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Thiswork presents a series of experiments that compare the performance of human speech recognition (HSR) and auto-
matic speech recognition (ASR). The goal of thisline of research isto learn from the differences between HSR and ASR,
and to use this knowledge to incorporate new signal processing strategies from the human auditory system in automatic
classifiers. A database with noisy nonsense utterances is used both for HSR and ASR experiments with focus on the influ-
ence of intrinsic variation (arising from changes in speaking rate, effort, and style). A standard ASR system isfound to
reach human performance level only when the signal-to-noise ratio isincreased by 15 dB, which can be seen as the
human-machine gap for speech recognition on a sub-lexical level. The sources of intrinsic variation are found to severely
degrade phoneme recognition scores both in HSR and in ASR. A comparison of utterances produced at different speaking
rates indicates that temporal cues are not optimally exploited in ASR, which resultsin a strong increase of vowel confu-
sions. Alternative feature extraction methods that take into account temporal and spectro-temporal modulations of speech
signals are discussed.
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1 Introduction

Automatic speech recognition (ASR) has come a long way in the last decades,
from the speaker-dependent recognition of isolated digits to large vocabulary,
speaker-independent recognizers used in commercial systems. Still, machines
that recognize speech as well as the healthy human auditory system have not
yet been realized. In contrast to ASR, human speech recognition (HSR) is
very robust in the presence of variability in spoken language. This variability
can be caused by either extrinsic sources (e.g., additive noise or reverberation)
or intrinsic sources (speaker- and speech-related factors such as gender, emo-
tional state, age, or speaking style), and human listeners can adapt very well
to both of these (Benzeguiba et al., 2007).

This paper summarizes experiments and results published in (Meyer et al.,
2010) and (Meyer et al., 2011). The aim is to measure the gap between HSR
and ASR, and to identify the specific differences between our auditory system
and standard ASR systems. The outcome of these experiments is potentially
useful for incorporating novel signal processing strategies into ASR to in-
crease its robustness, and simultaneously reducing the human-machine gap.
An overview of the experiments presented in this study is shown in Fig. 1:
Utterances from a database of nonsense words (referred to as logatomes) were
presented to human listeners and also used as input to an ASR system. In
each case, the task was to identify the central phoneme in vowel-consonant-
vowel (VCV) or consonant-vowel-consonant (CVC) combinations, which lays
the focus on the sublexical level.

Nonsense utterances (VCVs and CVCs from OLLO Corpus)
| |
NOISE NOISE
-6.2 dB +3.8 dB
I I
Unaltered Slgn_als ASR
signals resynthesized from features
g ASR features (MFCCs)
Human listeners ASR system

Fig. 1. Original and resynthesized, noisy signals were presented to six listeners. The
same utterances were used as input to an ASR system. In both cases, the task was
the identification of the central phoneme.
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Further, it was investigated if the most common features in ASR (mel-cepstral
coefficients, MFCCs) contain sufficient information so that human listeners are
able to identify noisy phonemes when those features are resynthesized (i.e.,
are converted to audible signals). The idea is that HSR and ASR are provided
with identical or similar information. When the information relevant for the
recognition of noisy speech is retained during feature calculation, the intel-
ligibility of original and resynthesized speech should be identical in listening
tests. On the other hand, an increase of error rates when using resynthesized
instead of original signals could be exploited to quantify the loss of information
that is relevant for speech recognition. Finally, the effect of intrinsic variation
in spoken language was analyzed by using speech stimuli that were produced
with different speaking rates, efforts, and styles. The effect of such variations
compared to normally produced speech was evaluated both in listening tests
and ASR experiments.

The next section gives a short description of the speech database, the resyn-
thesis of ASR features, and the experimental setup for HSR and ASR tests.
The results and the discussion are presented in Sections 3 and 4, respectively.

2 Methods

2.1 Speech database

The Oldenburg Logatome Corpus (OLLO) is a database that was designed
for speech intelligibility tests with human listeners and for experiments with
automatic classifiers (Meyer et al., 2010). It consists of nonsense utterances or
logatomes, i.e., words without semantic meaning which comply with phonetic
and phonotactic rules. The logatomes are composed of triplets of vowels (V)
and consonants (C) with the outer phonemes being identical. The central

phonemes in utterances were /b/, /d/, /t/, /9/, /k/, /1/, /m/, /u/, [p/, /s/,
[N I8 N 1) e el I o) Je)s Jass fefs [if, o), Ju/. T0 VCVs

and 80 CVCs were recorded with different speaking styles, efforts and speaking
rates, thus enabling an analysis of the effect of such intrinsic variations of
speech. During the recordings, 50 talkers were asked to produce each logatome
either normally or in one of five variations (fast, slow, loud, soft, question, the
latter referring to utterances with rising pitch). The corpus is freely available
for research at *http://medi.uni-oldenburg.de/ollo”’.

