 9.42 0.0345
For our experiments, we used a version of the MLLR-SVM sys- iteration 31 4.53 | 0.0164 9.42 | 0.0342
tgm used by SRI International in the NIST 2095 Speak.er Recog- relative
nition Evaluation [1]. The system uses 3 disjoint sets faining: improvement|| 4.6% 6.3% 4.3% 1.4%

D4, Dp, and a background seDyry. SetD4 is composed of
3642 conversation sides taken from the Switchboard-2 d&a®
speakers. SeDg is similarly composed, but uses a different set
of Switchboard-2 speakers. SBix, consists of 425 conversation
sides taken from Switchboard-2 and 1128 conversation ittes [ VS TUVS T VF TUWF [ N | RP [ LV | HV |
from the Fisher corpus. The Switchboard-2 conversatioessia (0407 ] 0668 | 0.714 | 0.619 [ 0.709 | 0.610 ] 1.000 [ 0.926 |
Do, are sel!ect?\ld tso tthhatt no two ion\;]ersaati(in tski]d::'s belong to the‘l’able 4. final relative feature weights for each of 8 MLLR trans-
same speaker. Note that no speaker has data that appeargein mo . .

than one set. Thus, the three sets can alternately be uskeifor formation classes trained dis and Dy
ing and testing (i.e. jackknifing).

For testing on Switchboard-2 data, we defined a set of test-
target speaker trials for both 4 andDg. We used half of the con-  for speaker recognition is consistent with previous findimgthe
versation sides from every speakerny and D to define sepa-  linguistics literature [8].
rate 1-conversation target models. The target models wested
against all other conversation sides belonging to the s@ewker
(i.e. the true trials) and against one randomly chosen ceave
tion side fromhalf of the impostor speakers in the given set (i.e.
the negative trials). Combining the trials fraBy and Dg gives ) . ) )
us a total of 50769 positive and 609139 negative Switchb@ard Although the improvements described in this report are-rela
speaker trials. To evaluate the cross-task effectiverfessrder- tively modest, we consider the results to be quite encongagi

nel training algorithm, we also tested on the SRE-04 task. particularly given the very small number of parameters that
were used (only 5 parameters for the phone n-grams and 8

4.2. Training A and © for the MLLR-SVM). It's also worth noting that the baseline
- MLLR-SVM system is one of the best-performing systems for 1-

We usedDy, to provide the negative examples for trainidgor conversation training that we are aware of. In light of this,con-

a given target speaker modgl,. The speaker trials for training sider even the modest improvements obtained on the MLLR-SVM

on D4 and Dp were defined in the same way as the test speaker System to be highly encouraging.

trials described above, except that we used the Switchiddard One obvious extension to this work, which we plan to in-

speakers iy to provide all of the negative examples. Thus, the vestigate, is the large-scale combination of multiple SkWased

speaker trials for trainin@ were composed only of Switchboard-  systems—for example, the combination of cepstral, MLLR nqgho

2 data. In all cases, training and testing were performedsjoint n-gram, and prosodic features—within a single SVM. We would

speaker sets, so all results are fair (e.g. we used therigginals also like to experiment with gradient-based objective fioms for

defined fromDp and Dy, to train® for testing onD 4). As with training kernels (e.g. replacing the EER term in equatiyméh a

the phone n-gram system, all SVM training and scoring wagdon *“hinge-loss” function, which is differentiable). This wiolgreatly

Table 3. EERs and minimum DCFs for the MLLR-SVM system

5. DISCUSSION AND FUTURE WORK

with the SVM9%¢ package [7]. improve the efficiency of the kernel training, and would ailos
to train more weights. One particularly intriguing approao
4.3. Results gradient-based kernel optimization, which employs a hilogs

o _function along with a margin-maximization component toverg
Table 3 shows EERs and minimum DCF scores for our baseline gyerfitting, is described by Lanckriet et al. in [9].

MLLR-SVM system, where the relative weights are uniformd an

for the first three iterations of kernel training. Subseditara-

tions achieved no significant improvements. As shown iret&bl

the iterative training yields relative reductions in EERlanin- 6. CONCLUSION

imum DCF 0of4.6% and iterative training also achievest&8%

reduction in EER on SRE-04 (the same feature weights that weIn this paper, we describe a general technique for optimitie
used to test oD 4 were also used to test on SRE-04). Note that relative weights of feature sets in a support vector mac{8iveé),
the EER reduction on SRE-04 represents an “out-of-taskilties  and demonstrate its application to the field of speaker mtog.
since no SRE-04 data was used to tr@inThe final, relative fea- Our approach yields relatively small improvements in EER an
ture weights (i.e. the values) for testing orD4 are shown in DCF when we use it to optimize relative weights for a small haum
table 4 for each of the phone classes listed in section 4.eTabl  ber of n-gram classes in a phone n-gram system. When applied t
shows that théow vowelsandhigh vowelsare assigned the largest  a state-of-the-art MLLR-SVM system on Switchboard-2 dataaf
relative weights among the eight phone classes, while/éieed 1-conversation training task, our approach achieves ivgpnents
stopsare assigned the smallest. The relative importance of wwel in EER and DCF of 4.6% and 6.3%.
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