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Abstract 

Intersession variability (ISV) compensation in speaker 

recognition is well studied with respect to extrinsic variation, 

but little is known about its ability to model intrinsic variation. 

We find that ISV compensation is remarkably successful on a 

corpus of intrinsic variation that is highly controlled for 

channel (a dominant component of ISV).  The results are 

particularly surprising because the ISV training data come 

from a different corpus than do speaker train and test data. We 

further find that relative improvements are (1) inversely 

related to uncompensated performance, (2) reduced more by 

vocal effort train/test mismatch than by speaking style 

mismatch, and (3) reduced additionally for mismatches in both 

style and level. Results demonstrate that intersession 

variability compensation does model intrinsic variation, and 

suggest that mismatched data may be more useful than 

previously expected for modeling certain types of within-

speaker variability in speech.  Index terms: speaker 

recognition, channel compensation, intersession variability 

compensation, intrinsic variation, speaking style, vocal effort.  

 

1. Introduction 

Significant progress in the field of automatic speaker 

recognition has been made by addressing the effects of 

extrinsic variability, or variability associated with factors 

outside the speaker, such as channel, handset, and 

environmental noise.  The variability has been addressed by a 

variety of techniques, including feature transformation  [1], 

eigenchannel compensation [2], and more recently joint factor 

analysis (JFA) [3].  These techniques have led to large 

performance improvements by modeling variability associated 

with the recording session. As the names suggest, the initial 

model was dominated by across channel (or handset) 

variability. Later studies broadened the scope to intersession 

variability (ISV). The techniques are often referred to loosely 

as “intersession variability” or “channel” compensation 

techniques. Within joint factor analysis, the corresponding 

factor is commonly referred to as the “channel” factor.   

In spite of this terminology, it is not clear what type of 

variability is being modeled in practice. Since these 

approaches do not require data labeled according to specific 

variables in training or testing, they are capable of handling, in 

principle, any type of between-session variation. In other 

words, the variation being modeled is implicit in the data. 

Nevertheless, it is the case that recent NIST speaker 

recognition evaluations (SREs) have focused on channel 

variability by virtue of the data chosen (e.g., by varying the 

microphone type and placement in evaluation data). 

In this paper we ask to what extent ISV compensation may be 

modeling intrinsic variability, i.e., variability associated with 

the speaker rather than with the channel or acoustic 

environment.  Forms of intrinsic variation include the 

speaking style, emotion, level of vocal effort, cognitive state, 

state of health, and combinations of these and other factors.  

From a theoretical perspective, the question is interesting 

because acoustically, external variation and human-based 

variation have different characteristics and constraints. 

Furthermore, relatively little is currently known about intrinsic 

variation and speaker recognition.   It is also a question with 

practical relevance, because of the large benefit usually 

obtained from session variability compensation.  If a speaker 

known only from one intrinsic speaking “mode” appears in 

another mode in testing, to what effect can we expect to get a 

benefit from session variability compensation trained only on 

the known mode? 

We ask this question using a small but highly controlled 

corpus of intrinsic variation, the SRI-FRTIV (Five-way 

Recorded Toastmaster Intrinsic Variation) corpus, in which 

speakers varied both level of vocal effort and speaking style.  

Previous work [4] that did not examine the effect of session 

variability compensation showed that intrinsic variation results 

in various degrees of degradation relative to a NIST SRE-like 

baseline (i.e. relative to conversational speech at a normal 

effort level, in both training and testing, and matched 

channel). In this study we examine the relative error reduction 

associated with session variability compensation.  

Because we did not have matched data to train the session 

variability compensation, we expected minimal benefit.   

Results, however, show surprisingly good error reductions on 

intrinsic variation data. We report these results and further ask 

how the relative performance improvement from session 

compensation is related to (1) baseline performance for a 

particular train/test condition, (2) mismatch in vocal effort 

between train and test, (3) mismatch in speaking style between 

train and test, and (4) mismatch in both vocal effort and 

speaking style. 

2. Intrinsic Variation Corpus 

The SRI-FRTIV corpus [4] is a highly controlled corpus 

designed to support the study of intrinsic variation in speech. 