For HSR and ASR testing, a subset was selected from the database that was
comprised of data from 4 talkers (2 male, 2 female) and contained logatomes
for all six categories or speaking styles (normal + 5 variations). These speaking
styles were equally distributed in the test set that contained 3,600 recordings
(150 (logatomes) x 6 (speaking styles) x 4 (talkers)).
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2.2 Resynthesis of ASR features

Mel-frequency cepstral coefficients encode the spectral envelope of short-time
segments of speech. In order to calculate MFCC features from speech, signals
with 16 kHz sampling frequency are windowed with 30 ms Hann windows and
a frame shift of 10 ms. Each frame undergoes the same processing steps: Calcu-
lation of the amplitude spectrum, reduction of the frequency resolution using
a mel-scaled filter bank and calculation, log-compression of the amplitude
values, and application of the inverse discrete cosine transformation (IDCT).
The 12 lowest coefficients plus an additional energy feature are selected for
the ASR experiments and HSR tests with resynthesized speech.

This processing scheme results in a loss of spectral fine structure and phase
information, which may be detrimental for speech recognition in noisy envi-
ronments. In order to generate audible signals from MFCCs, an algorithm
proposed by Demuynck et al. (2004) has been used, which uses a linear neural
net to obtain a mel-spectrogram from the cepstral coefficients. Since informa-
tion about the original excitation signal is discarded in MFCCs (and therefore
not used by standard ASR), an artificial excitation signal needs to be employed
because the addition of voicing for human listeners would be an advantage over
the ASR system. Pilot experiments with noisy and periodic signals with a fixed
fundamental frequency were performed to estimate an excitation signal that
results in a high intelligibility, and a periodic pulse train with a frequency of
130 Hz was found to produce good results and hence was chosen for the resyn-
thesis (with signals that sounded artificial, but were perfectly understandable
in the absence of noise).

2.3  FExperiments with human listeners

The selected OLLO subset was presented to six normal-hearing listeners (three
male, three female, aged 18 to 35), who were asked to identify the central
phoneme in a 1-out-of-N forced-choice paradigm. In case of clean speech, the
phoneme error rates for original and resynthesized signals was approximately
1%. To enable the statistical analysis errors, a stationary masking noise with
speech-shaped frequency characteristics (Dreschler et al., 2001) was added to
the signals. Pilot experiments with a small test set and one normal-hearing
subject showed that an SNR of -6.2 dB for original signals and +3.8 dB for
resynthesized signals result in error rates between 20-40%. These SNRs were
used for the HSR measurements.

Randomized sequences of logatomes were presented in a soundproof booth
via audiological headphones (Sennheiser HDA200) after an online free-field
equalization was performed. After a training phase, listeners were presented
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a randomized sequence of logatomes at a level of 70 dB SPL, which was the
preferred level for most listeners. After each presentation, an item had to
be selected from a list of logatomes, which triggered the presentation of the
next listening item after a short pause. The number of choice alternatives was
either 10 (corresponding to the 10 central vowels used in CVCs) or 14 (since
14 different central phonemes are used for the VCVs).

2.4 ASR experiments

For the ASR experiments, mel-frequency cepstral coefficients (MFCCs) and
their discrete temporal derivates (delta and double-delta coefficients) were cal-
culated from clean and noisy speech files. A standard Hidden Markov model
(HMM) with three states per phoneme and eight Gaussian mixtures per state
implemented in HTK was used as back end. The system was set up to resemble
the 1-out-of-N identification task used for HSR, i.e., the recognizer identified
the central phoneme in VCV and CVC utterances. Further, the test utterances
were identical to the speech data used for HSR experiments, with the addi-
tional repetitions that were recorded for the OLLO database. ASR training
was performed with data from six talkers not contained in the testing data,
which resulted in a speaker and gender-independent ASR setup. Recognition
of noisy utterances was tested at several SNRs (ranging from -6.2 to 8.8 dB)
with matched conditions for training and testing. The same noise signal as for
HSR (Dreschler et al., 2001) was used.

