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ABSTRACT

In this paper, we examine the problem of kernel selectiomifa-
versus-all (OVA) classification of multiclass data with popt vec-
tor machines (SVMs). We focus specifically on the problem of
training what we refer to ageneralized linear kernels—that is,
kernels of the formk(x1,x2) = xTRx,, whereR is a positive
semidefinite matrix. Our approach for trainih@x:, x») involves
first constructing a set of upper bounds on the rates of false p
tives and false negatives at a given score threshold. Urad@us
conditions, minimizing these bounds leads to the closeaffso-
lution, R. = W', whereW is the expected within-class covari-
ance matrix of the data. We tested various parameterizatifiR,,
including a diagonal parameterization that simply perfonoer-
feature variance normalization, on the 1-conversatidnitrg con-
dition of the SRE-2003 and SRE-2004 speaker recognitidistas
In experiments on a state-of-the-art MLLR-SVM speaker geco
nition system [1], the parameterizatioR, = W ', whereW,

is a smoothed estimate 8, achieves relative reductions in the
minimum decision cost function (DCF) [2] of up to 22% belowe th
results obtained wheR. does per-feature variance normalization.

1. INTRODUCTION

One of the central problems in the study of support vector ma-
chines (SVMs) is kernel selection—that is, the problem afash

ing or training an appropriate kernel function for a parcu
dataset. Recent efforts to address this issue for binasgiilza-
tion have largely focused on a general setting, where theiriga
data are divided into two classes that can be arbitrarilgcset as
either “target” or “impostor.” Selected techniques forrkarselec-
tion in this setting are described in [3, 4, 5, 6, 7].

In this paper, we examine kernel selection for tasks inngjvi
one-versus-all (OVA) classification of multiclass data.Adsks
arise naturally in a large number of applications (e.g. kpeeer-
ification, relevance testing for documents, image authatitin,
etc.)
given test example belongs to a given target class. The OWA se
ting differs from the general binary classification setilimghat the
impostor data is composed of multiple, predefined classesevh
identities are known, a priori, in the training data.

In the following report, we develop a theoretical framework
for training what we refer to ageneralized linear kernels—that
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In these tasks, the goal is to determine whether or not a
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is, kernels of the formk(xi,x») = x]Rx», wherex; and

x» are vectors in the input space, aRdis a positive semidef-
inite matrix. Our approach involves first constructing a stt
upper bounds on the rates of false positives and false megati
at a given score threshold. We show that under various condi-
tions, minimizing these bounds leads to the closed-formtimi,
W™, whereW is the expected within-class covariance
matrix of the data. This solution fdR is particularly applicable

to OVA tasks where little is known about the target classes, b
where the second-order statistics of any given target casde
naively estimated from the impostor classes. We testedwsipa-
rameterizations oR, including a diagonal parameterization that
simply performs per-feature variance normalization, otadar
two such tasks: the 1-conversation training condition ef $iRE-
2003 and SRE-2004 speaker recognition sets. In experinoants
a state-of-the-art MLLR-SVM speaker recognition systeintfie
parameterizationR = W; ', whereW, is a smoothed estimate
of W, achieves relative reductions in the minimum decision cost
function (DCF) [2] of up to 22% below the results obtained whe
R does per-feature variance normalization.

The paper is organized as follows: In section 2, we provide a
brief overview of SVMs. This is followed by a description afro
problem setting in section 3. Sections 4 and 5 describe #w@ryh
behind our approach. Finally, a set of experiments and osiars
are described in sections 6 and 7.

2. SUPPORT VECTOR MACHINES

SVMs provide a means of training decision boundaries for bi-
nary classification problems. In the standard SVM formalati
the decision boundary between two classes is formed by the se
{x : f(x) = 0}, wheref is defined as

f(x) 2w ®(x) +0b.

Here,x represents an input feature vect®rrepresents a particu-
lar feature mapping, ang@ andb represent trainable SVM param-
eters. In SVMs, and in all kernel machines, the feature mmapdi
can be expressed in terms of the corresponding kernel métj

E(x1,%2) = ®(x1)" ®(x2).

wherex; andx, represents input feature vectors. Thus, for the
purpose of performing SVM classification, the problem ofi-opt
mizing k for a particular dataset is equivalent to the problem of
optimizing ®. Additional information about SVMs can be found
in [8, 9].



