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1AbstractSpeech Recognition on Vector ArchitecturesbyAdam Louis JaninDoctor of Philosophy in Computer ScienceUniversity of California, BerkeleyNelson Morgan, ChairFrom cellphones and PDAs to huge automated call centers, speech recognition isbecoming more and more ubiquitous. As demand for automatic speech recognition(ASR) applications increases, so too does the need to run ASR algorithms on a va-riety of unconventional computer architectures. One such architecture uses a vectorprocessor, which has many bene�ts in terms of performance, power consumption,price, etc.This thesis presents and evaluates ASR algorithms ported to run e�ciently onvector architectures. A vector simulation library was developed, and is used toevaluate design trade-o�s for both the algorithms and the hardware. Two of thethree major components of an ASR system vectorize well. The third component,the decoder, vectorizes well for small vocabularies, especially on long vector lengtharchitectures, but is di�cult to vectorize as the vocabulary grows.
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1
Chapter 1
Introduction

This thesis covers algorithms and analysis of a speech recognition system portedto a simulated vector architecture. The approach is to design and analyze algorithmsthat will run e�ciently on vector architectures, rather than to port to a speci�csystem.1.1 Automatic Speech RecognitionAutomatic speech recognition (ASR) is becoming more and more popular on avariety of computer architectures:Desktop computers: On the desktop, speech recognition is used both for com-mand and control (e.g. \open notepad"), as well as for general dictation tasks(e.g. writing a letter). Providing e�cient speech recognition allows a widerrange of applications that exploit speech as input.Supercomputers: On supercomputers and mainframes, speech recognition is usedfor applications such as automated call centers, where a large number of simul-taneous users need to navigate a voice messaging system. Supercomputers arealso useful for experimenting with new algorithms | today's supercomputersare tomorrow's desktops.



CHAPTER 1. INTRODUCTION 2Consumer electronic devices: Consumer electronic devices, such as PDAs andcellphones, present a whole new set of challenges. Not only is the hardware lesspowerful than a typical desktop, but also the application domain (hands-free,uncontrolled acoustic environments) stresses the speech recognition algorithmsto their utmost. Battery life also is a major factor.Special purpose hardware: Video cards and game console systems often comeequipped with high speed processors. It may be possible to leverage the com-putational power of these devices to provide ASR services, much as a videocard provides graphics services.Speech recognition applications require a signi�cant amount of processing power,so the systems must contain a processor capable of providing the required compu-tational speed. The problem is especially acute when real time response is requiredor when multiple simultaneous users must be supported (e.g. call centers). How-ever, power consumption is also a major concern in many applications. Furthermore,since speech recognition systems tend to be large, complex, and frequently changing,a general purpose computing environment is preferable over a specialized implemen-tation. Currently available processors run the gamut from power-hungry x86-basedsystems, to specialized application-speci�c integrated circuits (ASICs).Data parallel architectures, including vector processors, stream processors, andSingle Instruction Multiple Data (SIMD) extensions, are emerging as an attractiveway to boost performance. The use of parallelism, rather than a high clock rate,keeps power consumption down, and the simplicity of the data parallel executionmodel avoids expensive chip and power costs that arise from dynamic parallelismdiscovery in superscalar architectures. Data parallel architectures push the paral-lelism discovery problem to the compiler and algorithm designer, and while thereare many algorithms in scienti�c computing and media processing that exhibit ex-tensive data parallelism (see Section 1.3), some algorithms do not �t. In this thesis,we explore the use of data parallelism in ASR, using a vector instruction set as ourtest vehicle.



CHAPTER 1. INTRODUCTION 3Although vector processors generally will execute non-vector code, e�ciency onsuch code is lower than with vectorized code. Amdahl's Law [4] tells us that thespeedup we can expect on a vector processor will be limited by the amount of non-vector code in the system. The programming challenge is therefore to discover paral-lelism in as many parts of the application as possible. Software infrastructure, suchas hardware-speci�c math libraries and vectorizing compilers, ease some of thesedi�culties by providing ready-made vectorized code for some part of the applica-tion, but typically the core algorithms must be ported to run e�ciently on vectorprocessors.For this thesis, vectorized algorithms were developed for a particular ASR systemusing a vector simulation library. For each algorithm, the vectorized versions werecompared to an equivalent scalar algorithm. Results in each case were identical, vali-dating the correctness of the vector algorithms. Where relevant, di�erent algorithmswere developed to exploit varying architectural features (e.g. vector length).The remainder of this chapter provides an overview of vector architectures, in-cluding some history. Chapter 2 describes the vector simulation library that wasdesigned and implemented as part of this thesis. Chapter 3 presents a high level viewof a speech system, and forms a roadmap for the chapters that follow it. Chapters 4,5, 6, and 7 contain details about the various components of a speech recognition sys-tem designed to run on vector architectures. Finally, Chapter 8 contains conclusionsand future work.1.2 Vector ProcessorsA vector processor implements a type of data parallelism. Instead of registersholding a single value, vector registers hold multiple values. Vector instructions thenoperate on all the values, conceptually simultaneously. Figure 1.1 compares scalaraddition on scalar registers with vector addition on vector registers.
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Figure 1.1: Comparison of a scalar operation and a vector operation.1.2.1 Advantages of Vector ProcessorsSince the vector instructions explicitly expose data parallelism, it is possible toexecute the di�erent elements of a vector operation simultaneously. This improvesabsolute performance with a modest increase in processor complexity [42]. Fur-thermore, adding functional units1 to the chip to allow more vector elements to beexecuted in parallel can be done fairly easily, as the layout of these additional units isquite regular [35] [7] [39]. The energy consumption can also be made fairly moderatecompared with conventional designs.Another bottleneck on conventional processors, particularly in terms of powerconsumption, is instruction dispatch [53]. Instruction dispatch is the portion of thepipeline where the instructions are decoded and sent to the functional units. It canbe a major consumer of energy in conventional designs, as it cannot be parallelized,and therefore must run at the full clock speed of the chip.Since a single vector instruction can potentially cause a large number of arith-metic operations to be initiated, the number of instructions per operation is reduced1A functional unit is a sub-component of the processor that performs functions such as arith-metic, memory access, etc.



CHAPTER 1. INTRODUCTION 5on a vector processor. This eases the bottleneck at instruction dispatch.Vector processors can also help with the so-called memory/processor performancegap. As the clock speed of conventional processors has increased, memory latencyhave not kept pace. This performance gap limits the e�ciency of conventional pro-cessors on memory intensive tasks [26].The fact that a single vector instruction can spawn a large number of arith-metic instruction allows e�cient pipelining of vector operations. The resulting longpipelines allow memory latency to be hidden, as more memory operations can be \inprocess" as earlier arithmetic operations complete.The actual speedup of a particular architecture due to vectorization is dependentboth on the algorithm and on low level details of the microarchitecture (e.g. memoryhierarchy, bus size, clock speed, etc.). A truly fair comparison requires porting thealgorithm to both the vector architecture and to an equivalent scalar architecture(e.g. same memory subsystem, same clock rate, etc.). Di�erent optimizations of thealgorithm would be required for the scalar and vector cases. Such detailed studiesare rare, and are certainly beyond the scope of this thesis. Where available, relevantcitations will be quoted below.1.2.2 Extensions to Conventional ArchitecturesAll of the major chip vendors provide vector extensions to their desktop pro-cessors. These vector extensions are implemented primarily using components thatalready exist on the chip. For example, vector arithmetic is performed using theexisting arithmetic logic units (ALUs), but with multiple elements of lower precisiontypes. So a 128 bit ALU might perform 16 simultaneous operations on 8 bit data, or4 simultaneous operations on 32 bit data, etc. Ideally, the logic to control the opera-tions is the only signi�cant addition to the chip. In many cases, the additional logicrequires only a tiny increase (e.g. 0.1% [45]) in the chip area over the conventionaldesign.With this approach, the number of vector registers is an issue. More vector



CHAPTER 1. INTRODUCTION 6registers make it easier to code, and can reduce memory bottlenecks by providingmore on-chip storage. However, more registers means more chip area. The size ofthe registers is also important. More bits in the registers allow more elements to beoperated upon at once.The number of operations that can be performed per clock cycle determines theoverall maximum speedup over conventional designs. Note that this does not takeinto account latency, the amount of time it takes a single instruction to complete.Also, the peak performance may be di�cult to achieve, as it is usually achieved witha combination of multiply-adds and memory operations.Table 1.1 provides some details on selected vector extensions to conventionalarchitectures.Vendor Name Citation # of registers Bits/register Max Ops/cycleHP MAX [44] 32 64 4Intel MMX [55] 8 64 2Intel SSE [59] 8 128 4Motorola AltiVec [50] 32 128 8Sun VIS [38] 32 64 10Table 1.1: Some details on selected vector extensions.Since one of the goals of the vector extension design is to minimize the addi-tional chip area, the vector extensions typically do not implement all possible vectorinstructions. For example, scalar/vector addition, where a scalar is added to eachelement of a vector, is not generally available. Instead, an instruction is providedthat copies a scalar to all elements of a vector, and a vector/vector operation isprovided. In Chapter 2, which provides information on the vector simulator used inthis research, details will be provided as needed.In [1], a vector speedup of 2.1� was reported on matrix-matrix multiply for IntelSSE compared to a highly optimized scalar version. [42] reports a speedup of 1.9{2.7� for HP MAX on a variety of video encoding benchmarks. [60] reports 1.1{4.2�



CHAPTER 1. INTRODUCTION 7speedup for Sun VIS on a variety of video and image processing benchmarks. Anec-dotal evidence seems to support the 2{4� range for speedups of highly vectorizablecode (e.g. matrix operations) on conventional architectures with vector extensions.1.2.3 SupercomputersVector processors have a long and successful history in supercomputers. Of theearly vector supercomputers, the Cray-1 is probably the best known. Later machinescombined multiple processors, each itself a vector processor. In the mid 80s, severalso-called \mini-supercomputers" were released that also contained vector processors[56].Table 1.2 lists some relevant details on a few of the major vector supercomputers.The table lists the year introduced, the clock rate in MHz, the number of vectorregisters, the number of elements per register2, and the peak operations per clockcycle.Machine Year Cite Clock # of regs Elems/reg Ops/cycleCRAY-1 1976 [64] 80 8 64 4Hitachi S810 1983 [46] 53 32 256 12Fujitsu VP2600 1989 [72] 312 64 256 16NEC SX-3 1990 [73] 345 72 256 16CRAY X1 2002 [52] 800 32 64 16NEC SX-6 2002 [52] 500 72 256 16Table 1.2: Some details on selected vector supercomputers.Vector supercomputers typically implement a very complete set of vector instruc-tions, since the goal is maximal absolute performance rather than minimal chip area.The introduction of inexpensive and fast microprocessors spelled the end of an era2All machines use 64 bit data types. Note also that the Fujitsu VP series has con�gurableregisters. The number of registers and number of elements can be adjusted as long as the total is16K.



