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ABSTRACT

In this paper, we describe a general technique for optimizing the
relative weights of feature sets in a support vector machine(SVM)
and show how it can be applied to the field of speaker recognition.
Our training procedure uses an objective function that mapsthe
relative weights of the feature sets directly to a classification met-
ric (e.g. equal-error rate (EER)) measured on a set of training data.
The objective function is optimized in an iterative fashionwith re-
spect to both the feature weights and the SVM parameters (i.e. the
support vector weights and the bias values). In this paper, we use
this procedure to optimize the relative weights of various subsets
of features in two SVM-based speaker recognition systems: asys-
tem that uses transform coefficients obtained from maximum like-
lihood linear regression (MLLR) as features [1] and anotherthat
uses relative frequencies of phone n-grams [2, 3]. In all cases, the
training procedure yields significant improvements in bothEER
and minimum DCF (i.e. decision cost function), as measured on
various test corpora.

1. INTRODUCTION

In recent years, the field of speaker recognition has benefitted sig-
nificantly from the use of SVMs. For example, in 2001, Campbell
et al. demonstrated an SVM-based analog to the traditional ap-
proach of modeling cepstral features with Gaussian mixturemod-
els (GMMs) [4]. This approach has been widely adopted and
currently forms one of the central components in a number of
state-of-the-art speaker recognition systems. Other SVM-based
approaches include work on modeling prosodic features [5].In
2003, Campbell et al. introduced an SVM-based approach for us-
ing phone n-grams to train speaker models [2], which was subse-
quently extended in [3]. A similar approach has also been applied
to word n-grams [6]. More recently, Stolcke et al. used MLLR-
based features in an SVM to perform speaker recognition [1].

One issue common to each of these techniques is the question
of how to design effective kernels for different types of feature sets
(e.g. phone n-grams, cepstral features, etc.). A number of feature-
specific kernels have been proposed in the literature. For example,
Campbell et al. introduced a kernel for count-based features in [2],
which tends to work well on SVM-based phone n-grams [2, 3].
However, for other, more abstract feature sets like the MLLRco-
efficients used in [1], choosing an appropriate kernel is farless
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straightforward. Similarly, the problem of incorporatingor “com-
bining” different features (or entire feature sets) in a single SVM
can also pose a significant challenge.

In this paper, we focus on training linear kernels for two SVM-
based systems: a system that uses MLLR-based features [1] and
another that uses relative frequencies of phone n-grams [2,3]. For
the experiments in this paper, the MLLR features and the phone n-
gram features are both divided into a small number of subsets. We
then train relative weights for each subset of features and use the
ensemble of weighted features to train SVM-based speaker mod-
els. We use an iterative approach to train the relative weights for
the feature subsets, where we attempt to minimize the EER ob-
tained on some training set.

2. KERNEL TRAINING

Given a kernel function,K�(�; �), where� = f�1; : : : ; �Lg is
some set of kernel parameters, we would like to train� to mini-
mize the EER that we obtain whenK�(�; �) is used to train SVM-
based speaker models on a particular task and feature set. Weuse
an iterative approach to trainA, B, and�, whereA andB repre-
sent the set of support vector weights and bias values (i.e. “alpha”
and “beta” values) for a set of speaker models. Given some initialA, we train� andB using an objective function that minimizes
EER computed on some set of training data. Then we use the opti-
mized� in K�(�; �) to train new values forA andB (i.e. we train
SVM-based speaker models). This process can be repeated until
no further improvements in EER are achieved. The final, trained
kernel function is then used for testing.

In the following subsections, we provide a set of definitions
followed by a derivation of the objective function that we used to
train� for a givenA. We also describe howA is initialized and
briefly outline an approach for optimizing the objective function.

2.1. Definitions

Let T = fT1; : : : ; TMg be a set ofM target speaker models, and
letSi be the corresponding speaker for modelTi. For everyTi, letXi;A andXi;� be data sets for trainingA andK�, respectively.
Both data sets are composed of positive and negative examples (i.e.
feature vectors) forTi. Letyi(x) = � 1; x 2 Si�1; otherwise.