3. SETTING

Given a multiclass training set composed\éfdisjoint classes, we
would like to use an SVM with a generalized linear kernel. (ae
kernel of the formk(x:,x2) = x{ Rx», whereR is a positive
semidefinite matrix) to train an OVA classifier for some auduiy
target class;. Our goal is to derive alR matrix that is optimized
for this purpose. To do this, we first examine the generallprob
of training a linear, OVA classifier for a given target claBg.con-
structing various bounds on classification error, we araiva for-
mulation for training linear classifiers that is equivalémta hard
margin SVM [9] with a generalized linear kernel. Under various
conditions, minimizing the bounds on classification ereads to
the solution,R = W', whereW is the expected within-class
covariance matrix.

We begin by defining the functioff to be an affinescoring
function, which we use to perform OVA classification for target
classi:

fi(x) 2 vix+b;.

Here,x represents an input feature vectoy,represents a weight
vector, and; represents a bias term. We assume thandb; are
trainable parameters. Giveh, all test examples wherg(x) > 0
are classified as belonging to target clasand all test examples
wheref;(x) < 0 are classified as belonging to the set of impostor
classes.

We can evaluate the binary classification performancg bf/
defining the risk metricR(fi, 1), as

R(fiop) 2 p-p(fi(x) > 0] x ¢ Ci)+
(1 —p) - p(fi(x) <0|x €Cy).

In the above equatiom(fi(x) > 0] x ¢ C;) andp(fi(x) <

0| x € C;) represent the expected rates of false positives and

false negatives at a score threshold of zero (here, we usethe
tion, C;, to represent “clasg). The parameter € [0, 1] weights
the relative importance of false positives versus falsatiegs in
computing the overall risk. Our goal in this paper is to miizien
some upper bound oR(f;, u) with respect tof;—that is, with
respect tov; andb;—for somep.

3.1. Notation and Additional Definitions

The equations in sections 4-7 use the following notatiort st;e

be a random draw from clags and letx; £ E x;, where the
expectationE x;, is taken over all vectors in clags We define

¥; to be the within-class covariance matrix for clasg;”” to be

the expected within-class covariance matrix over all @ags# i,
andW to be the expected within-class covariance matrix over all
classes:

P e (X,; — ii)(x,; — )_(i)T

imp & Zj;éip(j) X
L Zj;éip(.j)

> _p(i)- S

Here,p(j) represents the prior probability of clagsWe use the
term, T, to denote the overall covariance matrix over all of the
data.
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Fig. 1. lllustration of thed—1 error function and the corresponding
bounding functions for Bound 1.

4. BOUNDING FUNCTIONS

In this section, we construct a set of upper bounde@fi(x) >
0|x ¢ C;) and onp(fi(x) < 0|x € C;) which we then use
to bound the risk metricR(f;, u). To simplify the bounds, we
assume throughout the following sections that each clasgnis
metrically distributed about its medi.e. p(x; — %; d) =
p(x; —x; = =) V¢,6). This implies that the within-class score
distributions are symmetrical as well, sinfds an affine function.
Hence, we can treat a symmetrical loss function on the scdr@s
particular classj, as a one-sided loss function by scaling it%),y
assuming that the loss function is centered;&x;).

Bound 1. Given v; and b;, if fi(x;) < 0 V j # i andif x;
is symmetrically distributed about its mean for all j # 1, then the
following bound holds.

p(fi(x) > 0|x ¢ Ci)
1 Zj;éi p(]) . Var(fi(xj))

< max —
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Proof. Givenv; andb;, if fi(x;) < 0 V j # iandifx; is
symmetrically distributed about its mean for gl 4, then we see
by inspection that the following is true:

<fi(xj-) — fi(%)
fi(xx)

Here, thej comes from the fact that the within-class score distri-
bution for class;j (i.e. the distribution off;(x;)) and the corre-
sponding 2nd-order bounding function in the above inegyualie
both symmetrical and both centeredfatx;). Thus, we can treat
the 2nd-order bounding function as a one-sided functiorrevihe
only count the right-hand side (see Figure 1). Taking thecetg
tion over allj # ¢ of the above inequality gives us the bound in
1). |

1
< max — -

1(f¢(x,¢)>0) nax )2 v j#i

The 2nd-order bounding functions for the bound in (1)—
which are shown in Figure 1, along with the corresponding 1
error function—are simply shifted versions of one-anothet are
therefore quite loose for the impostor classes whose mearssc



are far from0. Although the bounding functions for the individ-

For simplicity, we will use this assumption in the followidgriva-

ual impostor classes could be made tighter, we have chogen th tion, where we minimize (5) with respect tqg andb;. A similar

functional form in (1) because it leads to a simple SVM-bdsed
mulation for optimizingv; andb;, as we will show in section 5.

