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Abstract
We present an investigation of segments that map to GLOBAL
LIES, that is, the intent to deceive with respect to salient topics
of the discourse. We propose that identifying the truth or falsity
of these CRITICAL SEGMENTS may be important in determin-
ing a speaker’s veracity over the larger topic of discourse. Fur-
ther, answers to key questions, which can be identified a priori,
may represent emotional and cognitive HOT SPOTS, analogous
to those observed by psychologists who study gestural and fa-
cial cues to deception. We present results of experiments that
use two different definitions of CRITICAL SEGMENTS and em-
ploy machine learning techniques that compensate for imbal-
ances in the dataset. Using this approach, we achieve a perfor-
mance gain of 23.8% relative to chance, in contrast with human
performance on a similar task, which averages substantially be-
low chance. We discuss the features used by the models, and
consider how these findings can influence future research.
Index Terms: deception, deceptive, speech

1. Introduction
The detection of deception has long been of interest in the do-
mains of law enforcement, national security, business, and re-
search. Interest continues to grow in the general area of ‘cred-
ibility assessment,’ and in the particular task of the detection
of deceptive speech. Most work in this area has appeared in
the psychology literature (c.f. [1]); work has been recently un-
dertaken by computational linguists and speech scientists who
aim to develop systems that classify deceptive and nondeceptive
speech using machine learning and speech technologies. How
well such systems can be hoped to perform is an open question:
Since most human subjects — including trained professionals
— perform near chance accuracy at the general deception de-
tection task [2], an automatic system would have to perform
considerably better than humans to have practical use. This
lies in stark contrast to many speech processing tasks such as
summarization or even emotion detection, where human perfor-
mance is usually considered the gold standard.
Studies of automatic deception detection are relatively rare

in the literature. Progress has been made recently, particularly
in work on the CSC (Columbia-SRI-Colorado) Deception Cor-
pus (see Section 3). Systems have performed from 4% to 6%
better than chance (7–10% relative gain) using combined acous-
tic/prosodic, lexical, and subject-dependent features [3, 4, 5],
classifying LOCAL LIES and TRUTHS. While this performance
is modest, it substantially exceeds that of human judges on the
same data, who performed on average below chance[4]. With
respect to accuracy at labeling GLOBAL LIES and TRUTHS in the
CSC Corpus, the topic of the present work, human judges per-
formed even worse: on average 47.8% versus a chance baseline
of 63.6%.
In the current work, we focus on detecting a speaker’s more

general intention to deceive, i.e., to perpetrate what we term
GLOBAL LIES (Section 3). We do so by examining certain sys-
tematically identifiable segments — called here CRITICAL SEG-
MENTS— that may be more emotionally or cognitively charged
than segments from the general corpus. The segments exam-
ined here bear propositional content that is directly related to
the topics of most interest in the mock interrogation paradigm
used in the corpus; classification of such segments is thus par-
ticularly important. Results reported here substantially exceed
human performance at the task of GLOBAL LIE and TRUTH
classification[4]. Further, models generated using these seg-
ments employ features consistent with hypotheses in the liter-
ature [1] and the expectations of practitioners [6] (see Section
5) about spoken cues to deception.
These findings are of interest on a number of fronts. First,

they suggest that there may be a speech analog to what psy-
chologists who study behavioral and facial cues to deception
call HOT SPOTS, events in which relevant emotion is partic-
ularly observable and can thus be more easily detected[7, 8].
Second, such findings can guide the design of future data col-
lection paradigms and real-world approaches, since interview-
ing techniques might be optimized to induce the subject to pro-
duce more CRITICAL SEGMENTS. Finally, continued work at
automatic detection can be guided by the general principle that
certain kinds of subject responses are more susceptible to de-
tection, and that methods should be developed to identify and
examine these sorts of responses.
1.1. Critical segments
Work by psychologists studying behavioral and facial cues
to deception [7, 8] suggests that certain events in interviews,
termed HOT SPOTS, are particularly useful in determining
whether a subject is telling the truth. In directing detection ef-
forts to CRITICAL SEGMENTS, we hoped to find that certain
segments of speech that deal directly with the most salient top-
ics of the speaker’s deception are more easily classified than de-
ceptive statements in the corpus at large. Presumably, such seg-
ments will be both emotionally charged — potentially resulting
in stronger prosodic and acoustic cues— and cognitively loaded
— potentially resulting in more lexical cues to deception.
In the present work, we attempted to develop systematic

rules to isolate potential HOT SPOTS, which in the speech do-
main we term CRITICAL SEGMENTS. These rules are based
on two simple hypotheses about the nature of CRITICAL SEG-
MENTS:

1. CRITICAL SEGMENTSwill occur when the propositional
content of the segment relates directly to the most salient
topics of the interview.

