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ABSTRACT

In this paper, we examine the problem of kernel selection forone-
versus-all (OVA) classification of multiclass data with support vec-
tor machines (SVMs). We focus specifically on the problem of
training what we refer to asgeneralized linear kernels—that is,
kernels of the form,k(x1;x2) = xT1Rx2, whereR is a positive
semidefinite matrix. Our approach for trainingk(x1;x2) involves
first constructing a set of upper bounds on the rates of false posi-
tives and false negatives at a given score threshold. Under various
conditions, minimizing these bounds leads to the closed-form so-
lution,R =W�1, whereW is the expected within-class covari-
ance matrix of the data. We tested various parameterizations ofR,
including a diagonal parameterization that simply performs per-
feature variance normalization, on the 1-conversation training con-
dition of the SRE-2003 and SRE-2004 speaker recognition tasks.
In experiments on a state-of-the-art MLLR-SVM speaker recog-
nition system [1], the parameterization,R = Ŵ�1s , whereŴs
is a smoothed estimate ofW, achieves relative reductions in the
minimum decision cost function (DCF) [2] of up to 22% below the
results obtained whenR does per-feature variance normalization.

1. INTRODUCTION

One of the central problems in the study of support vector ma-
chines (SVMs) is kernel selection—that is, the problem of choos-
ing or training an appropriate kernel function for a particular
dataset. Recent efforts to address this issue for binary classifica-
tion have largely focused on a general setting, where the training
data are divided into two classes that can be arbitrarily selected as
either “target” or “impostor.” Selected techniques for kernel selec-
tion in this setting are described in [3, 4, 5, 6, 7].

In this paper, we examine kernel selection for tasks involving
one-versus-all (OVA) classification of multiclass data. OVA tasks
arise naturally in a large number of applications (e.g. speaker ver-
ification, relevance testing for documents, image authentication,
etc.) In these tasks, the goal is to determine whether or not a
given test example belongs to a given target class. The OVA set-
ting differs from the general binary classification settingin that the
impostor data is composed of multiple, predefined classes whose
identities are known, a priori, in the training data.

In the following report, we develop a theoretical framework
for training what we refer to asgeneralized linear kernels—that
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is, kernels of the formk(x1;x2) = xT1Rx2, wherex1 andx2 are vectors in the input space, andR is a positive semidef-
inite matrix. Our approach involves first constructing a setof
upper bounds on the rates of false positives and false negatives
at a given score threshold. We show that under various condi-
tions, minimizing these bounds leads to the closed-form solution,R = W�1, whereW is the expected within-class covariance
matrix of the data. This solution forR is particularly applicable
to OVA tasks where little is known about the target classes, but
where the second-order statistics of any given target classcan be
naively estimated from the impostor classes. We tested various pa-
rameterizations ofR, including a diagonal parameterization that
simply performs per-feature variance normalization, on data for
two such tasks: the 1-conversation training condition of the SRE-
2003 and SRE-2004 speaker recognition sets. In experimentson
a state-of-the-art MLLR-SVM speaker recognition system [1], the
parameterization,R = Ŵ�1s , whereŴs is a smoothed estimate
of W, achieves relative reductions in the minimum decision cost
function (DCF) [2] of up to 22% below the results obtained whenR does per-feature variance normalization.

The paper is organized as follows: In section 2, we provide a
brief overview of SVMs. This is followed by a description of our
problem setting in section 3. Sections 4 and 5 describe the theory
behind our approach. Finally, a set of experiments and conclusions
are described in sections 6 and 7.

2. SUPPORT VECTOR MACHINES

SVMs provide a means of training decision boundaries for bi-
nary classification problems. In the standard SVM formulation,
the decision boundary between two classes is formed by the set,fx : f(x) = 0g, wheref is defined asf(x) , wT�(x) + b:
Here,x represents an input feature vector,� represents a particu-
lar feature mapping, andw andb represent trainable SVM param-
eters. In SVMs, and in all kernel machines, the feature mapping�
can be expressed in terms of the corresponding kernel function,k,k(x1;x2) = �(x1)T�(x2):
wherex1 andx2 represents input feature vectors. Thus, for the
purpose of performing SVM classification, the problem of opti-
mizing k for a particular dataset is equivalent to the problem of
optimizing�. Additional information about SVMs can be found
in [8, 9].



3. SETTING

Given a multiclass training set composed ofM disjoint classes, we
would like to use an SVM with a generalized linear kernel (i.e. a
kernel of the form,k(x1;x2) = xT1Rx2, whereR is a positive
semidefinite matrix) to train an OVA classifier for some arbitrary
target class,i. Our goal is to derive anR matrix that is optimized
for this purpose. To do this, we first examine the general problem
of training a linear, OVA classifier for a given target class.By con-
structing various bounds on classification error, we arriveat a for-
mulation for training linear classifiers that is equivalentto ahard
margin SVM [9] with a generalized linear kernel. Under various
conditions, minimizing the bounds on classification error leads to
the solution,R = W�1, whereW is the expected within-class
covariance matrix.