CHAPTER 1. INTRODUCTION 8for vector supercomputers. Although vector supercomputers are still being produced(the NEC SX-8 was announced as I was writing this paragraph), so-called \scalarparallel" machines have eclipsed pure vector supercomputers for most applications.These machines consist of large numbers of scalar processors, often connected witha fast bus or even a network. These systems are typically much less expensive thanthe traditional vector supercomputer, mostly because of the commodity nature oftheir components. Also, memory for the vector supercomputers is typically quiteexpensive compared to memory cost for scalar parallel machines, as the latter canuse commodity memory.Nevertheless, vector processors will continue to �ll a role in the supercomputermarket. First, some tasks are very di�cult to implement on a multiprocessor ma-chine. Second, a combination of approaches, where each node of a multi-processorconsists of a commodity-level vector processor, could yield a system with very highperformance. Although no computers on the market currently �ll this niche, I believeit is only a matter of time until such a machine is available.Many papers have been written on vectorization methods for supercomputers.However, only a few present a careful comparison with scalar algorithms on thesame architecture. In [5], a vectorized garbage collector was implemented. A vectorspeedup of 9� was reported vs. a scalar algorithm on the same architecture. In [20],performance of compiled code achieved a maximum of a 6� speedup. An anecdotalrule of thumb seems to be that a speedup of around 5|10� can be expected onhighly vectorizable code on vector supercomputers.1.2.4 Vector MicroprocessorsIn addition to vector supercomputers, microprocessors have also been constructedthat implement vector instructions. Table 1.3 provides some details on two suchprocessors, both developed as part academic research.Torrent-0 only implements 32 bit integer and �xed point arithmetic, while IRAMsupports 16, 32, and 64 bit integer, �xed point, and 
oating point arithmetic. Also



CHAPTER 1. INTRODUCTION 9Name Year Citation # of regs Bits/reg Clock Ops/cycleTorrent-0 1995 [7] 16 512 40 MHz 24IRAM 2002 [40] 32 2048 200 MHz 48Table 1.3: Some details on vector microprocessors.of note is that IRAM is implemented with \processor in memory" (PIM), where theprocessor and memory reside on the same chip. This has advantages for power con-sumption, memory latency, memory bandwidth, and also allows �ner architecturalcontrol of memory access patterns. Both microprocessors implement a full set ofvector operations, with IRAM also providing a few specialized operations (e.g. forreductions and Fast Fourier Transforms). See Chapter 2 for details.Note the very high operations per clock cycle. These numbers are the maximalachievable, and require a particular mix of operations. For example, on Torrent-0,the 24 operations must be 8 multiplies, 8 adds, and 8 memory operations. If analgorithm does not have this balance of operations, the actual performance will beless.[7] reported results for a carefully conducted comparison of vector vs. scalaralgorithms (the SPECint95 benchmark) on Torrent-0. For the most vectorizablecomponents of the benchmarks, vector speedups of 8{14� were reported. Given thesimilarity in architecture between IRAM and Torrent-0, one would expect similar(or better) results on IRAM. In fact, [39] reports results for a set of embeddedbenchmarks on IRAM and for a similar scalar processor, the NEC MIPS VR5000.Although the benchmarks were run on a simulator of IRAM, and the NEC MIPSVR5000 is more capable than a scalar version of IRAM3, the reported results werealso in the 8{14� range.3The VR5000 is a dual-issue MIPS processor running at 250MHz. It also has cache, while IRAMhas no cache for vector loads and stores.



CHAPTER 1. INTRODUCTION 101.2.5 Special Purpose HardwareSeveral video cards and game consoles use vector processors. Although detailson the video cards is typically proprietary, Sony provides many details on the archi-tecture of the Playstation II [66].The Playstation II uses two architecturally similar vector processors. One ishighly specialized for computer graphics rendering, and is not of interest for thecurrent discussion. The other is a general purpose vector processor, tightly coupledto a conventional scalar processor. The vector processors has 32 vector registers.Each register element consists of 128 bits. An element can hold integer types of 8,16, 32, or 64 bits, or a 32 bit 
oating point type. Peak performance is 8 operationsper clock cycle. The memory subsystem is quite complex, including local caches forthe di�erent processors, shared caches, scratch RAM, etc. It also implements somehighly specialized instructions that are useful in computer graphics (e.g. reciprocalsquare-root).Since special purpose hardware rarely has any scalar equivalent, it is quite di�cultto compute vector speedups. For the Playstation II, anecdotal reports of 5{8� havebeen circulated, but I know of no published results.1.3 Related WorkMuch work has been done on porting \multimedia" algorithms to particularvector architectures. Many of these algorithms are similar in nature to parts ofa speech recognition system. Particularly successful work includes video encoding[43] [70] [67] [51], graphics transformations [70], and basic linear algebra subroutines(BLAS) [10] [6] [30]. References to previous work on architecture-speci�c algorithmsthat are presented in this thesis appear in the appropriate chapters.



11
Chapter 2
Vector Simulation Library

A vector simulation library was designed and implemented as part of this thesis.It enables us to simulate, at a coarse level, many di�erent architectural featuresof vector processors. The vector simulator implements, as a C library, many ofthe common opcodes that are present in a vector architecture. The library doesnot attempt to simulate the performance of any particular architecture (e.g. cache,memory, chaining behavior, etc.). Such simulation is quite complex and is di�erentfor every architecture. Instead, the library allows simulation of a subset of thefeatures of a vector processor.First, the simulator assumes that the architecture is register-based. Each registerholds not just a single value, as a scalar processor's register would hold, but rather aset of values. Vector instructions operate on vector registers in a fashion analogous toscalar instructions operating on scalar registers, except that elements are consideredpairwise. So, for example, a vector-vector add takes two registers as input, computesthe pairwise sum of each of the elements, and stores the results in another vector.Each architecture has a maximum possible number of elements per vector register,known as the maximum vector length (MVL). On some architectures, this value isavailable either in a register or by using an instruction. This allows portability ofthe software across hardware with the same ISA (Instruction Set Architecture) butdi�erent MVL (maximum vector length). In other architectures, MVL is assumed to



CHAPTER 2. VECTOR SIMULATION LIBRARY 12be known (e.g. at compile time). Although the vector simulation library does allowaccess to MVL at run-time, none of the algorithms depend on this feature.The instructions in a vector architecture do not necessarily operate on all MVLelements. First, the programmer can set the vector length. The vector length isspeci�ed either using an operand to the instruction, or, more commonly, by settinga control register to the desired vector length. Typically, if one attempts to set thelength to a value greater than MVL, then either an exception is raised or the vectorlength is set to MVL. The latter allows code to be written that is independent ofMVL. All instructions in the simulator operate only on vector elements 1 through thevector length.In addition to setting the vector length, some architectures allow a mask tobe speci�ed. The mask is itself a vector of length MVL. If a mask is used for aninstruction, then only those elements for which the mask has a non-zero element aretouched. The mask can either be an operand to an instruction or a mask register canbe set. In the simulator, only the instructions so indicated respect the mask settings(e.g. vaddvv mask).As an example of how the vector length and masks interact, consider the followingpseudo-code for a masked, vector add. It takes two vectors as input, and computesthe pairwise sum of the elements. It assumes that the vector length is in vl andthat the mask is passed in vector register Mask (as an array of booleans). SeeAlgorithm 2.1.procedure addvv mask(V 1, V 2, V 3, Mask)for i 1; vl doif Maski thenV 1i  V 2i + V 3iend ifend forend procedure Algorithm 2.1: Masked vector-vector add



CHAPTER 2. VECTOR SIMULATION LIBRARY 13At compile time, the user of the library can specify the precision and type ofthe elements of the vectors. Although some architectures allow one to change theprecision on-the-
y, this library does not allow it. The scalar type is assumed to bethe same precision and type as the elements of the vectors. The maximum value ofthe type is denoted Vmax, while the minimum is denoted Vmin.2.1 Instructions in the Simulation LibraryIn the following list of instructions, the type vector indicates a vector register.The type scalar indicates a scalar of the same type as the vector elements. Memoryaddresses are represented either with vectorElement*, if it points to a block ofmemory with the same type as the vector elements, or byte* if it points to rawbytes (signed 8-bit integers). In a function's argument list, \out variable" indicatesthat variable is modi�ed by the function. \in/out" indicates that the variable shouldbe set before entering the function, and that it is modi�ed by the function. Withneither \out" nor \in/out", the variable should be set before entering the function,but the function does not modify the variable.integer len = getvl()Return the current vector length.setvl(integer len)Sets the vector length to len. If len is greater than MVL, the simulation librarysignals an error.vaddvv(out vector dest, vector src1, vector src2)Pairwise addition of the elements of vector registers src1 and src2.vaddsv(out vector dest, scalar src1, vector src2)The scalar src1 is added to separately to the elements of vector register src2,with results stored in vector register dest.



CHAPTER 2. VECTOR SIMULATION LIBRARY 14vaddvv mask(out vector dest, vector src1, vector src2, vector mask)Masked pairwise addition of the elements of vector registers src1 and src2.Only those elements of src1, src2, and dest for which elements of mask arenon-zero are operated upon. See Algorithm 2.1 for an example.vaddsv mask(out vector dest, scalar src1, vector src2, vector mask)For each element of vector register src2 for which the mask is non-zero, addthe scalar src1 and store into vector register dest.scalar v = vextract(vector src, integer position)Set v to the value of the vector element at the given position (e.g. v =src[position]).vinsert(in/out vector v, scalar src, integer position)Set the element of vector register v corresponding to the given position tothe scalar src (e.g. v[position] = src).vload(out vector dest, vectorElement* base)Set the vector register dest to the elements starting at memory location base.vload b(out vector dest, byte* base)Same as vload, except that memory is assumed to be stored as signed 8-bitintegers, and is converted by the library on-the-
y to the internal precision andtype of the vector registers as speci�ed at compile-time.vloads(out vector dest, vectorElement* base, integer stride)Strided vector load. The �rst element of vector register dest is set to the valueat memory location base. The second element is set to the value at base +stride. The third is set to base + 2�stride. See Algorithm 2.2.vloadx(out vector dest, vectorElement* base, vector offsets)Indexed vector load. Use the elements of vector register offsets as indicesinto memory starting at location base. See Algorithm 2.3.



CHAPTER 2. VECTOR SIMULATION LIBRARY 15procedure vloads(dest, base, stride)for i 1; vl dodest[i] base[stride � (i� 1)]end forend procedure Algorithm 2.2: Strided vector loadprocedure vloadx(dest, base, Offsets)for i 1; vl dodest[i] base[Offsetsi]end forend procedure Algorithm 2.3: Indexed vector loadvmin(out vector dest, vector src1, vector src2)Pairwise minimum of the elements of vector registers src1 and src2.vmultvv(out vector dest, vector src1, vector src2)Pairwise multiplication of the elements of vector registers src1 and src2.vmultsv(out vector dest, scalar src1, vector src2)The scalar src1 is multiplied separately by the elements of vector register src2,with results stored in the vector dest.scalar x = vreduce max(vector src)Returns the scalar that is the maximum value of all the elements in src.scalar x = vreduce min(vector src)Returns the scalar that is the minimum value of all the elements in src.scalar x = vreduce sum(vector src)Returns the scalar that is the sum of all the elements in src.vsaddvv(out vector dest, vector src1, vector src2)Saturating vector/vector add. Same as vaddvv, except that if the sum of



CHAPTER 2. VECTOR SIMULATION LIBRARY 16two elements is greater than the maximum or less than the minimum possiblegiven the precision of the representation, the resulting element is pegged to theextreme value. For example, if the vector elements are 8 bit signed integers,then 125 + 10 will results in 127 and �125� 10 results in �128.vsaddsv(out vector dest, scalar src1, vector src2)Saturating vector/scalar add. Same as vaddvv except that src1 is a scalarrather than a vector.vsets(out vector dest, scalar src)Sets all elements of vector register dest to the scalar given by src.vshift(out vector dest, vector src, integer nelems)Shift the elements of vector register src by nelems to the right (or to theleft if nelems is negative). For example, if nelems equals 1, then dest[2] =src[1], dest[3] = src[2], etc.vstore(vector src, vectorElement* dest)Store the elements of vector register src to memory starting at location dest.vsubvv(out vector dest, vector src1, vector src2)Pairwise subtraction of of the elements of vector registers src1 and src2.2.2 ReductionsReductions (such as vreduce sum) are often not available directly. On somearchitectures, reductions can be implemented by a series of other specialized vectorinstructions (e.g. vhalf on IRAM [48] allows many reductions in O(logn) time wheren is the vector length). On architectures where reductions are not available in anyform, scalar operations must be used. Note that the relative cost of using scalaroperations to perform a vector reduction is lower if the vector length is shorter.