2. CRITICAL SEGMENTS will occur when subjects are di-
rectly challenged to explain their claims with regard to
salient topics of the interview.



In what follows, we describe existing work on detecting de-
ception (Section 2), describe the corpus (Section 3), explain our
approach to operationalizing our hypotheses (Section 4), and re-
port results obtained by experiments performed on the data thus
extracted from the CSC Corpus (Section 5).

2. Related Work
Most results on deception detection have appeared in the psy-
chology literature; work on the automatic detection of deception
on the part of speech scientists and computational linguists has
begun only recently. A number of studies report machine per-
formance (7–10% improvement relative to chance on LOCAL
LIES) [3, 4, 5] and human performance (below chance) [4] on
the CSC Corpus. A study by Newman et al. [9] uses auto-
matically extracted linguistic features, but it is difficult to infer
performance gains with respect to unseen data given the details
provided.
A human baseline for the general deception-detection task

can be found in a recent meta-analysis [2] of the results of 108
studies of human deception detection. The majority of stud-
ies employed college students, who scored on average 54.22%
compared to a baseline of 50%. Police and federal officers also
performed near chance. A 2003 meta-analysis of 116 studies
performed primarily by psychologists [1] reports 23 cues to de-
ception that were significant across multiple studies.

3. The CSC Deception Corpus
The CSC Deception Corpus [3] is a laboratory collection of
32 recorded interviews containing within-subject deceptive and
nondeceptive speech. Speakers were motivated via financial in-
centive to deceive successfully. In addition, speakers were led
to believe that the ability to deceive correlates with other desir-
able personal and social qualities; this linked success at decep-
tion to what social psychologists term the ‘self-presentational’
perspective[1].
Subjects were native speakers of Standard American En-

glish, recruited from the Columbia University student popula-
tion and from the larger community in exchange for payment.
Subjects were solicited for a ‘communication study’ that sought
individuals matching a profile based on the ‘top twenty-five en-
trepreneurs’ of America (this was false). Prior to the interview,
subjects completed a test in six areas. The difficulty of the tasks
and questions was manipulated so that each speaker scored too
high in two areas, too low in two areas, and correctly in two.
Four target profiles were constructed to balance the distribution
of lies among the six areas. After completing the test, subjects
were told that the study actually sought individuals who did
not match the profile, but could lead an interviewer to believe
that they did. Those who successfully deceived the interviewer
would participate in a drawing for $100.
During the interview, speakers indicated whether each of

their statements was true or contained some element of decep-
tion by pressing one of two pedals hidden from the interviewer.
Ground truth was known a priori with respect to the claimed
score (the most salient topic of conversation) since it was based
on speakers’ scores on the six-topic test.
Duration of the interviews ranged from 25 to 50 minutes

and comprised 15.2 hours of dialog, providing approximately 7
hours of subject speech. Speech was segmented on several lev-
els: segmentations using sentence-like units (EARS slash units
or SUs) [10] are used in the present experiments. Full details
regarding data collection can be found in [3]. The standard
CSC corpus feature set [3] consists of 251 features: acoustic
and automatically extracted prosodic features (as in [11]): au-

tomatically extracted lexical features, and features extracted au-
tomatically based on individual subject behaviors (such as ratio
of laughs in lies vs. truths).
The CSC paradigm results in the production of two kinds

of lies. GLOBAL LIES describe the speaker’s overall intention
to deceive (or not) with respect to a salient topic of the conver-
sation; here, the claimed score for each section. LOCAL LIES
refer to the propositional content of statements made to support
the overall argument; this content will be either true or false.
This distinction is important to the findings of the present study:
while earlier work has focused on the detection of LOCAL LIES,
the current work presents an approach to classifying GLOBAL
LIES and TRUTHS.

4. Methods and Materials
We performed machine learning classification experiments —
classifyingTRUTH orLIE—on CRITICAL SEGMENTS identi-
fied in the CSC corpus. These were performed using implemen-
tations of bagging [12], AdaBoost [13], and c4.5 [14] (called
J48) provided by Weka and the Weka Java API [15]. Feature se-
lection was performed on features from the CSC Corpus feature
set during the current experiments; features used are described
in further detail in Section 5.

4.1. Selection of critical segments
CRITICAL SEGMENTS were selected by hand from the full set
of segments (EARS slash units or SUs [10]) using the following
rules:
1. Include segments that are responses to questions that di-
rectly ask the subject for his or her score on a particular
section.

2. Include segments that respond to immediate follow-up
questions requesting a justification of the claimed score,
when such a question is posed by the interviewer.