We definefi(x;�;A;B) to be the SVM-based scoring function
for speaker modelTi using kernelK�(�; �):fi(x;�;A;B) = bi + Xxtr2Xi;A �i(xtr)yi(xtr)K�(xtr; x);0 � �i(xtr) � C 8 xtr 2 Xi;A (1)

In the above equation,bi represents the bias term for the SVM,
and�i(xtr) represents the “alpha” weight applied to feature vectorxtr. The hyperparameter,C, represents the tradeoff between the
regression and margin-maximization components in an SVM. As
was mentioned earlier, we useA to represent the set of�i(xtr)
terms for allxtr 2 Xi;A and for alli 2 f1; : : : ;Mg. Similarly,B = fb1; : : : ; bMg represents the set of bias values for the speaker
models. Note that equation (1) provides the general form forthe
scoring function in an SVM.

We useJ+i (�;A;B) andJ�i (�;A;B) to represent the classi-
fication error obtained on speaker modelTi for positive examples
and for negative examples, respectively. These are defined as:J+i (�;A;B) = 1N+i Xx2Xi;�s:t: x2Si 1�fi(x; �;A;B) < 0�;J�i (�;A;B) = 1N�i Xx2Xi;�s:t: x=2Si 1�fi(x;�;A;B) > 0�;
where1(x) denotes the indicator function ofx and whereN+i = Xx2Xi;� 1(x 2 Si);N�i = Xx2Xi;� 1(x =2 Si):
In the above equations, theN+i andN�i terms normalize the clas-
sification error for every positive (negative) trial by the total num-
ber of positive (negative) trials inXi;�.

2.2. Objective Function for Training �
Our approach for optimizing� is to minimize the EER computed
on the training data given the current parameterization ofA (i.e.
the�i(x) terms). We use amodel-normalized EER, where the total
error contributed by speaker modelTi is normalized by the number
of trials inXi;�, and all models are assumed to have equal priors.
This leads to the following optimization problem:min�;B 12M MXi=1�J+i (�;A;B) + J�i (�;A;B)�s:t: MXi=1 J+i (�;A;B) = MXi=1 J�i (�;A;B) (2)

Note that in (2), we not only optimize over�, but also overB
(i.e. we assume that theB terms are free parameters). For the
experiments in this paper, we used the following modified version
of the above optimization problem:min�;B 12M MXi=1�J+i (�;A;B) + J�i (�;A;B)�s:t: J+i (�;A;B) = J�i (�;A;B) 8 i (3)

Here, instead of minimizing the model-normalized EER computed
over the set ofall speaker trials, we minimize the average of the
individual per-modelEERs. Since the latter minimization is sim-
ply a more constrained version of the original problem in (2), the
minimization in (3) provides an upper bound on (2). We also note
that (3) is generally easier to evaluate than (2). To see this, we can
rewrite (2) asmin�;B EER�M[i=1 [x2Xi;��fi(x;�;A;B) ; yi(x) ; i��; (4)

and (3) asmin� 1M MXi=1 EER� [x2Xi;��fi(x;�;A;B) ; yi(x) ; i��: (5)

In the above equations,EER(S) represents a function that com-
putes themodel-normalizedEER over some setS of score/label
pairs, where each pair is annotated with model IDi to allow for
model-normalization. Note that (4) requires us to compute the
model-normalized EER overall speaker trials while simultane-
ously minimizing with respect toB. On the other hand, in (5), the
minimization overB is performed implicitly by computing EERs
on a per-model basis. As a possible alternative to the objective
function in (5), (one which we have opted not to use in this re-
port), we note thatB could also be kept fixed at every training
iteration, in which case our objective function would take the form
of (4), except that we only minimize over�.