The corpus varies level of vocal effort (normal, low, high), and 

speaking context or “style” (conversational, interview, read, 

oration), as shown in Figure 1. Session variability can be 

studied because each subject participated in the eight 

conditions on two different occasions, on average two to three 

weeks apart.  Although the corpus is small (30 speakers—15 

male, 15 female), it is highly controlled, and thereby provides 

a unique opportunity for studying session variability 

compensation for intrinsic variation. Further details on the 

corpus are given in [4]. Two important characteristics of the 



corpus, however, deserve mention. First, background noise 

and channel variability across different sessions are minimal; 

thus results from session compensation can be largely 

attributed to intrinsic rather than extrinsic variation.  Second, 

the intrinsic variation was elicited under carefully designed 

and monitored conditions, to ensure that subjects actually 

maintained the specified speaking style and level of vocal 

effort over each condition.   

Normal Low High

Interview (~5min) 1 2

Conversation (~5min) 3 4

Read (~2.5min) 5 6 7

Oration (~5min) 8

Vocal Effort
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Figure 1. Within-subject vocal effort level and speaking 

style conditions in the SRI-FRTIV corpus.  Numbers 

indicate collection order within a session; 1-4 are 

dialogs; 5-8 are monologs. Hatched cells are unnatural 

conditions and were not collected.  Dialog duration is 

total time, which was divided over the two talkers.  

Subjects were recorded in a large (44x24 foot), acoustically 

isolated room with a sound pressure level (SPL) measured at 

39.8 dB — lower than a quiet office. The ceiling and walls 

were acoustically treated, resulting in very low reverberation. 

Extrinsic session variability was also minimized because 

across conditions and sessions, the same microphones, 

microphone placements on subject and in room, subject 

placement in room, room and physical setup, experimenter 

(and interlocutor for the interview and conversation 

conditions), and calibration procedures were used.   

The normal level of effort was that obtained with no special 

effort modification instructions to subjects.  Low vocal effort 

(or “furtive” speech) was induced by telling subjects not to 

whisper, and to be loud enough for the interlocutor across the 

table to hear, but quiet enough that a human monitor present 

in the room 36 feet away from the subject could not make out 

what was said. High vocal effort was designed to capture level 

increases based on communicating over a distance (speaking 

to hearers on the other side of the very large room) rather than 

over background noise. In the interviews and conversations, 

the same experimenter (for all subjects and all conditions) 

acted as interlocutor; he performed interviews before 

conversations (because the reverse order would have made 

interviews too casual). Subject and experimenter sat across a 

table for the interview. For the conversation, the subject stayed 

in the same location and the experimenter went to a different 

room.  In the read mode, the subject read a prepared text (texts 

were varied across sessions).  The oration condition was 

included to represent the style of a speech of personal 

importance to the talker, designed to have an effect on others. 

The natural mode for the speeches was a high level of vocal 

effort.  The corpus subjects, all from local Toastmasters clubs, 

performed this condition using their own prepared speeches. 

The topics in all four speaking style conditions were varied 

within subject from the first to the second session.  

For each condition, the subject was simultaneously recorded 

over two close-talking microphones (a Sennheiser channel and 

a telephone channel) and three far-field microphones.  The 

experiments reported in the present study use the telephone 

channel, which is a true telephone recording but on a fixed 

line and using a fixed and consistently placed “handset”. Two 

external ATT phone lines were used. The receiving line 

connected to a Comrex DH-20 digital telephone hybrid, which 

converted the audio to line level. The telephone sending line 

used a Plantronics P141N headset attached to a head-mounted 

boom (the headphone was not used).  The subject wore this 

microphone for all conditions (interview, conversation, read, 

oration, at all levels of effort).  Since the line and the handset 

were fixed, the channel effects were minimal. 

3. Experimental Setup 

1.1. Task 

We created a NIST SRE-like task from the FRTIV corpus.  

We trained a model from each recording of the subject. We 

tested it against all the other recordings from the same subject 

to create target trials, and against all recordings from other 

subjects of the same gender to create impostor trials, with one 

exception: we omitted cases in which a trial would have 

involved the same read text (assuming they would have been 

too “easy”). Scores were split according to the train and test 

mode, and the equal error rate (EER) was computed for each 

resulting condition. We trained on the subject’s first visit and 

tested on the second, and vice versa, and averaged the results. 