We begin by defining the functionfi to be an affinescoring
function, which we use to perform OVA classification for target
classi: fi(x) , vTi x+ bi:
Here,x represents an input feature vector,vi represents a weight
vector, andbi represents a bias term. We assume thatvi andbi are
trainable parameters. Givenfi, all test examples wherefi(x) � 0
are classified as belonging to target classi, and all test examples
wherefi(x) < 0 are classified as belonging to the set of impostor
classes.

We can evaluate the binary classification performance offi by
defining the risk metric,R(fi; �), asR(fi; �) , � � p(fi(x) > 0 j x =2 Ci)+(1� �) � p(fi(x) < 0 j x 2 Ci):
In the above equation,p(fi(x) > 0 j x =2 Ci) andp(fi(x) <0 j x 2 Ci) represent the expected rates of false positives and
false negatives at a score threshold of zero (here, we use thenota-
tion,Ci, to represent “classi”). The parameter� 2 [0; 1℄ weights
the relative importance of false positives versus false negatives in
computing the overall risk. Our goal in this paper is to minimize
some upper bound onR(fi; �) with respect tofi—that is, with
respect tovi andbi—for some�.

3.1. Notation and Additional Definitions

The equations in sections 4-7 use the following notation: Let xi
be a random draw from classi, and let�xi , E xi, where the
expectation,E xi, is taken over all vectors in classi. We define�i to be the within-class covariance matrix for classi, �impi to be
the expected within-class covariance matrix over all classesj 6= i,
andW to be the expected within-class covariance matrix over all
classes: �i , E (xi � �xi)(xi � �xi)T 8i;�impi , Pj 6=i p(j) � �jPj 6=i p(j) 8i;W , MXi=1 p(i) � �i:
Here,p(j) represents the prior probability of classj. We use the
term,T, to denote the overall covariance matrix over all of the
data.
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Fig. 1. Illustration of the0�1 error function and the corresponding
bounding functions for Bound 1.

4. BOUNDING FUNCTIONS

In this section, we construct a set of upper bounds onp(fi(x) >0 j x =2 Ci) and onp(fi(x) < 0 j x 2 Ci) which we then use
to bound the risk metric,R(fi; �). To simplify the bounds, we
assume throughout the following sections that each class issym-
metrically distributed about its mean(i:e: p(xj � �xj = Æ) =p(xj � �xj = �Æ) 8 i; Æ). This implies that the within-class score
distributions are symmetrical as well, sincefi is an affine function.
Hence, we can treat a symmetrical loss function on the scoresof a
particular class,j, as a one-sided loss function by scaling it by12 ,
assuming that the loss function is centered atfi(�xj).
Bound 1. Given vi and bi, if fi(�xj) < 0 8 j 6= i and if xj
is symmetrically distributed about its mean for all j 6= i, then the
following bound holds.p(fi(x) > 0 j x =2 Ci)� maxk 6=i 12 � Pj 6=i p(j) �Var(fi(xj))(Pj 6=i p(j)) � fi(�xk)2 (1)= maxk 6=i 12 � Pj 6=i p(j) � E (vTi (xj � �xj))2(Pj 6=i p(j)) � (vTi �xk + bi)2 (2)= maxk 6=i 12 � vTi �impi vi(vTi �xk + bi)2 : (3)

Proof. Given vi and bi, if fi(�xj) < 0 8 j 6= i and if xj is
symmetrically distributed about its mean for allj 6= i, then we see
by inspection that the following is true:1�fi(xj) > 0� � maxk 6=i 12 ��fi(xj)� fi(�xj)fi(�xk) �2 8 j 6= i:
Here, the12 comes from the fact that the within-class score distri-
bution for classj (i.e. the distribution offi(xj)) and the corre-
sponding 2nd-order bounding function in the above inequality are
both symmetrical and both centered atfi(�xj). Thus, we can treat
the 2nd-order bounding function as a one-sided function where we
only count the right-hand side (see Figure 1). Taking the expecta-
tion over allj 6= i of the above inequality gives us the bound in
(1).

The 2nd-order bounding functions for the bound in (1)—
which are shown in Figure 1, along with the corresponding0 � 1
error function—are simply shifted versions of one-anotherand are
therefore quite loose for the impostor classes whose mean scores



are far from0. Although the bounding functions for the individ-
ual impostor classes could be made tighter, we have chosen the
functional form in (1) because it leads to a simple SVM-basedfor-
mulation for optimizingvi andbi, as we will show in section 5.