2.2.1. Training Relative Weights for Feature Subsets

We are interested in training linear kernels for combining various
subsets of features (i.e. we want to optimize the relative weight
that we apply to each feature subset prior to training SVMs).For
the experiments in this paper, we assume that the feature space is
divided intoL subsets. Thus, the kernel function,K�(�; �), takes
the following formK�(xtr; x) = LX̀=1 �2̀hxtr;` ; x`i; (6)

where�` represents the weight assigned to feature subset`. The
feature vectors,xtr andx, are defined asxtr = hxTtr;1 ; xTtr;2 ; � � � ; xTtr;LiT ;x = hxT1 ; xT2 ; � � � ; xTLiT :
Here,xtr;` andx` are thè th subsets of feature vectorsxtr andx,
repectively.

2.3. Initializing A
For the experiments in this paper, we initialized the�i(x) values
so that the SVM weight vectorwi for target modelTi is simply the
difference between the average of the positive training examples
and the average of the negative training examples forTi. This is
achieved by the following assignment:�i(xt) = 8<: 1Px2Xi;A 1(x2Si) ; xt 2 Si1Px2Xi;A 1(x=2Si) ; xt =2 Si:



2.4. Optimizing the Objective Function

The objective function for training� given the current parame-
terization ofA is defined by plugging equations (1) and (6) into
the optimization problem in (5). For the experiments in thispaper,
we optimized (5) with respect to� by performing a simple search
over [0; 1]L. Our procedure for optimizing (5) is essentially an it-
erated grid search, where the search range is narrowed afterevery
iteration. Since this paper is primarily focused on the problem of
deriving an objective function for� (as opposed to a discussion of
how to solve it), we will forego a detailed discussion on optimiza-
tion. Instead, we focus in the following sections on describing the
actual experiments that we performed.

3. EXPERIMENT I: PHONE N-GRAM SYSTEM

For our first experiment, we trained relative weights to combine
feature subsets in an SVM-based phone n-gram system similarto
the one described in [3]. This system uses relative frequencies of
phone n-grams derived from an open-loop, lattice phone decoding
as a basis for building feature vectors.

We used the following linear kernel developed by Campbell et
al. in [2] to assign scaling factors to each relative frequency:K(A;B) = NXi=1 p(dijconvSideA)pp(dijbkg) p(dijconvSideB)pp(dijbkg)
Here,p(dijconvSideA) andp(dijbkg) represent the relative fre-
quency of phone n-gramdi within conversation sideA and within
the data for the background model, respectively. The above ker-
nel simply normalizes each relative frequency by the square-root
of the corresponding relative frequency in the background model.
The resultingscaledrelative frequencies are then used as features.

We used scaled relative frequencies based on various orders
of phone n-grams to define 5 subsets of features. These included
unigrams, bigrams, and the top 15000 trigrams, which were split
into 3 subsets of 5000 trigrams each. To perform lattice phone
decoding, we used the DECIPHER speech recognition system de-
veloped by SRI International. Our particular realization of DECI-
PHER uses a vocabulary of 46 phone units. Thus, the total size
of the unigram and bigram subsets is 46 and462 = 2116, respec-
tively. These subsets, combined with the 3 subsets of trigrams add
up to a total of 17162 features.

3.1. Task and Data

For the phone n-gram system, we performed experiments on the
1-conversation training condition of the NIST 2003 Extended
Data Task (a.k.a. SRE-03), which uses phases II and III of the
Switchboard-2 corpus. Phases II and III consist of approximately
14000 conversation sides, which are split into 10 disjoint speaker
sets. For our experiments, we used splits 1 through 5 to traina
background model for splits 6 through 10 and vice versa. Further
details on the phone n-gram system can be found in [3].