Impostor test trials were drawn from the same speaking mode 

as target test trials.  The number of trials per condition was 

1740 (60 target, 1680 impostor) for read conditions and 1800 

(120 target, 1680 impostor) for all other conditions.  

1.2. Speaker recognition system 

Speaker recognition experiments were performed using the 

JFA paradigm [3]. More specifically, ISV compensation 

(ISVC) used a particular case of this framework called 

eigenchannel [5-7]. The JFA framework uses the distribution 

of an underlying Gaussian mixture model (GMM), the 

universal background model (UBM) of mean m0 and diagonal 

covariance Σ0. Let the number of Gaussians of this model be 

N and the feature dimension in each Gaussian be F . A 

supervector is a vector of the concatenation of the means of a 

GMM: its dimension is .* FN  

In JFA [8], the basic assumption is that a speaker supervector 

m can be decomposed into a sum of two supervector 

compononents: the speaker supervector s  and the nuisance 

(or channel) supervector c . 

csm +=  

In the eigenchannel framework, the speaker supervector is 

obtained by adapting the means of the UBM using a standard 

maximum a-posteriori (MAP) adaptation [9]. It can be 

expressed as 

Dzms += 0
, 

where D is well defined as τ0

2
Σ=D ; τ  is the regulation 

factor that controls the prior distribution for MAP adaptation. 

The nuisance supervector distribution lies in a low-

dimensional subspace of rank R , and is assumed to be 

distributed according to Uxc = . The matrix ,U the 

eigenchannels (or channel loadings), has a dimension 

of
cRNF * . The loadings U are estimated from a 



sufficiently large data set while the latent variables x , z  are 

estimated for each utterance. 

Our baseline system employs gender-independent 512-

Gaussian UBMs.  Cepstral features are mel frequency cepstral 

coefficients (MFCCs) composed of 13 cepstra and energy, 

adding derivatives of first, second, and third order (for a total 

dimension of 52).  The rank of the channel space is 100. To 

train the matrices, several iterations of the expectation 

maximization (EM) algorithm of the factor analysis framework 

are used. An alternative minimum divergence estimation 

(MDE) is used at the second iteration to scale the latent 

variables to a ( )1,0Ν  distribution. To train a speaker model, 

the posteriors of x  and z  are computed using a single 

iteration (via the Gauss-Seidel method as in [10]).  

For the baseline system, the verification score for each trial 

was a scalar product between the speaker model mean offset 

and the channel-compensated first-order Baum-Welch 

statistics centered on the UBM.  This scalar product was found 

to be simple yet very effective [11, 12] and was subsequently 

adopted by the community. The speaker verification system is 

gender independent with a gender dependent score 

normalization (ZT norm). The channel loadings were trained 

with 2004 NIST SRE data, using 301 speakers and about 4500 

sessions. Gender dependent score normalization was 

performed with 2004 and 2005 NIST SRE data. Performance 

is reported as percentage EER. 

4. Results 

We first examine results for the eight matched conditions.  In 

Figure 2, total bar height indicates performance before ISV 

compensation; the height of the red (dark) bar indicates 

performance after ISV compensation (implemented as Factor 

analysis (FA) with only channel factors (U)). “Cn”, or the 

conversational style at a normal level of vocal effort, can be 

viewed as a rough point of comparison with the speaking 

mode in many NIST evaluation conditions.      

 

Figure 2. Effect of speaking style (Conversation, 

Interview, Read, Oration) and vocal effort level 

(normal, low, high) on results before and after ISV 

compensation (ISVC). Conditions are [train 

style][train level]-[test style][test level]. 

A first observation from the plot is that low vocal effort is a 

challenging condition. Further discussion is found in [4], 

including explanations based on the reduced rate of speech 

frames found in speech/silence segmentation for such very low 

level speech.  What is new in these results is the degree to 

which ISV compensation reduces error rates. For all but the 

low effort conditions, compensation eliminates nearly 100% of 

the errors.  And although the reduction is less dramatic for the 

furtive speech, it is still remarkably good. Compared with the 

effect of vocal effort, the effect of style variation on relative 

error reduction is relatively small.    