CHAPTER 2. VECTOR SIMULATION LIBRARY 172.3 Saturating ArithmeticSaturating arithmetic operations (such as vsaddvv) are commonly implementedin vector architectures meant for DSP (Digital Signal Processing) applications. Otherarchitectures instead provide a higher precision version of arithmetic operations, fol-lowed by an instruction that reduces the precision and simultaneously saturates.On these architectures, saturating arithmetic typically takes two vector operations.For architectures where neither saturating arithmetic operations nor saturating pre-cision shifts are available, saturating arithmetic can be implemented in terms ofvector compares and vector adds.2.4 Vector/Scalar OperationsNot all architectures provide arithmetic operations between scalars and vectors(e.g. vaddsv, vmultsv). Instead, one must �rst copy a scalar to all elements ofa vector (e.g. vsets), followed by the desired vector/vector operation. This willrequire one extra vector register and one extra vector operation.2.5 Vector ShiftVector shift is central to an e�cient small vocabulary decoding algorithm (seeChapter 6). Most architectures provide some means of computing a vector shift,usually through a more general operation. For example, many architectures providea vector compress operation, which takes all elements of a vector for which the maskis non-zero, and stores them, in order, into a vector register. By setting the mask to0 1 1 1 1 1 1 ... and performing a vector compress, elements are shifted to theleft by one. All algorithms in this work use vshift, as described above.



CHAPTER 2. VECTOR SIMULATION LIBRARY 182.6 MemoryAlthough details on the e�ciency of the memory subsystem are beyond the scopeof this thesis, it should be noted that unit-stride loads (vload) and stores (vstore)are typically more e�cient than strided or indexed loads and stores. The exacttrade-o� is a function not only of the architecture, but also of the algorithm (forexample, some architectures can support more simultaneous unit stride loads thanstrided or indexed loads).2.7 Compound InstructionsMost architectures implement some combinations of arithmetic operations in asingle instruction. For example, since multiply-accumulate is a very common oper-ation (see Algorithm 2.4), many architectures implement it as a single instruction.The vector simulation library described here does not use compound instructions,although many algorithms presented herein could bene�t from them.total  0for i 1; n dototal  total +Xi � Yiend for Algorithm 2.4: Typical multiply/accumulate
2.8 Strip-miningIt is often the case that the vector length required by an algorithm exceedsthe maximum vector length supported by the architecture. In these cases, it isnecessary to operate on \strips" of the data of length less than or equal to MVL.If the vector length is an integer multiple of MVL, then the algorithm may simplyrun on V=MVL strips of the input data. More usually, the vector length is not an



CHAPTER 2. VECTOR SIMULATION LIBRARY 19integer multiple of MVL. Also, the vector length is not always known at compile time(although the algorithms described herein assume that MVL is known at compiletime). The algorithm for operating on vector lengths longer than MVL is knownas strip-mining, and is exempli�ed in Algorithm 2.5. Note that dxe indicates theceiling operation, in which fractions are converted to integers by truncating towardspositive in�nity. For example, d1e = 1; d1:2e = 2; d�1:2e = �1.vl  L%V . Input size L modulo vector length V .for strip 1; dL=V e dosetvl vl . Loads the remainder �rst, then loads chunks of maximum length.vload VR1, A . Load from memory location Avmultvv VR2, VR1, VR1 . Square elements of VR1, store into VR2vstore VR2, B . Store into memory location Badvance A by vladvance B by vlvl  Vend forAlgorithm 2.5: Strip mining example. Squares elements of A, stores into B.Some architectures have direct support for strip mining, including auto-incrementand saturation of vector lengths. Auto-increment obviates the need for the \advanceX by vl" calls). Saturation of the vector lengths causes the vector length to \maxout" at MVL. If one attempts to set the vector length to a value greater than MVL,the vector length is set to MVL. The vector simulator assumes neither is available.2.9 ChainingA vector architecture does not always have to complete a vector instruction be-fore starting on the next vector instruction. This overlap of execution is known as\chaining". Whether a new operation can start before an existing operation hascompleted depends both on algorithmic dependencies and on architectural issues.



CHAPTER 2. VECTOR SIMULATION LIBRARY 20If a later instruction requires the results of an earlier instruction, the later in-struction must obviously wait until the early instruction completes. Examples in-clude vector reductions followed by other vector operations, memory stores followedby overlapping memory loads, etc.In addition to intrinsic dependencies, architectural limitations can also disallowchaining. To chain two operations, the hardware must forward the results of the ear-lier operation to the functional units (or memory load/store) of the later operation.Because this takes chip space, not all combinations of chaining are implementedin any particular vector architecture. Typically, only common, easily implementedpatterns are supported. For example, many architectures will chain a memory loadfollowed by an arithmetic operation. The arithmetic operation can therefore startbefore the �nal element of the vector load has completed. Note that chaining onlyspeeds up the processing, allowing more operations to complete in a given amountof time. Chaining has no other e�ect on the code.
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Chapter 3
Overview of Speech Recognition

To e�ectively describe the manner in which I modi�ed the automatic speechrecognition (ASR) algorithms to run e�ciently on vector architectures, it is necessaryto explain \conventional" ASR (automatic speech recognition) in more detail. Inthis section, I will present an overview of a full speech transcription system. Inthe following chapters, each component of the full system will be described in moredetail, along with speci�cs on running the components on vector architectures.
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Figure 3.1: ICSI's hybrid speech recognition system.Figure 3.1 shows a block diagram of ICSI's hybrid speech recognition system [13].Sounds are digitized from a microphone, and are delivered to the Signal Processingunit, typically at 16,000 values per second and 16 bits per value. Sampling at higherrates helps very little, since meaningful features of speech generally occurs below 8



CHAPTER 3. OVERVIEW OF SPEECH RECOGNITION 22kHz. Also, sampling with higher precision has not been shown empirically to improverecognition accuracy.3.1 Signal ProcessingThe Signal Processing unit performs feature extraction, in which the linear am-plitude signal is converted to a sparser, spectral-like representation. Typically, theSignal Processor operates on overlapping time windows of 20{32 ms, and producessomething like 20 \features" at every time step (typically 8{12 ms). The purpose ofthe Signal Processor is simply to produce features on which the later processing canoperate. While the raw digitized waveform contains all the available informationabout the acoustic signal, as a practical matter, signal processing is critical. SeeChapter 4 for more details.3.2 Phone Probability EstimationFrom the Signal Processor, the features representing a particular time interval aresent to the Phone1 Probability estimator. This component estimates the probabilitythat the given features represent a particular sound or combination of sounds inthe language. For each sound or combination of sounds, the Phone ProbabilityEstimator outputs a value between 0.0 and 1.0, once every time interval. Since thegoal is to produce probabilities, the sum of the probabilities of all sounds in a giventime interval should equal 1.0. Each phone probability is typically divided by itsprior probability, yielding a scaled version of the emission likelihood that is used bythe decoder component.State of the art systems typically use a large number of context dependent phones[19] (e.g. /a/ preceded by a vowel and followed by a dental consonant) and Gaussian1A phoneme is the minimal speech sound which distinguishes two words (e.g. \Sat" vs. \Cat").Allophones are variant pronunciations of a phoneme, often dependent on context (e.g. \Sat" vs.\waS"). A phone is a set of allophones.



CHAPTER 3. OVERVIEW OF SPEECH RECOGNITION 23mixture models [58] to estimate their likelihoods2. Other groups have successfullyused recurrent neural networks [14], decision trees [22], and support vector machines[57]. Although any standard machine learning algorithm can be used, Gaussianmixtures currently provide the most accurate systems.At ICSI, we implement the Phone Probability Estimator using between 46 and 64context independent phones and a multi-layer perceptron neural network to estimatetheir probabilities [12]. Accuracy su�ers somewhat compared to context dependentGaussian mixtures, but the system is smaller and simpler. Also, the vectorizationmethods presented here would be quite similar for a context dependent Gaussianmixture system, as the matrix operations involved are quite similar. Finally, forlarge vocabularies and conventional front ends, the Signal Processing and PhoneProbability Estimator components typically consume a small fraction of the totalcomputational load of a full ASR system. The decoder, described in the next section,consumes the lion's share. This balance can change for small vocabularies, wherethe decoder consumes a relatively smaller fraction of the computational load, andfor more complex front-end (e.g. Section 5.4), where the Signal Processing andPhone Probability Estimator components consume a relatively greater fraction ofthe computational load.Chapter 5 describes methods of running a multi-layer perceptron e�ciently onvector architectures.3.3 DecodingConceptually, the decoder takes the sequences of estimates of the phone probabil-ities, and compares them against models of every possible utterance in the language.It then outputs the most likely utterance. In practice, of course, the search spacemust be massively pruned for the process to be computationally tractable.2Acoustic likelihoods are related by Bayes' Rule, namely P (phonejfeature)P (phone) = P (featurejphone)P (feature) .Gaussian mixture systems estimate P (featurejphone), while neural networks typically estimateP (phonejfeature).



CHAPTER 3. OVERVIEW OF SPEECH RECOGNITION 24The decoder is normally implemented as a search through Hidden Markov Models(HMMs) of sub-word units (e.g. phones), with one HMM per word in the vocabulary.The sequence of words is computed by combining the probability of each individualword according to an HMM with the language model.The language model provides a score for a given sequence of words based onthe likelihood of the sequence according to some model of how words group in thelanguage. The language model may consist of a grammar (for command-and-controlapplications), or of statistics for runs of words3 (for a transcription application).Although it may be possible to vectorize the language model evaluation, it is typicallynot a signi�cant computational bottleneck. Language modeling will not be discussedfurther in this thesis.The decoder is often the most computationally and memory intensive componentof a large vocabulary ASR system. It is also the most challenging to vectorize. Chap-ter 6 provides more details on e�cient algorithms for decoding when the vocabularysize is relatively small. Chapter 7 discusses issues when the vocabulary becomeslarge. The remainder of this section describes some aspects of decoding that arerelevant to later sections.3.3.1 Continuous vs. Discrete DecodingDecoders can be categorized into two major types: discrete and continuous. Dis-crete decoders only recognize words (or short phrases) spoken in isolation. Con-tinuous decoders recognize more natural, continuous speech. A common type ofcontinuous decoder, called a stack decoder [54], uses a very slightly modi�ed discretedecoder as its innermost loop. This inner loop is also the most computationallyexpensive component of a stack decoder. Therefore, if one can make a discrete ut-terance decoder that runs e�ciently on vector architectures, it would be possible towrite a continuous speech decoder that would run e�ciently as well.For purposes of this research, I restrict myself to discrete utterance decoders.3For example, the sequence \the cat is" is much more likely to occur than \the cat blue".