We assume that the total number of bounding functions in

(1)—which we denote by.—can be less than or equalid — 1,
the total number of impostor classes. For example, we coelt t
all impostor classes as a single class (i.e. Ehe 1 scenario), in

which case we only have one 2nd-order bounding functionlfor a

of the impostor scores. However, as implied by (1),khe 1 case
leads to tighter bounds thdh = 1 when the mean of the within-
class variances of the impostor scores is small compardédthetr
overall variance.

Bound 2. Given v; and b;, if f;(x;) > 0 and if x; is symmetri-
cally distributed about its mean, then the following bound holds.
Var(fi(x:))
fi(x:)?
E (v (xi — %))
(VTR A b)?

p(fi(x) <0|x€Ci) <
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The derivation for Bound 2 is similar to that of Bound 1 and is

therefore omitted. Putting together Bound 1 and Bound 2sgive
the following bound forR (f;, u):

T xvimp
pno v 8P
R(fi,pn) < et
(Fism) < i) (vIxp + b;)?
(1—p) v Zv;
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5. OPTIMIZATION

We can now train a linear, OVA classifier for target claby mini-
mizing the bound in (5) with respect tqg andb;. As we will soon
show, minimizing (5) ovew; andb; leads to a modified form of
Vapnik’s hard margin SYM [8, 9]. This modified SVM implicitly
defines a kernel function of the forra(x1, x») = x] Rxs, Where

R is a positive semidefinite matrix. We also show that undeir var

ous conditions, the solution for the optimizBdis independent of
the given target class, which means thatan be implemented for
any choice of target class by applying a single feature nmapim
all input features.

Before we address the problem of how to minimize (5), we

note that in most speaker recognition tasks (includingdblks that
we consider in this paper), the amount of training data alségl
for any given target speaker is very limited—typically nonmo
than 8 conversation sides of around 2.5 minutes each. Ghigen t
limited amount of training data, the task of coming up witlolbust
estimate of the covariance matrix for target speakei can be
very difficult, especially when the dimensionality of theafiere
space is very high. One way of getting around this, in the mdEse
of any other information, is to simply assume thatis equal to the
expected within-class covariance matrix over allimposp@akers
(i.e. classes):

5, =i

derivation can be performed for the more general case wiigre
andX;™? are not assumed to be equal.

Assuming that; = X7, we can minimize (5) with respect
to (vi, b) by solving the following optimization problem:

1 ,
min —viTZ:fmpvi (6)
v;,b; 2 .

subjectto 1<y, (viTij +b;) Vj.

Here,y; is defined as
if j =1

. — 1’
%7{—4,ﬁj¢i

If 32i is full-rank, then the problem in (6) can be converted to a
more familiar form by defining the vectar; and the matriXU as
follows:

vj.

Vi 2 Uw;,,
vu” &y 7)
SubstitutingUw; in for v; in (6) gives us

1

mp v ®
subjectto 1 <y; (w,;TUTi]- +bi) Vj.

Here, we see that the optimization problem in (8) has the same

form as Vapnik’s hard margin SVM (see for example, [8, 9]}, ex
cept that the feature vectog;, has been replaced witti” %;.
Thus, the hard margin SVM in (8) defines the following feature
mapping® and kernel functionk:

®(x) = UTx,
k(x1,x2) = x; UU xs. 9)

Putting together (7) and (9), we end up with the followingusioin
for R in the generalized linear kerndl(x:, x2) = x; Rxy:

R=xim

Note that if; = o - £™” for somes > 0, thenR = Xi™?
is optimal for any choice of, € [0, 1] in the bound orR(f;, 1)
in (5). Otherwise, if£; is not proportional tox;™”, then we can

easily show thaR = S is only optimal, in general, for the
upper bound on false positives in (3). That is¥ifis not propor-
tional toX;™”, thenR is only optimal for the case wheje= 1.

Hence, the solutionR = ©:™” 1, is particularly applicable—at
least in theory—to multiclass settings where the covaganatrix
for any given target class is unknown (or simply hard to eaté)
but where the classes are related in such a wayXHat can be
used as a naive estimate foy.