3. Omit everything else.
Here is a representative example of a subject segment (labeled
(S)) that corresponds to Rule 1:
(I) And what was your score exactly on that section?
(S) I got excellent, which was, um, pretty good.
The interviewer frequently posed a follow-up question request-
ing immediate justification of the score claimed by the subject,
as described in Rule 2. Responses to such questions were in-
cluded:
(I) Why do you think you did so well on that section?
(S) Um my- first of all my grandmother was a really good

cook.
Often, a subject used multiple adjacent SUs in a response that
corresponded to Rules 1 or 2. In such a case, all segments rep-
resenting the response were included:
(I) So we’ll move on now to what we’re calling the civics sec-

tion. How did you do on that section?
(S) Uh I d- you know alright.
(S) Not great.
(S) Fair.
Finally, many subject segments did not correspond to either

Rules 1 or 2 because they were not produced in response to
questions of the two genres described above. Such segments
were omitted:
(S) I went to this in- Indian restaurant my parents call

Tamarind’s.



From the corpus of 9068 SUs, we thus produced two sets
of CRITICAL SEGMENTS: one set of 465 based only on Rule
1 (termed Critical) and one set of 675 based on Rules 1 and
2 (termed Critical-Plus). Feature selection was employed to
reduce the feature set to 22 features for the Critical set and 56
for the Critical-Plus set.

4.2. Coping with skewed class distributions
It is well known that classification algorithms — particularly
those using decision trees, such as c4.5 [14] — can be neg-
atively affected by datasets in which the class distribution is
skewed (c.f [16, 17, 18]). In simple terms, this results in a bias
on the part of the induced decision tree toward the majority class
due to the ‘over-prevalence’ [16] of majority class examples.
For CRITICAL SEGMENTS, the CSC Corpus is such a

dataset. The present sets of CRITICAL SEGMENTS contain a ma-
jority of LIE examples: (67.5% for Critical, 62% for Critical-
Plus). Because initial classification results on the natural class
distribution were poor but exceeded chance, we hypothesized
that adjusting the class imbalance might allow the learner to
induce more effective rules. We follow a commonly used ap-
proach to adjust the imbalance.
In this approach, termed under-sampling1 [17], examples

from the majority class are eliminated in order to create a bal-
anced distribution. For the Critical-Plus dataset, combined
training/test sets of 508 examples2 were used. Under-sampled
training/test sets were created as follows: for each of 10 train-
ing/test sets, randomly select 50 examples (25 TRUTH, 25
LIE) for the test set; from the remaining examples, randomly
select 458 (229 TRUTH, 229 LIE) for the test set. An anal-
ogous approach was used with the Critical dataset, producing
sets of 272 training and 30 test examples.
For each dataset, the above procedure was repeated 10

times with different random seeds to account for the exclusion
of some data; results reported here thus reflect average perfor-
mance on 100 individual training/test sets for each dataset.

5. Results and Discussion
In Table 1 we report classification results for the two datasets,
both for the original samples (using 10-fold cross-validation)
and for the under-sampled datasets, using 100 random trials as
described in Section 4.2. Both raw accuracy and improvement
relative to chance are reported. Given the difference in base-
lines, the relative scores represent the best basis for comparison
since these scores are normalized with respect to the baseline
chance accuracy, which varies among the configurations of the
data. Performance on the original samples is poor but exceeds
chance: 5.8% relative to chance for the Critical-Plus dataset,
1.6% for the Critical dataset. Results for the under-sampled
datasets show 22.2% relative improvement for the Critical-
Plus set and 23.8% relative improvement for the Critical set.
This lends support to our hypothesis with respect to the skew
of the distribution: in cases where the over-prevalence of one
class interferes with c4.5’s modeling, resampling can render the
learner more capable of producing useful rules[16, 18].
There are no previous results for classification of GLOBAL

LIES and TRUTHS on the corpus to provide a standard for com-
parison. Some context is provided, however, by the perfor-
mance of humans at the analogous task of labeling GLOBAL

1Under-sampling is generally preferable to over-sampling; see [17]
for details.
2The total number of examples available after subtracting the 167

‘excess’ LIE examples is 508.

Table 1: Accuracy Classifying Global Lies and Truths

Relative
Dataset Improvement Accuracy Baseline

Critical-Plus 5.8% 65.6 62.0

Critical 1.6% 68.6 67.5

Critical-Plus / Under-sampled 22.2% 61.1 50.0

Critical / Under-sampled 23.8% 61.9 50.0

LIES with respect to each section of the interview: 32 human
listeners scored on average 47.8% versus a chance baseline of
63.6%[4].
An interesting aspect of these results is that performance

is slightly better for the Critical dataset than for the Critical-
Plus dataset, despite the smaller size of the Critical set (272
training examples in each trial, versus 414). We suspect that
this difference is due to the increased cognitive and emotional
stakes of the questions involved: The Critical dataset contains
only subject segments that respond directly to the interviewer’s
most salient questions (e.g., ‘What was your score on section
X?’); the Critical-Plus dataset includes additional segments
that contextualize that question but do not respond directly to
it. It is possible that the latter differ enough with respect to
emotional and cognitive load to produce a less effective learner
when included with the smaller Critical set.