CHAPTER 3. OVERVIEW OF SPEECH RECOGNITION 25Although there are other aspects of a continuous decoder that may be vectorizable(e.g. A* estimation [32]), the discrete decoder is the most computationally expensivecomponent.3.3.2 DictionariesSince one of the major factors that a�ect decoding is the size and compositionof the recognition dictionary, several dictionaries of di�erent sizes were used. Thedictionaries consist of some number of words, along with one or more pronunciationsfor each word. Each pronunciation consists of an ordered list of phones.In addition to the words, the dictionaries contain information about the phones.Each phone has a minimum duration, speci�ed by the number of states in the phone,as well as additional data describing the distribution of durations (see Chapter 6 fordetails). All the dictionaries used the same data for the phones, derived from trainingon Broadcast News [16].Table 3.1 summarizes some of the statistics of the dictionaries used in this thesis.The following subsections also give a brief description of the dictionaries.Dictionary # of words # of prons Longest word 4 # of states 5Digits 12 12 six 12Numbers 30 30 sixteen 19Web 38 79 sixteen 19SmallBN 983 1000 examinations 28MedBN 4609 5000 signi�cantly 28LargeBN 19999 32010 telecommunications 42Table 3.1: Dictionary statistics4The word containing the largest number of states.5The number of states in the word with the largest number of states.



CHAPTER 3. OVERVIEW OF SPEECH RECOGNITION 26DigitsThe Digits dictionary contains single digits from one to nine, plus \zero", \oh",and \ten". Only a single pronunciation per word is used (the pronunciation thatoccurred most frequently in the training data). This dictionary could be used, forexample, in a menu system, for entering simple phone numbers, etc.NumbersThe Numbers dictionary is similar to Digits, but contains additional wordsfor larger numbers (e.g. \�fteen", \thirty", \hundred"). It also uses only a singlepronunciation per word. It could be used for any task involving only numbers (e.g.credit card numbers, zip codes, 
ight numbers, more complex menu systems, etc).WebThis dictionary was used in a web navigation application, where every link ona web page was supplemented with a number. In addition to the words in theNumbers dictionary, it also contains words like \home", \bookmarks", \back",\page up", \page down", etc. Also, there are multiple pronunciations per word(providing better accuracy).Large Broadcast NewsThe Large Broadcast News dictionary (LargeBN) consists of just under 20,000words, with multiple pronunciations. It was used during the 1998 DARPA evalua-tions for quick decoding (65,000 words is more typical of a full system).Medium Broadcast NewsThe Medium Broadcast News dictionary (MedBN) is a subset of LargeBN,with 5000 pronunciations chosen at random. Although not realistic in terms of



CHAPTER 3. OVERVIEW OF SPEECH RECOGNITION 27content, it represents a medium sized dictionary for a dictation task.Small Broadcast NewsCalled SmallBN, this dictionary is a subset of MedBN, with 1000 pronuncia-tions chosen at random.
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Chapter 4
Signal Processing

Since the waveform contains all the captured acoustic information, one mightthink that the Signal Processing component would not be required in an ASR sys-tem; the raw audio signal could be fed directly into the Phone Probability Estimator.However, in practice the Signal Processing component turns out to be vitally impor-tant in real ASR systems.Firstly, the Signal Processing unit typically reduces the data rate of the raw au-dio input, thereby decreasing the computational load of later processing. Secondly,providing features that are more closely related to the desired output (phones) makesthe job of the Phone Probability Estimator much easier. For example, if spectralfeatures are useful for determining phone identity, one should feed spectral featuresinto the Phone Probability Estimator directly, rather than requiring it to learn themapping from the raw data to a spectrum. It is also important not to waste thelearning power of the trained system on aspects of the signal that do not gener-alize well, like waveform shape (for which the Signal Processing unit attempts tocompensate). In practice, no working ASR system uses just the raw digitized audio.Generally, spectral-like features ful�ll the requirements of data reduction and datarepresentation. In fact, it is well-known that the human auditory system processesinput in a way similar to a spectral �lterbank [21]. Most of the successful signalprocessing front-ends used in speech recognition are at least partially based on human



CHAPTER 4. SIGNAL PROCESSING 29auditory perception [17] [27].Figure 4.1 shows one type of signal processing that is commonly used in speechrecognition systems, known as Mel-Frequency Cepstral Coe�cients (MFCC) [17]. Inthe following sections, I will outline methods of vectorizing MFCC feature genera-tion. Other signal processing systems use similar methodologies, so much of whatis presented could easily be applied to other signal processing algorithms. Previouswork on vectorizing speech frontends on a particular architecture can be found in[34].
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Figure 4.1: Block diagram of Mel-Frequency Cepstral Coe�cients algorithm.
4.1 Pre-emphasisThe �rst step in processing is to apply pre-emphasis to the signal. This actsas a �rst order high-pass �lter. The pre-emphasis is used both to �lter out verylow frequency components (which typically do not contribute to the intelligibility ofspeech), and to 
atten spectral tilt associated with speech. It also mimics some ofthe equal loudness characteristics of the human auditory system [18].



CHAPTER 4. SIGNAL PROCESSING 30Equation 4.1 gives the formula for computing the signal taking pre-emphasis intoaccount. y(t) is the output signal at time frame index t. x(t) is the input at timeframe index t. x(t� 1) is the input at time frame index t� 1. � is the pre-emphasiscoe�cient. A typical value is � = 0:98, yielding a high-pass �lter with cuto� atabout 60 Hz. y(t) = x(t)� � � x(t� 1) (4.1)Vectorizing pre-emphasis is quite easy. Simply read a chunk of data, shift it byone, multiply by the pre-emphasis coe�cient, and subtract. The only minor compli-cation is strip-mining (see Section 2.8), since the signal will rarely be smaller thanthe vector length. Algorithm 4.1 shows pseudo-code for performing pre-emphasis.vl  L%MVL . Input size L modulo maximum vector length MVL.f  0 . Stores the �nal element of the previous strip.for strip 1; dL=V e dosetvl vlvload VR1, X . Load signal from memory location X.vshift VR2, VR1, 1 . VR2 is X shifted by 1.vinsert VR2, f , 0 . Load the �nal element of the previous strip.vmultsv VR3, �, VR2vsubvv VR4, VR1, VR3vstore VR4, Y . Store results into memory location Yf  vextract VR1, vl . Set the �nal element of the \previous" strip.advance X by vladvance Y by vlvl  MVLend for Algorithm 4.1: Vectorizing pre-emphasis.The algorithm requires dL=MVLe times through the loop, where L is the input size(number of samples in the input utterance), and MVL is the maximum vector length.



CHAPTER 4. SIGNAL PROCESSING 31Compared to a scalar algorithm, the only \extra" operation is a vector shift and avector insert. There are two vector memory operations (one load and one store), twoarithmetic vector operations, and one vector shift each time through the loop.4.2 WindowingOnce pre-emphasis has been applied, a window is selected. A typical size for thewindow is 256 samples, which, at 8 kHz sampling, equals 32 ms. Using a taperedwindow removes discontinuities at the edges, and has been observed to improveperformance. In the frequency domain, this corresponds to reducing the ripples inthe frequency domain that would result from using a rectangular (untapered) window(i.e. computing spectra from a range of points without explicit windowing).A windowing function that is a good compromise between signal distortion andsmoothing is the raised cosine known as the Hamming window [25]. Equation 4.2and Figure 4.2 show the function used in a Hamming window.y(i) = 0:54� 0:46 � cos(2�i=255) (4.2)
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CHAPTER 4. SIGNAL PROCESSING 32To vectorize the application of the Hamming window, one can pre-compute thecoe�cients as speci�ed in Equation 4.2, and simply multiply them by the output ofthe pre-emphasis �lter. Modulo strip-mining, this can be done with a single vectormultiply. The inner loop will be called dL=MVLe times, where L is the size of the win-dow. Since there is only one vector arithmetic operation each time through the loop,the bottleneck for the algorithm will be memory bandwidth on most architectures.4.3 FilterbankThe computational bottleneck of MFCC analysis is the computation of the �l-terbank outputs. Typically, a �lterbank is implemented as a Fast Fourier Transform(FFT), followed by an inner product with the various �lters. The FFT requiresa particular pattern of strided memory access. As the FFT is an important com-putational kernel, vector architectures quite commonly provide some level of directsupport for it. This can either be specialized addressing schemes or methods toquickly move data in ways that facilitate the FFT. Details of FFT implementationsare beyond the scope of this thesis, but are well documented in other works [71] [10][8]. Once the FFT of the windowed, pre-emphasized signal is determined, the outputof the �lters must be computed. For MFCC features, these are composed of asequence of triangular �lters. Commonly, the spacing is uniform in the linear domainunder 1000 Hz, and then linear in the logarithmic domain (exponential in the lineardomain) for high frequencies. The number of �lters is dependent on the bandwidth.Figure 4.3 shows a set of �lters using 5 linear and 8 logarithmic �lters1. For each�lter, the inner product of the output of the FFT and the �lter is computed. Thisresults in a single number for each �lter.1Typically, more �lters would be used. The lower number of �lters makes the �gure more legible.
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Figure 4.3: Triangular �lters.Vectorizing the �lterbankSince the input signal is discrete, usually sampled at 8 or 16 kHz, the �lters canbe discrete as well. The outputs of the �lterbank can therefore be computed asOi = PNif=1A(f) � Fi(f), where the amplitude of the output of the FFT is given byA(f), the �lter coe�cient of �lter i is given by Fi(f), and �lter i has Ni coe�cients.Given the typical �lter parameters (starting frequency, spacing), Ni ranges in sizefrom 3 elements to about 30 elements. If MVL is in this range, an e�cient vectorizedalgorithm for computing the �lterbank outputs is a simple strip-mined loop for each�lter, followed by vreduce sum, a vector reduction operation (see Section 2.1). Foreach �lter, there is a loop that executes dL=MVLe times, where L is the size of the�lter. Each time through the loop, there are three memory accesses (two loads andone store), one multiply, and one vector reduction. Note that the �lter sizes areknown at compile time, so loop overhead can be minimized.If MVL is much longer than the �lter sizes, or if vector reductions are expensive,



CHAPTER 4. SIGNAL PROCESSING 34the above algorithm can be wasteful. An alternative is to compute the output ofseveral �lters at once. This requires an indexed load, which can be expensive onsome architectures. Furthermore, the product of the signal and the �lters are leftin a vector register, as shown in Figure 4.4. These values from each �lter must besummed to achieve the output of the �lterbank. The computation of these sums willrequire almost the same amount of work as the algorithm described in the previousparagraph. Unless vector multiplication is much more expensive than the summing,it will be more e�cient to perform the multiplication and the summing as describedin the previous paragraph.
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Figure 4.4: Multiple �lters per vector register.
4.4 LogarithmHuman perception of loudness is compressive, commonly simulated with a cuberoot or a logarithm function. This stage mimics human perception by applying thelogarithm function to each �lter output. It is not a computational bottleneck, sincethe number of �lters is fairly small, and the logarithm is taken independently oneach element.If a vector implementation of this stage is required, a typical approach wouldbe to use a vectorized version of one of the many approximation algorithms forthe logarithm function. This is generally straight-forward. The only complicationinvolves algorithms that require table lookup. Such algorithms can be e�cientlyimplemented only if the indexed load operation is available. If the architecture does