3 Results

3.1  QOwerall results

The overall phoneme error rates for ASR and HSR averaged over all factors
of intrinsic variation and all phonemes in the database are shown in Fig. 2.
When HSR and ASR are tested at the same SNR of -6.2 dB (Labels A and
E in Fig. 2), the ASR error rates are more than twice as high as the HSR
error rates. The error rates for A, B, and C are in the same range, and can
therefore be used to estimate the overall human-machine gap in terms of the
SNR: The ASR system reaches human performance levels only when the SNR
is increased by 15 dB. The results also indicate that standard ASR features
do not carry all information required to decode a speech signal in noise, since
the error rates with original and resynthesized signals are similar (A and B),
although the SNR for resynthesized speech is 10 dB higher than for original
signals.
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On the other hand, even when humans are provided with the information that
is also available to the MFCC-based recognizer, they still perform better than
ASR: The error rates with resynthesized signals (B) are comparable to the
ASR result with an SNR of 8.8 dB (C), corresponding to an SNR gap of 5 dB,
which is an estimate for the gap introduced by the back end. When identical
SNR conditions are compared (B and D), the relative increase of errors due
to the backend can be estimated to be 30% (absolute increase: 8.3%) for this
medium range of speech intelligibility.

70¢
60
501
40+

301

27-6 25.5

Phoneme error rate (%)

201

10

A B
Orig. sig. Resynth.
SNR(dB) -6.2 +3.8 +8.8 +3.8 -6.2

\ ) \ )
Y Y

HSR ASR

Fig. 2. Phoneme error rates obtained in HSR and ASR experiments at different
SNRs (denoted below each bar).

3.2 Effect of intrinsic variability

The effect of intrinsic variation in speech was analyzed by breaking down the
average scores with respect to the speaking styles represented in the OLLO
database. Table 1 shows the relative increase of error rates for varied speaking
rate, effort, and pitch for SNR conditions that yield similar average error rates.
The relative increase was calculated based on the corresponding scores for the
reference condition ('normal speaking style’). In almost all cases, changes com-
pared to the reference condition increase the error rates, i.e., the presence of
intrinsic variability covered in this study increases the phoneme error rates,
which is observed both for HSR and ASR. A condition that consistently re-
sults in strong increases of error rates is a high speaking rate. Hence, the
relationship of phoneme duration and error rates was analyzed more closely.

Proceedings of Meetings on Acoustics, Vol. 14, 060001 (2011) Page 6



B. Meyer

SNR  Normal Fast Slow Loud Soft Question
HSR (Orig. signals)  -6.2 00 350 -59 31.6 329 42
HSR (Resynth. sig.) 3.8 0.0 294 6.5 -33 71.5 10.7
ASR 8.8 00 63.8 10.2 68.4 55.6 337

Table 1
Relative increase of phoneme error rates for different speaking styles. The increase

is shown for noise conditions that produced similar average (absolute) error rates
(HSR, orig: 25.5%; HSR, resynth.: 27.6%; ASR: 27.2%).

A forced-alignment procedure that takes into account pronunciation variations
of utterances was used to obtain estimates for the phoneme durations (Kipp
et al., 1996). The durations of central phonemes were compared to the corre-
sponding error rates in HSR and ASR. Fig. 3 shows the general trend that was
observed for central vowel phonemes for HSR and ASR at the same SNR. In
HSR, two groups of vowels emerge for which an increased phoneme duration
either increases the error rate (/a/, /e/, /1/, /2/, /u/) or decreases the error
rate (/ai/, /e/, /i/, /o/, /u/). The observation that durational cues affect HSR
error rates (although most of the vowel phonemes also differ with respect to
their spectral properties) is in accordance with earlier studies (Hillenbrand et
al., 1995). When the data obtained at the same SNR with ASR is plotted, the
same trend as for HSR is observed for two phonemes (/a/ and /a:/). However,
in all other cases, either no clear trend is observed (for instance for /1/) or the
opposite trend as in HSR is found (an example being /u/). These examples are
highlighted by the blue and green lines in Fig. 3. This result shows that tem-
poral cues are not optimally exploited in standard ASR systems, and suggests
to pay more attention to temporal processing. One approach to do this is to in-
corporate more information about the temporal context on feature level, e.g.,
by using spectro-temporal Gabor filters (Meyer and Kollmeier, 2011) that can
be parametrized to either perform a purely spectral processing (and thereby
mimicking the functionality of MFCC features), spectro-temporal processing
(to detect formant transients that are often represented by diagonal structures
in the spectrogram), or temporal processing (which might help to distinguish
between phonemes with different durations).