5.1. Importance of critical segments
The findings we report here are particularly relevant to the gen-
eral deception detection task since our CRITICAL SEGMENTS
are those that point directly to the topic of most interest with
regard to the interview: the test scores claimed by the subjects.
Earlier studies have attempted the separate task of classifying
all segments in the corpus with respect to LOCAL LIES with rel-
ative accuracy gains of 7–10% above chance. However, the pri-
mary task embodied by the paradigm (and attempted by human
listeners with little success in an earlier perception study [4]) is
to determine the veracity of the subjects’ claims with regard to
their scores. Thus, while performance achieved here is modest,
it is significant since this performance is obtained specifically
on the segments whose veracity is of greatest interest, those that
reflect the GLOBAL LIE category.
We have also shown that a more powerful classifier can

be trained using resampling techniques that compensate for the
corpus’s skewed class distributions. The substantially improved
performance indicates that the learner is better able to infer
more useful rules when the present data are distributed evenly
— and more importantly that such rules exist.

5.2. Relevant features
Because the bagging/boosting approach used here in 100 trials
per dataset produced a large number of c4.5 decision trees, it
is impractical to give an exhaustive description of the features
employed in the models. We can, however, make some general
observations about features that applied to a large number of
cases in the induced trees.
Many of the rules induced from the current dataset paint

a very plausible picture of the correlates of deception and one
that is consistent with previous literature. First, lexical cues that



speak to emotional state, such as the presence of negative or
positive emotion words [19, 9], appear prominently. In particu-
lar, the presence of positive emotion words correlates positively
with truth in many of the models produced. Likewise, many
decision trees include rules based on features that could be in-
terpreted to relate to the quality of being ‘compelling’ [1]. The
use of such assertive terms as yes or no, for example, serves as
a cue to deception in the models produced. Likewise, the pres-
ence of a specific, direct denial that the subject is lying is used
in many rules as a cue to truth. This feature in particular has
been cited by law enforcement practitioners as a cue to deceit
[6], but we are unaware of previous evidence in the scientific
deception literature that supports this claim. The presence of
qualifiers (such as absolutely or really) is employed as a cue to
deception in the models; this again is a feature gleaned from
conversations with practitioners. Filled pauses appear as a cue
to truth in many rules produced; this is consistent with an anal-
ysis of filled pauses in the CSC Corpus reported by Benus et
al. [20]. Self-repairs appear in numerous rules as a cue to truth;
this is consistent with the finding of De Paulo et al. [1] that liars
exhibit fewer ordinary imperfections in their speech. Finally,
various energy features (captured using a number of normal-
ization schemes [11]) are employed in complicated rules that
suggest that extreme values for energy — either high or low —
correlate with deception. This is consistent with suggestions
in the literature [21] that a subject’s deviation from his or her
baseline behavior is a useful cue to deception. It is interesting
that although some studies have shown a correlation between in-
creased F0 and deception (c.f. [22]), F0 features do not appear
prominently in most of the rules induced here. One notable ex-
ception is that a number of F0 slope features do appear in rules
induced on the Critical-Plus dataset; we hesitate to make infer-
ences about the nature of the correlation, however, since these
features are generally embedded in complicated subtrees. A
difference between our two datasets is that the presence of past
tense verbs appears to correlate with deception in the Critical-
Plus dataset, while it is not employed in the Critical set.

6. Conclusions and Future Work
The work reported here uses systematically identifiable CRITI-
CAL SEGMENTS to detect deception on the GLOBAL LIE level
in the CSC Corpus. Results substantially exceed human perfor-
mance at a similar task. This finding can guide future research
on a number of fronts. First, future paradigms can be designed
to optimize subjects’ production of CRITICAL SEGMENTS. For
example, interviewers can be instructed to focus primarily on
questions that require direct assertions about the most salient
facts of the paradigm. Further, methods should be investigated
that will allow for the automatic labeling of such segments, pos-
sibly using a combination of lexical features from both the in-
terviewer and the subject. Finally, further investigation of the
CSC Corpus is warranted, since other genres of CRITICAL SEG-
MENTS may exist, such as cases where the interviewer directly
accuses the subject of lying.
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