One possible interpretation of these results is that they reflect 

qualitative differences in what is being modeled by the 

compensation approach.  Another hypothesis is that the degree 

of error reduction from ISV compensation is roughly predicted 

from baseline (uncompensated) performance. The latter 

possibility makes sense in the case of very poor baseline 

results, since in such a case, estimation of the factored model 

should suffer. Whether it should hold for better-performing 

experiments is not clear.  We plotted results for both matched 

(same as in Figure 2) and mismatched train/test conditions, by 

baseline EER.   Results are shown in Figure 3. 

 

Figure 3. Relationship between baseline EER and 

relative improvement from ISV compensation, for 

both matched and mismatched train/test experiments. 

 

 

Figure 4.  Effect of mismatched vocal effort level in 

train and test, by speaking style.  See Figure 2 for 

abbreviations for conditions.  

As shown, there is a general inverse relationship between 

baseline error rates and the relative improvement from ISV 

compensation.  However, the relationship is not perfect and 

there are some clear exceptions.  Overall, Figure 3 suggests 

that the degree of improvement from session compensation for 

intrinsic variation data depends on both quantitative (baseline 

performance) and qualitative (which speaking modes are 

involved) factors.   

When train and test samples are mismatched in level, results 

look appreciably different from those for the matched samples 

shown in Figure 2.  Figure 4 shows that not only do baseline 



error rates increase significantly compared with those in  

Figure 2 (note the different scales), but also that ISV 

compensation is less successful. When furtive speech is 

involved in either train or test, the benefit is generally limited. 

An interesting observation is that read speech shows almost no 

gain from ISV compensation when training on normal effort 

and testing on low effort. Read speech in general shows higher 

error rates.  A possible explanation is that read speech is 

under-represented in the NIST data used to train variability 

compensation.   

Figure 5 shows performance before and after compensation for 

the case of speaking style mismatch.  As can be discerned, 

style mismatch is mainly a problem in the furtive speaking 

mode.  At a normal speaking level, the conversational and 

interview modes are nearly interchangeable in terms of effect 

on compensation performance. Read speech, however, 

behaves differently.  Although baseline error rates for style 

mismatches involving read speech are similar to those 

involving conversational and interview speech, ISV 

compensation is less effective for mismatches involving read 

speech.  A possible reason, as suggested earlier, is that read 

speech is not well represented in the NIST data used to train 

the ISV model.    

 

 

Figure 5.  Effect of mismatch in speaking style before 

and after ISVC. See Figure 2 for abbreviations.  

When both the style and effort mismatch are present (plot not 

shown, but results inferable from the majority of points in 

Figure 3), baseline error rates generally increase relative to 

single-mode mismatch conditions. Accordingly, the relative 

benefit of compensation generally decreases.  Such rates 

probably better reflect real-life intrinsic variation conditions 

than do single-mode mismatches, and thus constitute an 

important area for further study.    

5. Summary and Conclusion 

We found that despite a mismatch in ISV training and speaker 

recognition evaluation data, ISV compensation gave 

significant improvements for speaker verification on a corpus 

of intrinsic variation that is highly controlled for channel. 

Because of this control, we infer that an ISV technique 

originally designed for channel compensation is indeed 

modeling the intrinsic variation represented in the data. We 

further find that relative improvements are (1) inversely 

related to uncompensated performance, (2) reduced more by 

vocal effort train/test mismatch than by speaking style 

mismatch, and (3) reduced additionally for mismatches in both 

style and level.  

An important goal for future research is to better understand 

the issue of data mismatch in session variability compensation 

training. Results suggest that a significant amount of the 

variability obtained in an elicited corpus of intrinsic variation 

is also present in data that was not collected explicitly to elicit 

such variation. We hope that further work can shed light on 

this unexpected finding. In the meantime, a practical 

implication is that mismatched ISV compensation data may be 

more useful than previously expected for modeling certain 

types of within-speaker variability in speech.  
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