4 Summary

The comparison of human and automatic speech recognition on a sub-lexical
task showed that a large gap between HSR and ASR still exists. In the pres-
ence of stationary noise, ASR error rates were more than twice as high as for
HSR. The comparison of noise conditions that resulted in comparable error
rates enabled an estimation of the human-machine gap in terms of the SNR,
since a standard ASR system reached human performance only when the SNR
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Fig. 3. Phoneme duration of central vowels in CVC utterances vs. the corresponding
error rate. In HSR (left panel), two groups of vowels can be identified for which the
error rates either increase or decrease with longer phoneme durations. With the
exception of the confusion pair (/a/,/a:/), this trend cannot be observed in ASR
(right panel).

was increased by 15 dB. When human listeners were supplied with the infor-
mation that is available to an ASR backend, the SNR needed to be increased
by 10 dB to achieve similar results as with original signals. This shows that
even the best back end that we know (the human auditory system) cannot
extract the acoustic information from a feature-based signal as well as from
original signals, and information relevant for speech recognition seems to be
neglected in standard feature extraction.

A closer look at the differences of error rates in the presence of specific fac-
tors of intrinsic variation showed that changes in speaking rate severely affect
speech recognition. This was the case both in HSR and ASR; however, con-
sistent patterns for specific groups of vowels were observed only in HSR. This
result suggest that temporal information is not optimally exploited in current
recognizers, and more attention should be paid to temporal processing.

5 Acknowledgements

Significant contributions to the research summarized in this study were made
by Birger Kollmeier, Thomas Brand, Tim Jirgens, and Thorsten Wesker.
It was supported by the DFG (SFB/TRR 31 'The active auditory system’;
URL: http://www.uni-oldenburg.de/stbtr31l). Bernd T. Meyer has been sup-
ported by a post-doctoral fellowship of the German Academic Exchange Ser-
vice (DAAD).

Proceedings of Meetings on Acoustics, Vol. 14, 060001 (2011) Page 8



B. Meyer

References

Benzeguiba, M., De Mori, R., Deroo, O., Dupont, S., Erbes, T., Jouvet, D.,
Fissore, L., Laface, P., Mertins, A., and Ris, C. (2007). “Automatic speech
recognition and speech variability: A review, Speech Commun. 49.” 763-786.

Demuynck, K., Garcia, O., and van Compernolle, D. (2004). “Synthesizing
Speech from Speech Recognition Parameters,” In Proc. Interspeech, pp.
945-948.

Dreschler, W. A., H, V., Ludvigson, C., and Westermann, S. (2001). “ICRA
Noises: Artificial Noise Signals with Speech-like Spectral and Temporal
Properties for Hearing Instrument Assessment,” Audiology, 40(3), 148-157.

Kipp, A., Wesenick, M.-B., and Schiel, F. (1996). “Automatic detection and
segmentation of pronunciation variants in German speech corpora,” in Proc.
of the International Conference on Spoken Language Processing (ICSLP),
pp- 106-109.

Hillenbrand, J., Getty, L., Clark, M., and Wheeler, K. (1995). “Acoustic char-
acteristics of American English vowels,” J. Acoust. Soc. Am. 97, pp. 3099-
3111.

Meyer, B. and Kollmeier, B. (2011). “Robustness of spectro-temporal features
against intrinsic and extrinsic variations in automatic speech recognition,”
Speech Comm. 53 (5), pp. 753-767.

Meyer, B. T., Jirgens, T., Wesker, T., Brand, T., and Kollmeier, B. (2010).
“Human speech recognition as a function of speech-intrinsic variabilities,”
J. Acoust. Soc. Am. 128 (5), pp. 3126-3141

Meyer, B.T., Brand, T., and Kollmeier, B. (2011). “Effect of speech-intrinsic
variations on human and automatic recognition of spoken phonemes,” J.

Acoust. Soc. Am. 129, pp. 388-403.

Proceedings of Meetings on Acoustics, Vol. 14, 060001 (2011)

Page 9



	Cover Page
	Article