We assume that the total number of bounding functions in
(1)—which we denote byL—can be less than or equal toM � 1,
the total number of impostor classes. For example, we could treat
all impostor classes as a single class (i.e. theL = 1 scenario), in
which case we only have one 2nd-order bounding function for all
of the impostor scores. However, as implied by (1), theL > 1 case
leads to tighter bounds thanL = 1 when the mean of the within-
class variances of the impostor scores is small compared with their
overall variance.

Bound 2. Given vi and bi, if fi(�xi) > 0 and if xi is symmetri-
cally distributed about its mean, then the following bound holds.p(fi(x) < 0 j x 2 Ci) � 12 � Var(fi(xi))fi(�xi)2= 12 � E (vTi (xi � �xi))2(vTi �xi + bi)2= 12 � vTi �ivi(vTi �xi + bi)2 : (4)

The derivation for Bound 2 is similar to that of Bound 1 and is
therefore omitted. Putting together Bound 1 and Bound 2 gives us
the following bound forR(fi; �):R(fi; �) � maxk 6=i �2 � vTi �impi vi(vTi �xk + bi)2+(1� �)2 � vTi �ivi(vTi �xi + bi)2 : (5)

5. OPTIMIZATION

We can now train a linear, OVA classifier for target classi by mini-
mizing the bound in (5) with respect tovi andbi. As we will soon
show, minimizing (5) overvi andbi leads to a modified form of
Vapnik’s hard margin SVM [8, 9]. This modified SVM implicitly
defines a kernel function of the form,k(x1;x2) = xT1Rx2, whereR is a positive semidefinite matrix. We also show that under vari-
ous conditions, the solution for the optimizedR is independent of
the given target class, which means thatk can be implemented for
any choice of target class by applying a single feature mapping to
all input features.

Before we address the problem of how to minimize (5), we
note that in most speaker recognition tasks (including the tasks that
we consider in this paper), the amount of training data available
for any given target speaker is very limited—typically no more
than 8 conversation sides of around 2.5 minutes each. Given this
limited amount of training data, the task of coming up with a robust
estimate of the covariance matrix�i for target speakeri can be
very difficult, especially when the dimensionality of the feature
space is very high. One way of getting around this, in the absense
of any other information, is to simply assume that�i is equal to the
expected within-class covariance matrix over all impostorspeakers
(i.e. classes): �i = �impi :

For simplicity, we will use this assumption in the followingderiva-
tion, where we minimize (5) with respect tovi andbi. A similar
derivation can be performed for the more general case where�i
and�impi are not assumed to be equal.

Assuming that�i = �impi , we can minimize (5) with respect
to (vi; b) by solving the following optimization problem:minvi;bi 12vTi �impi vi (6)subje
t to 1 � yj(vTi �xj + bi) 8j:
Here,yj is defined asyj = n 1; if j = i�1; if j 6= i 8j:
If �impi is full-rank, then the problem in (6) can be converted to a
more familiar form by defining the vectorwi and the matrixU as
follows: vi ,Uwi;UUT , �imp�1i : (7)

SubstitutingUwi in for vi in (6) gives usminwi;bi 12wTi wi (8)subje
t to 1 � yj(wTi UT �xj + bi) 8j:
Here, we see that the optimization problem in (8) has the same
form as Vapnik’s hard margin SVM (see for example, [8, 9]), ex-
cept that the feature vector,�xj , has been replaced withUT �xj .
Thus, the hard margin SVM in (8) defines the following feature
mapping� and kernel function,k:�(x) = UTx;k(x1;x2) = xT1UUTx2: (9)

Putting together (7) and (9), we end up with the following solution
for R in the generalized linear kernel,k(x1;x2) = xT1Rx2:R = �imp�1i :
Note that if�i = � � �impi for some� > 0, thenR = �imp�1i
is optimal for any choice of� 2 [0; 1℄ in the bound onR(fi; �)
in (5). Otherwise, if�i is not proportional to�impi , then we can

easily show thatR = �imp�1i is only optimal, in general, for the
upper bound on false positives in (3). That is, if�i is not propor-
tional to�impi , thenR is only optimal for the case where� = 1.

Hence, the solution,R = �imp�1i , is particularly applicable—at
least in theory—to multiclass settings where the covariance matrix
for any given target class is unknown (or simply hard to estimate),
but where the classes are related in such a way that�impi can be
used as a naive estimate for�i.