CHAPTER 4. SIGNAL PROCESSING 35not support indexed load, table-driven logarithms may be ine�cient. Details ofimplementation are beyond the scope of this thesis, but have been well-reported inthe literature. See, for example, [69] [37] [2].4.5 DCTThe output from the logarithm stage has high feature-to-feature correlation. Toreduce this correlation, it is typical to transform the data. At the same time, thenumber of outputs can be reduced. A common transform that achieves these goals isthe discrete cosine transform [18]. One may implement the discrete cosine functionusing a \fast" algorithm very similar to the fast Fourier transform described inSection 4.3. Again, details are out of scope for this thesis. Typically, the �rst 8 to14 coe�cients of the output of the DCT are used for further processing, as describedin the following chapters.4.6 SummaryAll the elements of the Signal Processing component vectorize well. The FFT isthe most costly element, but is usually optimized on vector architectures. As a result,the Signal Processing component tends to be a minor addition to the computationalload of a vectorized ASR system. This balance can shift if multiple signal processingcomponents are used (see Section 5.4). Also, for small vocabulary systems, the SignalProcessing component can be a higher fraction of the total computation.
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Chapter 5
Phone Probability Estimator

The purpose of the Phone Probability Estimator is to output the probabilityof each sound in the language given a sub-sample of the input features. Since thecontext around a sub-sample provides additional information about the identity ofthe central element, systems often take as input not only the features output fromthe Signal Processing unit for the current time interval, but also some number offrames before and after the current time interval. Given this context window, thePhone Probability Estimator outputs a vector consisting of numbers between 0 and1, representing the probability of each phone in the language for the current timeinterval. Since the outputs are probabilities, and there is a �xed set of possibleoutputs, the probabilities must sum to 1.0. The number of distinct phones forour standard English language systems (and therefore the output vector length) isbetween 46 and 64.As mentioned in Chapter 3, any probabilistic machine-learning algorithm can beused to compute this mapping between input features and output probabilities. AtICSI, we have used multi-layer perceptrons (MLP), which work well on a varietyof problems [12]. Furthermore, MLPs (multi-layer perceptrons) are easy to vector-ize, and will therefore run e�ciently on vector architectures. Similar methods cangenerally be used for other machine learning algorithms.A typical MLP Phone Probability Estimator that was used in the Broadcast
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Figure 5.1: Block diagram of an MLP Phone Probability Estimator.



CHAPTER 5. PHONE PROBABILITY ESTIMATOR 38News evaluation [16] is shown in Figure 5.1. A context window of 9 frames and 20features for a total of 180 input units is shown. The 180 input units are multiplied bythe input-to-hidden weight matrix Whi, a matrix consisting of 2000� 180 numbers.This yields 2000 numbers at the hidden layer. A sigmoid function is applied to these2000 numbers, producing the hidden layer values. The processes is repeated withthe 56� 2000 hidden-to-output weight matrix Woh, followed by a soft-max function.The soft-max takes N inputs qi and produces N outputs pi according to equationEquation 5.1. It is easy to see that P pi = 1. These outputs can be interpreted asprobabilities [15]. pi = eqiPNj=1 eqj (5.1)The sigmoid and softmax functions are not typically the computational bottle-neck of the MLP computation. However, if we fail to vectorize them, Amdahl's Law[4] tells us that they will eventually dominate as the other parts of the algorithmbecome more e�cient. Both sigmoid and softmax require a vectorized version of theexponential function. Similar to the discussion of the logarithm in Section 4.4, theexponential is generally easy to vectorize, although if a table-lookup algorithm isused, architectures that do not support indexed loads will perform poorly. Detailsof implementation are out of scope, but have been well-covered in the literature [37][2] [65].The MLP must be trained on large amounts of data that are typical of theconditions in which the application will be used. The training procedure picks valuesfor Whi and Woh such that the mapping between the input features and the outputprobabilities is as accurate as possible on the training set. Training proceduresfor MLPs are out of scope for this thesis, but are computationally similar to theprocedure described in this chapter.



CHAPTER 5. PHONE PROBABILITY ESTIMATOR 395.1 Matrix-Matrix MultiplyFor e�ciency, several input vectors are usually queued up, and a matrix-matrixmultiply (rather than a matrix-vector multiply) is performed. This matrix-matrixmultiply is the computational bottleneck of the Phone Probability Estimator.Previous work on matrix-matrix multiply for speci�c vector architectures can befound in [30], [1], and others. In this section, I will discuss methods of choosing aparticular matrix-matrix multiply algorithm based on architectural variables such asvector length and the e�ciency of various operations (e.g. vector reduce).Matrix-matrix multiply is a very regular operation. Also, the number of arith-metic operations is O(n3) while the theoretical minimum number of memory accessesis O(n2) (where n is, for example, the maximal dimension of the matrix). For maxi-mal performance, it is therefore very important to access memory as infrequently aspossible. Locality of reference becomes quite important | register access is muchfaster than cache; cache is faster than memory, etc. The memory subsystem thereforeis crucial to the performance of a matrix-matrix multiply on most architectures [41].To achieve higher performance (through locality of reference) given the memoryhierarchy, the matrices are typically broken down into submatrices.A �B $ 0@ a00 a01a10 a11 1A0@ b00 b01b10 b11 1A = 0@ a00 � b00 + a01 � b10 a00 � b01 + a01 � b11a10 � b00 + a11 � b10 a10 � b01 + a11 � b11 1AIn the example above, each element (e.g. a01) can itself be a matrix, and the \�"operator represents a matrix-matrix multiply. The algorithm then recursively dividesthe matrix. E�ciency is improved because of data locality. Di�erent divisions canbe performed such that, at any point in the algorithm, the current matrix block �tsinto one level of the memory hierarchy. For example, at the lowest level, the blockshould �t into the registers of the processor. The next level up might �t into the L1cache, etc.It is also possible to organize the recursion to trade o� recursive calls to thematrix multiply for additions. These so-called \Strassen-like" algorithms have better



CHAPTER 5. PHONE PROBABILITY ESTIMATOR 40asymptotic performance (O(nlog27) instead of O(n3)), but have additional overheadcompared to the standard algorithm [68] [9]. Typically, only very large matricesbene�t from Strassen-like algorithms, and even then only for the �rst few iterationsof the recursion [29].Optimizing for each particular memory subsystem is itself quite di�cult, as thebest approach is dependent on many �ne-grain details of the memory system design.Results from one architecture do not necessarily translate into other architecture.Therefore, we instead advocate a \generate-and-test" approach, whereby variouschoices of the blocking sizes are automatically generated and benchmarked, and themost e�cient one is chosen for a particular architecture [11] [74]. The vectorizedmatrix-matrix multiply will simply be the �nal, smallest block size. Implementinga full generate-and-test methodology is beyond the scope of this thesis. Instead, Ipresent various schemes for implementing the lowest level of the algorithm.The problem is to compute the product of an input matrix I of size N �K anda weight matrix W of size K �M , yielding an output matrix of size N �M . Notethat N , M , and K are the sizes of the lowest level blocks in the generate-and-testscheme described above.0BBBBBBB@ O00 O01 � � � O0MO10 O11 � � � O1M... ... . . . ...ON0 ON1 � � � ONM
1CCCCCCCA = 0BBBBBBB@ I00 I01 � � � I0KI10 I11 � � � I1K... ... . . . ...IN0 IN1 � � � INK

1CCCCCCCA0BBBBBBB@ W00 W01 � � � W0MW10 W11 � � � W1M... ... . . . ...WK0 WK1 � � � WKM
1CCCCCCCAOij = KXk=0 Iik �WkjA conventional scalar and na��ve method would be to execute the pseudo-code:To vectorize the above, �rst one must decide what the vector registers shouldhold. Then, one must decide the order of the loops (the above order is just one of 6possible orders even for the na��ve algorithm).



CHAPTER 5. PHONE PROBABILITY ESTIMATOR 41for n 0; N dofor m 0;M doOut[n;m] 0:0for k  0; K doOut[n;m] Out[n;m] + In[n; k] �Weight[k;m]end forend forend for Algorithm 5.1: Conventional na��ve scalar matrix multiply5.2 Vectorizing by KPerhaps the most obvious way to organize the algorithm is to vectorize by theinner, common dimension K. Rows of the input matrix I and columns of the weightmatrix W are stored in vector registers. A single scalar value of the output iscomputed at a time. One may execute either the N loop or the M loop �rst. SeeAlgorithm 5.2 and Algorithm 5.3.for n 0; N dofor m 0;M doOut[n;m] = InnerProduct(In[n; :];Weight[:; m])end forend forAlgorithm 5.2: Matrix multiply using inner product, N followed Mfor m 0;M dofor n 0; N doOut[n;m] = InnerProduct(In[n; :];Weight[:; m])end forend forAlgorithm 5.3: Matrix multiply using inner product, M followed NWhich ordering of the loops is more e�cient will depend on details of the memorysubsystem and how the matrices are stored in memory. One or the other will likely



CHAPTER 5. PHONE PROBABILITY ESTIMATOR 42result in fewer bank con
icts [23]. We recommend including both orders in the\generate-and-test" methodology, and picking the better of the two.The problem is now reduced to an e�cient implementation of an inner producton a vector architecture.The inner product takes two equal-length vectors as input and produces a scalaras output. With no error checking, the pseudo-code for a scalar algorithm is shownin Algorithm 5.4.procedure InnerProduct(a, b)sum 0for i 1; L do . L is the input lengthsum sum+ a[i] � b[i]end forreturn sumend procedure Algorithm 5.4: Scalar inner productThe �rst architectural consideration is the vector length. Usually, the greater thevector length, the higher the e�ciency of the architecture. However, shorter vectorlengths are typically easier to vectorize, since strip-mining overhead can be avoided.The inner product is no exception.If the vector length is longer than the size of the input, then a vectorized versionof Algorithm 5.4 might read something like that of Algorithm 5.5.procedure InnerProduct(A, B)setvl vl . vl is the length of A and Bvload VR1, Avload VR2, Bvmultvv VR3, VR1, VR2return vreduce sum(VR3)end procedureAlgorithm 5.5: Simple vector inner product



CHAPTER 5. PHONE PROBABILITY ESTIMATOR 43Algorithm 5.5 depends on vreduce sum being both available and e�cient onthe architecture (vreduce sum simply sums all the elements of a vector and returnsthe scalar result). Frequently, such a function is unavailable as a primitive in thearchitecture, although methods of implementing it e�ciently are often available. SeeSection 2.2.If the vector length is shorter than the size of the input (the more common case),then the inner loop of the vectorized algorithm must be strip-mined (see Section 2.8).The partial sums can be stored in a vector register. The �nal sum must then bereduced. Algorithm 5.6 demonstrates this.procedure InnerProduct(A, B)setvl V . VR4 collects the partial sums. Set all elements to zero.vsets VR4, 0vl  L%V . Input size L modulo vector length V .for strip 1; dL=V e dosetvl vlvload VR1, Avload VR2, Bvmultvv VR3, VR1, VR2;vaddvv VR4, VR4, VR3;advance A by vladvance B by vlvl Vend forreturn vreduce sum(VR4)end procedureAlgorithm 5.6: Strip-mined inner product codeAs you can see, even when the vector length is shorter than the input length,InnerProduct still requires a call to vreduce sum. However, it only requires one callper call to InnerProduct, whereas many multiply/adds are performed. Therefore,this algorithm can be quite e�cient if the vector length is short relative to both the