3.2. Training A and�
We used splits 9 and 10 as “foreground data” to define a set ofaux-
iliary speaker models,T = fT1; : : : ; TMg, which we used to train� for testing on splits 1 through 5. Splits 6 through 8 were used
as the corresponding “background data” (i.e. the negative train-
ing examples inXi;A andXi;�) for each of the auxiliary speaker

SRE-03
weights EER% DCF

uniform
(baseline) 7.24 0.0291
iteration 1 7.60 0.0317
iteration 2 7.29 0.0299
iteration 3 7:06 0:0287

relative
improvement 2:5% 1:4%

Table 1. EERs and minimum DCFs for the phone n-gram system
on SRE-03

unigram bigram trigram-1 trigram-2 trigram-3
0.000 0.905 0.849 1.000 0.931

Table 2. final relative feature weights for each of 5 phone n-gram
classes trained on SRE-03, splits 6 through 10

models. Similarly, we used splits 4 and 5 as foreground data and
splits 1 through 3 as background data to train� for testing on splits
6 through 10. We defined one auxiliary speaker model for every
conversation side in the foreground data. Given a particular con-
versation sidexi which defines auxiliary speaker modelTi, xi is
used as the only positive training example inXi;A. The remain-
ing conversation sides of speakerSi (excludingxi) were used as
the positive trials inXi;�. We used the SVMlight package for all
SVM training and scoring [7].

3.3. Results

Table 1 shows EERs and minimum DCF scores for our baseline
phone n-gram system, where the relative weights are uniform, and
for the first three iterations of kernel training. Note that neither
the results nor the feature weights change significantly after the
third iteration. As shown in table 1, the iterative trainingyields a
relative improvement in EER of2:5% over the baseline. The final
feature weights for testing on splits 1 through 5 are shown intable
2 (note that these weights are virtually identical to those obtained
for testing on splits 6 through 10). In table 2, we see that thefinal,
trained relative weights are fairly uniform for all featuresubsets
except the phone unigrams, which have a weight of zero.

4. EXPERIMENT II: MLLR-SVM SYSTEM

For our second experiment, we trained a linear kernel to combine
feature subsets for an MLLR-SVM system similar to the one de-
scribed in [1]. The MLLR-SVM system uses speaker adaptation
transforms from SRI’s DECIPHER speech recognition system as
features for speaker recognition. A total of 8 affine transforms are
used to map the Gaussian mean vectors from speaker-independent
to speaker-dependent speech models. The transforms are esti-
mated using maximum-likelihood linear regression (MLLR),and
can be viewed as a text-independent encapsulation of the speaker’s
acoustic properties. For every conversation side, we compute a to-
tal of 12480 transform coefficients, which are normalized tohave
unit variance and then used as features. The transform coeffi-
cients can be divided into 8 subsets of 1560 features each, where
each subset corresponds to one of the following phone classes:
voiced stops, unvoiced stops, voiced fricatives, unvoiced fricatives,



nasals, retroflex phones(e.g. /r/ and /er/),low vowels(e.g. /aa/,
/ae/, /ah/) andhigh vowels(e.g. /eh/, /ey/, /ih/). Further informa-
tion on the MLLR-SVM system can be found in [1].

4.1. Task and Data

For our experiments, we used a version of the MLLR-SVM sys-
tem used by SRI International in the NIST 2005 Speaker Recog-
nition Evaluation [1]. The system uses 3 disjoint sets for training:DA, DB , and a background set,Dbkg . SetDA is composed of
3642 conversation sides taken from the Switchboard-2 data of 319
speakers. SetDB is similarly composed, but uses a different set
of Switchboard-2 speakers. SetDbkg consists of 425 conversation
sides taken from Switchboard-2 and 1128 conversation sidestaken
from the Fisher corpus. The Switchboard-2 conversation sides inDbkg are selected so that no two conversation sides belong to the
same speaker. Note that no speaker has data that appears in more
than one set. Thus, the three sets can alternately be used fortrain-
ing and testing (i.e. jackknifing).

For testing on Switchboard-2 data, we defined a set of test-
target speaker trials for bothDA andDB . We used half of the con-
versation sides from every speaker inDA andDB to define sepa-
rate 1-conversation target models. The target models were tested
against all other conversation sides belonging to the same speaker
(i.e. the true trials) and against one randomly chosen conversa-
tion side fromhalf of the impostor speakers in the given set (i.e.
the negative trials). Combining the trials fromDA andDB gives
us a total of 50769 positive and 609139 negative Switchboard-2
speaker trials. To evaluate the cross-task effectiveness of our ker-
nel training algorithm, we also tested on the SRE-04 task.