If the entries of�i are bounded above and below for alli,
then�impi ! W as p(i) ! 0 whenL = M � 1 (i.e. the
case where each impostor class gets its own loss function), and�impi ! T, whereT is the overall covariance matrix of the data,
asp(i) ! 0 whenL = 1. Thus, whenp(i) is very small, we
can obtain a single solution forR that is independent of the given
target class by choosing eitherR = W�1 or R = T�1. The



tradeoffs between these two choices have to do with which value ofL is better at bounding false positives given the particular dataset
(this was discussed in section 4), and with which choice provides
the better approximation to��1i . In cases where we have little or
no information about�i, we can argue that it’s better to chooseR = W�1 thanR = T�1, sinceW is the mean of�i over alli, and there exists no such relationship, in general, betweenT and�i. We investigate both choices forR in the experiments of the
following section.

Note that the solution,R = �imp�1i , applies specifically to
hard margin SVM training on the classmeans (see the optimiza-
tion problem in (8)). We have not shown that the same solutionap-
plies to the more typical SVM training scenario, where real-world
class observations are used to trainsoft margin SVMs (i.e. SVMs
where the training examples are not required to be linearly sepa-
rable in feature space [8, 9]). Nonetheless, the experiments in the
following section deal specifically with the latter case.

6. EXPERIMENTS

Experiments were performed on two NIST-defined speaker recog-
nition tasks where the goal is to correctly decide whether ornot
a given pair of conversation sides belong to the same speaker. In
these tasks, one of the conversation sides in each pair is used as
the “target class,” while the other is used as a test example.We
train an SVM-based scoring function for every target class using a
fixed pool of held-out training data, which is taken from hundreds
of impostor classes, as the negative examples. Note that theclasses
in these experiments represent speakers.

We used a version of the state-of-the-art MLLR-SVM system
described in [1] to extract one 12480-dimensional feature vector
from every conversation side. These features can be dividedinto
eight disjoint groups of 1560 features each, where each group is
associated with a particular set of speech phonemes. We usedheld-
out data from the NIST SRE-2003 dataset to compute the empiri-
cal expected within-class covariance matrix̂W and the empirical
overall covariance matrix,̂T. Note that bothŴ andT̂ were esti-
mated in a block-diagonal fashion, where the covariance between
any two featuresi andj, wherei andj belong to different phoneme
groups, was set to zero. The resulting covariance matrices were
then smoothed using the models,Ŵs = �W � Ŵ+ (1� �W ) � diag(Ŵ); �W 2 [0; 1℄;T̂s = �T � T̂+ (1� �T ) � diag(T̂); �T 2 [0; 1℄;
wherediag(A) is the diagonal of the square matrixA. The pa-
rameters,�W and�T , were independently tuned to a value of 0.30
by performing cross-validation on held-out data from the SRE-
2003 dataset.

Testing was performed on a subset of the SRE-2003 task and
dataset and on the entire SRE-2004 task and dataset for the 1-
conversation training condition. Results are shown in Table 1 for
two standard error metrics: equal-error rate (EER) and minimum
decision cost-function (DCF)—a standard metric used by NIST to
measure classification error when the relative rate of falseposi-
tives is high [2]. Note that both error metrics are computed on
the pooled set of SVM output scores obtained from the various
target classes. As shown in Table 1, theR = Ŵ�1s case shows
a substantial improvement over theR = T̂�1s case and over the
baseline, where each feature is normalized to have unit variance

SRE-03 subset SRE-04
kernel EER% DCF EER% DCFR = diag(T̂s)�1

(baseline) 4.36 0.0166 9.84 0.0347R = diag(Ŵs)�1 4.21 0.0151 9.56 0.0338R = T̂�1s 4.15 0.0141 9.56 0.0348R = Ŵ�1s 3.80 0.0128 9.28 0.0322

relative
improvement 12:8% 22:9% 5:7% 7:2%

Table 1. EERs and minimum DCFs for various generalized linear
kernels. Here, “relative improvement” compares the performance
of R = Ŵ�1s with the baseline.

(i.e.R = diag(T̂)�1). The improvement on SRE-2004 is signif-
icantly smaller than that obtained on SRE-2003. However, this is
to be expected, since botĥW andT̂ were estimated only on SRE-
2003 data, which represents a different set of channel and record-
ing conditions than SRE-2004 (see [1] for more details aboutthe
system, datasets, and tasks).

7. CONCLUSIONS

The preceding report describes an approach for training general-
ized linear kernels of the form,k(x1;x2) = xT1Rx2, for OVA
classification tasks. We develop a set of error bounds which,under
various conditions, are minimized by choosingR = W�1. This
particular choice forR achieves substantial reductions in EER and
minimum DCF [2] when applied to a state-of-the-art MLLR-SVM
system on various speaker recognition tasks.
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