CHAPTER 5. PHONE PROBABILITY ESTIMATOR 44input size and the cost of vreduce sum.PerformanceTo perform InnerProduct requires 2 � dL=V e vector loads, dL=V e vector multi-plies, dL=V e vector adds, and one vreduce sum. The vector length in all cases is themaximal vector length V , except for two vector loads, one vector multiply, and onevector add (for the case where V does not evenly divide L).When calling InnerProduct in the inner loop of a matrix-matrix multiply, notethat the columns of the second matrix require a strided load. If strided loads areexpensive, it is possible to store the transpose of the second matrix, and use unitstride instead. InnerProduct must be called a total of M �N times.A small performance gain can be obtained if the matrix sizes are known at compiletime. This is the usual case, since the generate-and-test methodology will pick aparticular size for the lowest level blocks. Strip-mining can be avoided if V divides Levenly, and the loops can be unrolled. Better performance can be achieved on somearchitectures through software pipelining [3].The algorithm uses four vector registers. There is one memory access per arith-metic operation, leading to O(n3) memory accesses.Cache ConsiderationsSince the size and order of evaluation of the matrix-matrix multiply is computedduring the generate-and-test cycle, cache considerations are not directly an issue.The best algorithm should be selected given your memory architecture. That beingsaid, a few general comments can be made. If the local cache is too small to hold theintermediate results (about 4 times the vector length for the inner product versionof Algorithm 5.6), then the best block size will probably be the vector length. Thisallows an inner loop with no strip-mining. Typically this will only be the case ifthere is no cache at all. If the caches are large enough to hold all the matrices, then



CHAPTER 5. PHONE PROBABILITY ESTIMATOR 45the block size will probably be the matrix size.Chaining BehaviorThe inner loop is a typical load/operate loop. As such, most architectures try tooptimize chaining behavior for such cases. Loop unrolling and software pipeline canimprove the chaining. See Section 2.9 for discussion of chaining.Register BlockingThe algorithm as described above requires two memory accesses for each outputvalue. Since memory access is usually quite a bit slower than arithmetic operations,this can be quite ine�cient. One method of improving performance is to storeelements of the matrices in the vector registers | in e�ect, using the registers as acache. This is known as register blocking [74] or tiling. The basic idea is presented inFigure 5.2. Rows of the input matrix and a column of the weight matrix are storedin vector registers. Algorithm 5.7 shows a fragment of the code that computes thematrix product (strip-mining is omitted for brevity). As the number of availableregisters increases, so too does the size of the algorithm. However, the code is quiteregular, and can be generated with an automated procedure.With this algorithm, only O(n2) memory accesses are required, rather than theO(n3) of the previous algorithm. The drawback is that there must be enough vectorregisters to hold the entire sub-matrix. On architectures with plentiful registers, itis common that the block size that allows the entire sub-matrix to be stored will bethe most e�cient size, as computed by the generate-and-test method.5.3 Vectorizing by M or NAnother way to organize the vectorization is to vectorize over one of the \outer"dimensions, M or N . The algorithms to vectorize by M and N are quite similar. In
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V R1 =V R2 =V R3 = 0BBBB@ a00 a01 a02a10 a11 a12a20 a21 a22 1CCCCA 0BBBBBBBBBB@

b00 b01 b02b10 b11 b12b20 b21 b22= = =V R4 V R5 V R6
1CCCCCCCCCCA

Figure 5.2: Register blocking example.setvl Kvload VR1, Invloads VR4, Weight, Mvmultvv VR0, VR1, VR4Out[1; 1] = vreduce sum VR0advance Weight by 1vloads VR5, Weight, Mvmultvv VR0, VR1, VR5Out[1; 2] = vreduce sum VR0advance Weight by 1vloads VR6, Weight, Mvmultvv VR0, VR1, VR6Out[1; 3] = vreduce sum VR0advance In by Kvload VR2, Invmultvv VR0, VR2, VR4Out[2; 1] = vreduce sum VR0etc. Algorithm 5.7: Register blocked matrix multiply.



CHAPTER 5. PHONE PROBABILITY ESTIMATOR 47this section, I will only describe vectorization by M . Whether to vectorize by N orM will again depend on the details of the architecture, and should be decided withthe same generate-and-test approach as described above.When vectorizing by M , rows of the second matrix are stored in a vector. Thisvector is multiplied by a scalar taken from the �rst matrix. The resulting vectorsare summed and stored into rows of the output matrix.On;: = KXk=0 In;k �Wk;:Vectorized pseudocode for this ordering can be seen in Algorithm 5.8. For brevity,strip-mining has not been included.VR1 | A row from the Weight matrix.VR2 | A scalar from In times VR1.VR3 | A row of the Out matrix.setvl M . Row size of output.for n 1; N dovsets VR3, 0for k  1; K dovload VR1, Weightvmultsv VR2, In[n; k], VR1vaddvv VR3, VR2, VR3end forvstore VR3, Outadvance Weight by Madvance Out by Mend for Algorithm 5.8: Vectorizing by M



CHAPTER 5. PHONE PROBABILITY ESTIMATOR 48PerformanceThe number of operations performed by this ordering is exactly the same as inSection 5.2 for vectorizing by K. However, no vector reduction operation is needed.This ordering is therefore a better match for architectures in which reductions areunavailable or expensive.Cache, Chaining, Register BlockingEven if reductions are cheap and available, it is possible that this ordering willperform better, depending on the details of the memory hierarchy. The same ar-guments as in Section 5.2 apply. Once again, generate-and-test is the method ofchoice.The innermost loop of Algorithm 5.8 consists of a load, a multiply, and an add.On most architectures, this is extremely e�cient, both in terms of chaining, andpossibly in terms of compound instructions (e.g. multiply-accumulate). Again, loopunrolling, software pipelining, and register blocking can improve the performance.See Section 5.2.5.4 Combination of SystemsPrevious work has shown the e�cacy of combining multiple representations ofthe audio stream [31]. Multiple frontends, each with its own phone probability es-timator, are combined. Figure 5.3 shows on example of combining an MFCC [17]system and a PLP [27] system. The phone probabilities can be combined eitherusing a simple averaging rule, or with more complex methods [49] [36]. Such sys-tems consistently show improvements over either system alone, especially on unseenacoustic conditions.Because the Signal Processing and Phone Probability Estimating componentsare both highly compatible with vector architectures, the cost of including multiple
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Figure 5.3: Combination of an MFCC system and a PLP system.copies of these components is usually small compared to the cost of the decoder. Onceagain, this balance can shift for small vocabularies, where the Signal Processing andPhone Probability Estimating components take up a relatively larger fraction of thetotal computational load.
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Chapter 6
Small Vocabulary Decoder

In this section, small vocabulary decoders are described. These decoders takea list of words and output the most likely words given the probability stream fromthe Phone Probability Estimator. Note that by \small vocabulary" I do not meansimply that the dictionary has fewer than N words. Rather, the algorithms describedin this section evaluate the probability of every word in the dictionary. As thedictionary gets large, this becomes ine�cient compared to methods that are ableto avoid evaluating low probability words. The advantage of the former type ofalgorithm in the current context is that they tend to be much more regular, andtherefore more amenable to e�cient execution on vector processors. For details onlarge vocabularies, where avoiding extraneous computations is critical, see Chapter 7.Since the task of the discrete utterance decoder is to compute the likelihood thata stream of phone probabilities match a word, we must start our discussion with howwords in the dictionary are modeled. In the simplest case, each word can be thoughtof as consisting of a �nite state machine, with one state per phone in the word, andtransitions from phone i to phone i and i + 1. Figure 6.1 shows an example of sucha �nite state machine for the word \about". The word starts in the state labeledax (the \uh" sound), stays there for a while, then transitions to the state b, staysthere for a while, and so on until the end of the word. In real systems, a phone isusually composed of several states, but the left to right ordering is maintained. By



CHAPTER 6. SMALL VOCABULARY DECODER 51using several states per phone, we impose a minimum duration on the phone equalto the number of states in the phone multiplied by the duration per state.
ax b aw tFigure 6.1: Finite state diagram of the word \about".Given the �nite state machine representing a word and the phone probabilitystream as output from the Phone Probability Estimator, the next task is to computethe likelihood that the �nite state machine and the phone stream match. Most ASRsystems, including ours, use the so-called \Viterbi approximation"1. The Viterbialgorithm can be implemented as a dynamic program, as shown in Figure 6.2. Everyentry in the table is �lled in according to the following rule:E(t; s) = P (Xt jSs) �max(E(t� 1; s); E(t� 1; s� 1) ) (6.1)where t is a time index, s is a state index, E(t; s) is the table entry at time t andstate s, and P (XtjSs) is the scaled likelihood of phone Ss at time t as output by thePhone Probability Estimator.The above procedure computes the best path through the �nite state machine.The probability of a given word is simply the value of the lower right table entryE(tmax; smax). The discrete utterance decoder computes the score for each word, andoutputs either the best word or the top few words.1Brie
y, the Viterbi method it is an approximation because it only takes into account thelikelihood of the best path, rather than incorporating the likelihood of all possible paths. See, forexample, [13] for details on the Viterbi approximation to the Hidden Markov Model.
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Figure 6.2: Viterbi dynamic program for the word \about". The best path ishighlighted.



CHAPTER 6. SMALL VOCABULARY DECODER 53Some ComplicationsThere are a few complications in the actual algorithm. First, we take �log of bothsides of Equation 6.1. The multiplications become additions, and the max becomesa min. This is done both because additions are computationally less expensivethan multiplications, and because the numerical stability of performing a sequenceof additions is better than performing a sequence of multiplications.Another complication is that we model the durations of the phone states byassigning a self-loop and an exit probability to the transitions in Figure 6.1. Thismodels the durations as an exponentially decaying distribution. Typically, both thenumber of states per phone and the self-loop and exit probabilities are selected duringthe training procedure. For our purposes, we will assume that this information ispart of the dictionary.With these two changes, Equation 6.1 becomes:E(t; s) = � logP (Xt jSs)+min(E(t� 1; s)+ selfs; E(t� 1; s� 1)+ exits�1 ) (6.2)E(t; s) is the table entry for state s at time t, but is this time a log probability thatwe are minimizing. logP is the log likelihood from the Phone Probability Estimator.selfs is the �log of the self-loop probability of state s, and exits�1 is the �log of theexit probability of the previous state.6.1 Vectorizing by StateThere are several ways in which the discrete utterance decoder can be vectorized.For example, one could try to vectorize along the time axis in Figure 6.2, where avector register would hold a column of the �gure, and each element would hold adi�erent time. However, there is a problem with this approach. E(t; s) is a functionof E(t � 1; s). The dependency of vector element t on vector element t � 1 withinthe vector prevents vectorization along the time axis.



CHAPTER 6. SMALL VOCABULARY DECODER 54One could also vectorize along the state axis in Figure 6.2. A vector registerholds a row in the �gure, and each element holds a di�erent state.One drawback of this arrangement is that words longer than MVL (where MVL isthe maximum vector length as described in Chapter 2) will not �t into a single vectorregister. Although it is possible to split long words up into multiple registers andstitch them together, the overhead reduces the e�ciency of the algorithm. Therefore,this method is not recommended for architectures with short vector lengths.On architectures with MVL much longer than the typical number of states in aword, the arrangement as presented is ine�cient. More e�ciency can be achieved ifwe can increase the vector length. A simple method of extending the vector lengthfor vectorization by state is to put words side by side, as in Figure 6.3.
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Figure 6.3: Viterbi table for two words, \abbott" and \about".Details on an algorithm to simultaneously compute the score for each word in the�gure will be presented in Section 6.1.2. Next, an algorithm is presented for pickingwhich words to group together.