4.2. Training A and�
We usedDbkg to provide the negative examples for trainingA for
a given target speaker model,Ti. The speaker trials for training�
onDA andDB were defined in the same way as the test speaker
trials described above, except that we used the Switchboard-2
speakers inDbkg to provide all of the negative examples. Thus, the
speaker trials for training� were composed only of Switchboard-
2 data. In all cases, training and testing were performed on disjoint
speaker sets, so all results are fair (e.g. we used the training trials
defined fromDB andDbkg to train� for testing onDA). As with
the phone n-gram system, all SVM training and scoring was done
with the SVMlight package [7].

4.3. Results

Table 3 shows EERs and minimum DCF scores for our baseline
MLLR-SVM system, where the relative weights are uniform, and
for the first three iterations of kernel training. Subsequent itera-
tions achieved no significant improvements. As shown in table 3,
the iterative training yields relative reductions in EER and min-
imum DCF of 4:6% and iterative training also achieves a4:3%
reduction in EER on SRE-04 (the same feature weights that we
used to test onDA were also used to test on SRE-04). Note that
the EER reduction on SRE-04 represents an “out-of-task” result,
since no SRE-04 data was used to train�. The final, relative fea-
ture weights (i.e. the� values) for testing onDA are shown in
table 4 for each of the phone classes listed in section 4. Table 4
shows that thelow vowelsandhigh vowelsare assigned the largest
relative weights among the eight phone classes, while thevoiced
stopsare assigned the smallest. The relative importance of vowels

Switchboard-2 data SRE-04
weights EER% DCF EER% DCF

uniform
(baseline) 4.75 0.0175 9.84 0.0347
iteration 1 4.58 0.0166 9.42 0.0336
iteration 2 4.53 0.0163 9.42 0.0345
iteration 3 4:53 0:0164 9:42 0:0342

relative
improvement 4:6% 6:3% 4:3% 1:4%

Table 3. EERs and minimum DCFs for the MLLR-SVM system

VS UVS VF UVF N RP LV HV
0.407 0.668 0.714 0.619 0.709 0.610 1.000 0.926

Table 4. final relative feature weights for each of 8 MLLR trans-
formation classes trained onDB andDbkg
for speaker recognition is consistent with previous findings in the
linguistics literature [8].

5. DISCUSSION AND FUTURE WORK

Although the improvements described in this report are rela-
tively modest, we consider the results to be quite encouraging—
particularly given the very small number of parameters that
were used (only 5 parameters for the phone n-grams and 8
for the MLLR-SVM). It’s also worth noting that the baseline
MLLR-SVM system is one of the best-performing systems for 1-
conversation training that we are aware of. In light of this,we con-
sider even the modest improvements obtained on the MLLR-SVM
system to be highly encouraging.

One obvious extension to this work, which we plan to in-
vestigate, is the large-scale combination of multiple SVM-based
systems—for example, the combination of cepstral, MLLR, phone
n-gram, and prosodic features—within a single SVM. We would
also like to experiment with gradient-based objective functions for
training kernels (e.g. replacing the EER term in equation (5) with a
“hinge-loss” function, which is differentiable). This would greatly
improve the efficiency of the kernel training, and would allow us
to train more weights. One particularly intriguing approach to
gradient-based kernel optimization, which employs a hinge-loss
function along with a margin-maximization component to prevent
overfitting, is described by Lanckriet et al. in [9].

6. CONCLUSION

In this paper, we describe a general technique for optimizing the
relative weights of feature sets in a support vector machine(SVM),
and demonstrate its application to the field of speaker recognition.
Our approach yields relatively small improvements in EER and
DCF when we use it to optimize relative weights for a small num-
ber of n-gram classes in a phone n-gram system. When applied to
a state-of-the-art MLLR-SVM system on Switchboard-2 data for a
1-conversation training task, our approach achieves improvements
in EER and DCF of 4.6% and 6.3%.
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