If the entries of%; are bounded above and below for 4ll
thenX;™” — W asp(i) - O whenL = M — 1 (i.e. the
case where each impostor class gets its own loss functiod), a
X" — T, whereT is the overall covariance matrix of the data,
asp(i) — 0 whenL = 1. Thus, whenp(i) is very small, we
can obtain a single solution f@& that is independent of the given
target class by choosing eith®t = W' orR = T~ '. The



tradeoffs between these two choices have to do with whiakevail

L is better at bounding false positives given the particutdaset
(this was discussed in section 4), and with which choice ides/
the better approximation t6;'. In cases where we have little or
no information abouk;, we can argue that it's better to choose
R = W ' thanR = T !, sinceW is the mean oE; over all

1, and there exists no such relationship, in general, betieand
¥;. We investigate both choices f& in the experiments of the
following section.

Note that the solutionR = %" ], applies specifically to
hard margin SVM training on the classeans (see the optimiza-
tion problem in (8)). We have not shown that the same solwtjpn
plies to the more typical SVM training scenario, where neatd
class observations are used to treift margin SVMs (i.e. SVMs
where the training examples are not required to be lineabas
rable in feature space [8, 9]). Nonetheless, the expersrarthe
following section deal specifically with the latter case.

6. EXPERIMENTS

Experiments were performed on two NIST-defined speakeigreco
nition tasks where the goal is to correctly decide whethenair

a given pair of conversation sides belong to the same spebker
these tasks, one of the conversation sides in each pair dsasse
the “target class,” while the other is used as a test examve.
train an SVM-based scoring function for every target classgia
fixed pool of held-out training data, which is taken from hrgub

of impostor classes, as the negative examples. Note thelabses
in these experiments represent speakers.

We used a version of the state-of-the-art MLLR-SVM system
described in [1] to extract one 12480-dimensional featwetor
from every conversation side. These features can be divided
eight disjoint groups of 1560 features each, where eachpgiu
associated with a particular set of speech phonemes. Weetikd
out data from the NIST SRE-2003 dataset to compute the empiri
cal expected within-class covariance maf¥i and the empirical
overall covariance matrix’. Note that botiW and'T were esti-
mated in a block-diagonal fashion, where the covariancedst
any two featuresandj, wherei andj belong to different phoneme
groups, was set to zero. The resulting covariance matrieze w
then smoothed using the models,

W, =py - W+ (1—p,,) - diag(W), p, €[0,1],
TS = Pr 'T+ (1 7/)7) ’ di(lg('j:‘), pPr € [Oa 1}7

wherediag(A) is the diagonal of the square matx. The pa-
rametersp,, andp,., were independently tuned to a value of 0.30
by performing cross-validation on held-out data from theESR
2003 dataset.

Testing was performed on a subset of the SRE-2003 task andm
dataset and on the entire SRE-2004 task and dataset for the 1-

conversation training condition. Results are shown in &dbfor

two standard error metrics: equal-error rate (EER) and mmina
decision cost-function (DCF)—a standard metric used by NIST to
measure classification error when the relative rate of fptsg-
tives is high [2]. Note that both error metrics are computed o
the pooled set of SVM output scores obtained from the various
target classes. As shown in Table 1, lRe= W' case shows

a substantial improvement over tie = T, ' case and over the
baseline, where each feature is normalized to have uniavei

SRE-03 subset SRE-04
kernel | EER% | DCF || EER% | DCF
R = diag(T,) "’
(baseline)|| 4.36 | 0.0166 9.84 | 0.0347
R = diag(W,) ™' 421 | 0.0151| 9.56 | 0.0338
R=T.! 4.15 0.0141 9.56 | 0.0348
R=W_! 3.80 | 0.0128 || 9.28 | 0.0322
relative
improvement|| 12.8% | 22.9% || 5.7% | 7.2%

Table 1. EERs and minimum DCFs for various generalized linear
kernels. Here, “relative improvement” compares the pentorce
of R = W ! with the baseline.

(i.e. R = diag(T)™!). The improvement on SRE-2004 is signif-
icantly smaller than that obtained on SRE-2003. Howevés,ith
to be expected, since boW andT were estimated only on SRE-
2003 data, which represents a different set of channel amtde
ing conditions than SRE-2004 (see [1] for more details aloeit
system, datasets, and tasks).

7. CONCLUSIONS

The preceding report describes an approach for trainingrgén
ized linear kernels of the fornk(x:,x2) = xTRx,, for OVA
classification tasks. We develop a set of error bounds whiather
various conditions, are minimized by choosiRg= W ~'. This
particular choice foR. achieves substantial reductions in EER and
minimum DCF [2] when applied to a state-of-the-art MLLR-SVM
system on various speaker recognition tasks.
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