CHAPTER 6. SMALL VOCABULARY DECODER 556.1.1 Bin packingOf course, using just two words as in Figure 6.3 is unlikely to be optimal. Rather,it is desirable to match the number of total states (the sum of the number of states ineach word) with the vector length of the architecture. This minimizes strip-miningoverhead, while maximizing the vector length.Imagine we have N words in our dictionary. Each word i has ni states. We wantto arrange the words into G groups such that each group has no more than MVL totalstates, while simultaneously minimizing the total number of groups. This is theclassic \bin packing" algorithm [47]. Computing the optimal case is NP-complete.However, it has been shown that the best possible polynomial time algorithm is,at the worst, 22% less optimal than the best possible packing [28]. One algorithmthat achieves this level is the so-called \ordered �rst �t" algorithm [33], shown inAlgorithm 6.1.Sort N words by the number of states in the word from largest to smallest.for i 1; N do . Word indexfor g  1; G do . Group indexif word i will �t in group g thenPut word i into group g, incrementing group g's current size.last . Exit the inner for loopend ifend forif word i did not get put into any group thenCreate a new group gPut word i into group g, incrementing group g's current size.end ifend for Algorithm 6.1: Ordered �rst �t bin packing.Table 6.1 shows the results of using the ordered �rst �t bin packing algorithm onthe dictionaries (see Section 3.3.2 for details on the dictionaries). The �rst column



CHAPTER 6. SMALL VOCABULARY DECODER 56lists the dictionary and the total number of states in the whole dictionary. This is thesum of the number of states in each phone in each word in the dictionary. The column\MVL" shows the maximum vector length (the size of the group). \Best" lists thebest possible packing, equal to dStatesMVL e. This is the best possible packing, assumingyou are allowed to break words up between groups. To compute the optimal packingassuming you cannot break up words is NP-complete, and is therefore not computed.The column \Actual" lists the actual number of groups computed by the bin packingalgorithm. The closer this is to \Best", the better. \Loss" lists the percentage ofoverhead incurred by imperfect packing.Name / mvl Best Actual LossStates %Digits 16 7 797 24 5 532 4 448 3 364 2 2128 1 1256 1 1Numbers 16 - -336 24 14 15 7.132 11 1148 7 764 6 6128 3 3256 2 2Web 16 - -941 24 40 41 2.532 30 31 3.348 20 2064 15 15128 8 8256 4 4

Name / mvl Best Actual LossStates %SmallBN 16 - -14793 24 - -32 463 470 1.548 309 314 1.664 232 235 1.2128 116 116256 58 58MedBN 16 - -74717 24 - -32 2335 2370 1.548 1557 1585 1.864 1168 1183 1.3128 584 586 0.3256 292 294 0.7LargeBN 16 - -485330 24 - -32 - -48 10112 10273 1.664 7584 7681 1.3128 3792 3805 0.3256 1896 1906 0.5Table 6.1: Bin packing on dictionaries.Blank entries in the table represent vector lengths that are too short for thelongest word in the dictionary to �t into a single vector register. For example, the



CHAPTER 6. SMALL VOCABULARY DECODER 57longest word in Web is \sixteen", with 19 states. Vector lengths shorter than 19will therefore not work with this algorithm and dictionary.Notice that all the dictionaries pack quite well for all legal choices of MVL. Theworst percentage losses are for cases where only one extra group is created over thebest possible case (e.g. 15 actual groups vs. 14 best possible groups for Numberswith vector length of 24).
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Figure 6.4: Histogram of group size for LargeBN, vector length 48Another measure of the e�cacy of the packing is the fullness of each group.Ideally, each group should have nearly the maximal number of states. Figure 6.4shows a histogram of group size for LargeBN with vector length of 48. Notice thatalmost all groups are fully occupied2.One explanation for the good packing is that the distribution of word lengths (innumber of states) is nearly normal, having many words near the median length, andfew very long words. Figure 6.5 shows a histogram of the number of states per wordfor LargeBN.2The scale of the �gure does not allow it to be seen, but one group has size 35. The next smallestgroup has size 42, which is visible in the plot.
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Figure 6.5: Histogram of number of states per word for LargeBN6.1.2 An Algorithm for Vectorizing by StateNow that we have an algorithm for dividing words from the dictionary into groupsthat can be e�ciently evaluated, we present the algorithm for computing the scoresfor each word.To compute the best word in a dictionary, the dictionary is split into G groupsas presented above. Each group is evaluated, producing one score for each word inthe group. The scores can then be sorted to produce an ordered list, or just the bestword can be output.In the current work, the dictionary is assembled ahead of time. Since the algo-rithm for dividing the dictionary into groups is quite e�cient, it would be possibleto generate the groups on-the-
y. Either way, certain information (described below)is assumed to be available when a group of words is evaluated.T | The number of frames in the utterance.



CHAPTER 6. SMALL VOCABULARY DECODER 59N | The number of states in the group (the sum of the number of states in eachword in the group).P | The number of output probabilities from the Phone Probability Estimator.Also the number of phones in the inventory.self |The self-loop �log probabilities of each state in the group. The length of selfis N , and its elements can be determined when the dictionary is assembled.exit | The exit �log probability of each state in the group. The length of exit isN , and its elements can be determined when the dictionary is assembled.X | The acoustic �log probabilities. Its length is P � T ; X is computed by thePhone Probability Estimator.S | The phone state indices. Each element is an o�set into X, representing whichphone state is being considered. Its length is N . S can be determined whenthe dictionary is assembled.The key to the algorithm is that one can set certain elements of exit to in�n-ity (zero probability) in such a way as to prevent \bleed through" from one wordinto another. Consider the dotted lines in Figure 6.3. These lines represent thedependence of elements in the table on the previous state. This dependence, if leftunmodi�ed, would cause the �rst state in one word to be dependent on the last stateof the word to the left in the Viterbi table. For example, in Figure 6.3, the stateax in \about" is dependent on the state t in \abbott". Clearly, this would lead toincorrect results.The dependence can be eliminated by setting the exit probability of the last statein each word to 0:0. Since exit is the �log of this probability, one can set elements ofexit corresponding to the last state of each word to in�nity. This segmenting of theexit probabilities allows all the words in the group to be evaluated simultaneouslyusing a very regular algorithm. Also, the exit probabilities for the group are allshifted one element to the right (so that vector element i gets stored in vector



CHAPTER 6. SMALL VOCABULARY DECODER 60element i+1). The algorithm requires the shifted exit probabilities, so storing themin shifted form saves an operation during decoding.Some comments on initialization, running, and result reporting will help clarifythe algorithm. To start the loop, the �rst row of the Viterbi table (t = 0) mustbe initialized. All elements get set to vmax (the maximum value able to be storedin a vector element) except for the �rst state in each word, which gets set to theappropriate �log probability. Then, each row is evaluated in order. This representsforward steps in time. Finally, the score for the last state of each word in the groupis output. One can either use the single best result, or store all the results for laterprocessing.The algorithm for decoding a single group is presented in Algorithm 6.2. Todecode over all the groups in the dictionary, just repeat for each group.Notice that the algorithm does not store the Viterbi table to memory. Rather,each row of the table is computed and stored in a vector register. Because each rowonly depends on the row immediately above it, the intermediate values need not bestored. By not saving these data, we do not have to perform any storage to memoryin the inner loop. Although this makes the algorithm quite e�cient, it does meanthat the \backtrace" is not available. In other words, the algorithm only outputsthe score for each word, not the path through the Viterbi table that was taken toarrive at the score. The backtrace would tell you the duration of each phone in theword (for the best path). In some applications, the backtrace may be necessary. Inthese cases, the algorithm can easily be modi�ed to store the decision at each step(which way the min function went), at the cost of an extra store in the inner loop.The algorithm is very e�cient. Other than a small amount of overhead for loopmaintenance and the vshift call, the inner loop performs only necessary arithmeticoperations. On most architectures, all operations in the inner loop chain. Finally,as was shown in Table 6.1, packing is very e�cient | most vector operations havevector length equal to MVL. Other than issues of redundant or irrelevant computationsas discussed in the next chapter, the only drawback of this algorithm is the inabilityto run dictionaries with long words on short vector length machines.
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VR1 | Row t of the Viterbi table.VR2 | Row t of the Viterbi table shifted by one to the right.VR3 | Scaled acoustic negative log probabilities for the group.. Initialize VR1 with the �rst row of the Viterbi table (t = 1).setvl Nvsets VR1, vmaxi 1for each word in group dovinsert VR1, i, X[Si]i = i+number of states in wordend for. Now process the rest of the table.for t 2; T dovloadx VR3, S, X + t � P . Load acoustic �log probabilities into VR3.vshift VR2, VR1, 1 . Shift previous row by one, store in VR2.vsaddvv VR1, VR1, self . Add self-loop �log probabilities.vsaddvv VR2, VR2, exit . Add exit �log probabilities.vmin VR1, VR1, VR2vsaddvv VR1, VR1, VR3 . Add acoustic �log probabilities.end for. Extract the results for each word.i 1for each word in group doi = i+number of states in wordOutput VR1[i] as score for wordend forAlgorithm 6.2: Decode a group of words vectorized by state
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Figure 6.6: Viterbi tables for multiple words with equal number of statesAnother approach is to vectorize across words containing similar number of states.Imagine several copies of Figure 6.2 layered one upon the other, with each copy rep-resenting a di�erent word (see Figure 6.6). The algorithm proceeds simultaneously,lock-stepped for each word. To cover words that have di�erent numbers of states,one simply repeats the process for the other word lengths, e.g. �rst all 1-state wordsare computed, then all 2-state words, etc. A large dictionary will guarantee that thevector lengths are long for all but a very few words. For example, Figure 6.7 showsa histogram of the number of phones in a word for a 65,000 word dictionary.Of course, it is unlikely that a dictionary will contain exactly MVL words witha particular number of states. If words in the various \stacks" of Figure 6.6 havedi�erent numbers of states, then it is necessary to avoid computing the values fornon-existent entries. One e�cient way to do this is to sort the dictionary by the



CHAPTER 6. SMALL VOCABULARY DECODER 63

0 5 10 15 20 25
0

2000

4000

6000

8000

10000

12000

Number of Phones

C
ou

nt

Figure 6.7: Histogram of the number of phones in a word for a 65,000 word dictionary.number of states in each word from longest to shortest. Then take the �rst MVLwords, and create a \stack", lining them up on the left. The width of the Viterbitables (the number of states) will decrease as you go down the stack. By reducingthe vector length as the stack is evaluated, the non-existent entries are avoided. Thisis illustrated in Figure 6.8. Repeat until all the words have been processed.Vector architectures rely on the parallelism within a vector to mask memory la-tency and amortize instruction decode and control costs, so e�ciency drops as thevector length decreases. This e�ect is especially pronounced on vector supercom-puters, which may have MVL of 64 and need an actual vector length of at least 32to attain reasonable e�ciency. With vector extensions to conventional processors,which have very short vector lengths (typically 2 to 4 words), this is less of a problem.Table 6.2 provides a lower bound on the e�ciency of the algorithm. For eachdictionary, the table lists the number of states in the dictionary, MVL, and the numberof updates of the Viterbi table required assuming that setting the vector lengthless than MVL incurs no penalty. The E�ciency column assumes the penalty is
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CHAPTER 6. SMALL VOCABULARY DECODER 65exactly proportional to the di�erence between MVL and the vector length. On realarchitectures, the e�ciency will be somewhere between the listed e�ciency and 100%.Name / mvl Updates E�ciencyStates %Digits 2 100 97.097 4 110 88.28 126 77.016 156 62.224 - -32 - -48 - -64 - -Numbers 2 344 97.7336 4 363 92.68 393 85.516 469 71.624 505 66.532 589 57.048 - -64 - -Web 2 950 99.1941 4 964 97.68 992 94.916 1056 89.124 1088 86.532 1168 80.648 1264 74.464 1360 69.2

Name / mvl Updates E�ciencyStates %SmallBN 2 14806 99.914793 4 14834 99.78 14874 99.516 14957 98.924 15054 98.332 15149 97.748 15311 96.664 15583 94.9MedBN 2 74728 100.074717 4 74750 100.08 74802 99.916 74907 99.724 75027 99.632 75099 99.548 75243 99.364 75483 99.0LargeBN 2 485357 100.0485330 4 485387 100.08 485475 100.016 485622 99.924 485870 99.932 485942 99.948 486417 99.864 486678 99.7Table 6.2: E�ciency of vectorizing by word.Blank entries indicate cases where MVL is greater than the number of pronuncia-tions in the dictionary. Notice that the e�ciency drops as MVL increases, especiallyfor small vocabularies. This should not be surprising, since the range of lengths willincrease as more words are included in a group.



CHAPTER 6. SMALL VOCABULARY DECODER 666.2.1 An Algorithm for Vectorizing by WordAlgorithm 6.3 presents pseudocode for the algorithm. Most of the variables havesimilar meaning as in Section 6.1.2, but a group consists of words as assembled bythe sorting algorithm described in Section 6.2.T | The number of frames in the utterance.P | The number of output probabilities from the Phone Probability Estimator.Also the number of phones in the inventory.N | For each state index s, Ns is the number of words with at least s states. This isthe height of a stack in column s of Figure 6.8. N1 is therefore also the numberof words in the group. Since the words are sorted from longest to shortest,Ni >= Ni+1. N can be determined when the dictionary is assembled.self | The self-loop �log probabilities. For each state index s, there is a di�erentset of self-loop values. Set s has length Ns. The elements of self can bedetermined when the dictionary is assembled.exit | The exit �log probabilities. As with self, there is a di�erent set for eachstate, and the values can be determined when the dictionary is assembled.X | The acoustic �log probabilities. Its length is P � T ; X is computed by thePhone Probability Estimator.S | The phone state indices. Each element is an o�set into X, representing whichphone state is being considered. There is a di�erent set of values for eachstate. The length of set s is Ns. S can be determined when the dictionary isassembled.Unlike the \Vectorize by State" algorithm, this algorithm cannot store the Viterbitable just in vector registers. Rather, one vector register contains a set of scores forall the words in a group at time t and state s of the Viterbi table. To avoid storingthe entire Viterbi table in memory, the algorithm proceeds one column (state) at



CHAPTER 6. SMALL VOCABULARY DECODER 67a time, storing only the current and the previous columns. In Algorithm 6.3, thevariables prev and cur are memory bu�ers that are large enough to store an entirecolumn of the Viterbi table. The size of prev and cur is T � N1, although fewerand fewer elements of prev and cur will be used as the algorithm proceeds acrossthe columns of the Viterbi table. The algorithm maintains prev as the values forcolumn s � 1 and cur as the values for column s. After each column is evaluated,the roles of cur and prev are swapped.By evaluating one column at a time, the algorithm avoids repeated memoryaccesses to load self, exit, and S. Instead, these are stored in vector registers. Thevector registers need only be updated from memory each time the algorithm movesfrom one column to the next.One drawback of this algorithm is the necessity of storing one column of theViterbi table in memory. This requires an additional load and an additional storeeach time through the inner loop. Additional memory accesses are also required eachtime through the outer loop to load self, exit, and S. However, other than the extramemory requirements, the algorithm only performs needed arithmetic operations.On short vector length architectures, where vectorizing by state can be ine�cient,this algorithm can perform well.



CHAPTER 6. SMALL VOCABULARY DECODER 68VR1 { Scores of row t state s of the Viterbi table.VR2 { Scores of row t� 1 state s� 1 of the Viterbi table.VR3 { Self-loop �log probabilities for state s.VR4 { Exit �log probabilities for state s.VR5 { Scaled acoustic �log probabilities.VR6 { Phone state index for state s.Set all elements of prev to vmaxfor s 1; maximum number of states in group dosetvl Ns . Set the vector length to height of stack at column s.vload VR3, self for column svload VR4, exit for column svload VR6, S for column sif s = 1 then . Initialize �rst row.vloadx VR1, VR6, X . First column gets acoustic scores.elsevsets VR1, vmax . Others get maximum possible score.end iffor t 2; T dovload VR2, prev[(t� 1) �N1] . Load scores from t� 1, s� 1vloadx VR5, VR6, X + t � P . Acoustic scores.vsaddvv VR1, VR1, VR3 . Viterbi score at t� 1; s plus selfvsaddvv VR2, VR2, VR4 . Viterbi score at t� 1; s� 1 plus exitvmin VR1, VR1, VR2vsaddvv VR1, VR1, VR5vstore VR1, cur[t �N1] . Store score from t; s.end forvstore VR1, results for column sswap cur and prevend for Algorithm 6.3: Vectorize by word via dictionary sorting.



69
Chapter 7
Large Vocabulary Decoder

The decoding algorithms described in the previous chapter work quite well onsmall vocabularies. However, as the vocabularies get larger, it is e�cacious to im-plement methods that avoid redundant or irrelevant computations. In this chapter,three such methods are presented. The di�culties of vectorizing such methods arediscussed, and tradeo�s with using the small vocabulary methods of Chapter 6 forlarge vocabularies are presented.7.1 Tree Structured LexiconsAs the vocabulary gets larger, more and more words end up sharing commonpre�xes. It is possible to arrange the evaluation of the decoder so that computationof a common pre�x occurs only once for all the words that share the pre�x. Figure 7.1is an excerpt from a tree structured lexicon for the Web dictionary. The excerptonly includes words that start with \f". An implicit edge from every node to itselfis omitted for clarity.To read the �gure, start at the root. Each node represents a speech sounds(phone). At each time step, either stay at the current node, or follow a child node.Continue until a node with a word is reached. For example, the word \four" can befound by starting at \f", staying there for some number of frames, going to \ao",



CHAPTER 7. LARGE VOCABULARY DECODER 70staying there for some number of frames, and ending at \r". Notice that words thatstart with the same sounds are all on the same branch. So one can continue after\r [four]" to \w", \axr", \dcl [forward]" to get to \forward".
f

ao

ih

ay

r [four]

tcl

w

t iy [forty] n [fourteen]

axr dcl [forward]

f tcl t iy [fifty] n [fifteen]

v [five]Figure 7.1: Excerpt from tree structured lexicon from the Web dictionary.In the evaluation of the Viterbi table, one need not recompute the values at thenodes for common pre�xes. Figure 7.2 shows an example of the evaluation of theword \forward". Notice that once the evaluation of \forward" is complete, all theinformation for the evaluation of \four" is already present. Looked at another way,if \four" has already been computed, only a little extra work (the last three columnsof Figure 7.2) need be done to compute the value of \forward".One e�cient way to traverse the dictionary in a scalar decoder is to do a depth-�rst search through the tree structured lexicon [63] As the search encounters nodesthat represent the end of a word, the algorithm outputs the word's probability. Interms of the Viterbi table, evaluation proceeds by adding columns to the right end ofthe table as the child of a node is visited, and removing columns from the right endof the table as the search returns to the parent node. The total size of the Viterbitable in such a search is bounded by the length of the longest word in the dictionary(in number of states). As such, this traversal strategy is very e�cient in memory.And as desired, each pre�x is only evaluated once.The total savings over evaluating each word in the lexicon are dependent on howmany words in the dictionary share pre�xes. See Section 7.4 for details.
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Figure 7.2: Viterbi Table for \four" and \forward"".



CHAPTER 7. LARGE VOCABULARY DECODER 727.2 PruningIn addition to avoiding the unnecessary recomputation of common pre�xes, onecan also prune the search using a number of strategies. In each case, the goal is toavoid computations where the result is very unlikely to be useful. In the followingtwo subsections, two types of pruning are discussed.7.2.1 Branch PruningThe motivation for branch pruning is the observation that if a pre�x is veryunlikely to match the input stream, then any words starting with that pre�x arealso unlikely to match the input stream. To implement branch pruning, one keepstrack of the current probability that the subword matches the input stream. Thisvalue is simply the value at the �nal time in the rightmost column of the Viterbitable as one traverses the tree structured lexicon. If this probability falls belowa threshold, the current node and all its children are not evaluated. Any wordsoccurring along the node's children are assumed to have probability 0:0%.The threshold can be computed in a number of ways. An absolute value can bechosen. However, the scale of the probabilities is not generally known in advance, andtherefore this is not typically used. A more common approach uses beam pruning[62]. In beam pruning, the score of the best match of the input stream to anypreviously seen subword is stored. The threshold is then picked to be a �xed distancebelow this best value. Choosing a small value for the distance reduces the amountof computation at the cost of possibly excluding the correct answer.Instead of beam pruning, one can keep track of the N best fragments that havebeen seen, and prune anything that falls below the value of the Nth best fragment.This is equivalent to a kind of adaptive beam pruning [24], where the beam is adjusteddynamically to meet a memory constraint. For small vocabularies, N best pruningdoes not work too well, as few elements are pruned for large values of N (e.g. Nnear the size of the dictionary), and accuracy su�ers if N is too small. To make



CHAPTER 7. LARGE VOCABULARY DECODER 73the results comparable across dictionaries, only beam pruning is used in the resultspresented below.7.2.2 Phone Deactivation PruningWhat is the likelihood that the input stream matches the word \four" if no framein the input stream contains /f/ with signi�cant probability? Phone deactivationpruning assumes that the likelihood would be very low [61]. More precisely, if anyframe i in the input stream has probability for a phone p that is less than a threshold�, then the probability for p in frame i is set to 0:0%. Since the probability that aword matches the stream is proportional the product of the probabilities that eachframe matches the correct phone, setting any phone to 0:0 causes the probabilitythat the word matches to fall to 0:0 also. Evaluation of such a word can immediatelycease. Varying � allows a time vs. accuracy tradeo�. When combined with branchpruning, phone deactivation pruning will avoid computation of all words that sharethe common pre�x, since their probability will also be 0:0.7.3 Vectorizing Large Vocabulary DecodersThe advantage of the algorithms in Chapter 6 is that they are very regular, andtherefore vectorize quite e�ciently. To implement tree structured lexicons and prun-ing require more irregular computations, which are di�cult to perform on a vectorarchitecture. As the vocabulary gets larger and as pruning becomes more aggressive,the bene�ts of the methods in Section 7.1 and Section 7.2 become greater and greater.Signi�cant speedup through vectorization of regular algorithms is required to out-weigh the bene�ts of a pruned, tree structured scalar algorithm. Section 7.4 presentsthe tradeo�s between vocabulary size, vector vs. scalar, and pruning, and will showthe amount of vectorization speedup required to compensate for the advantages ofthe more irregular scalar algorithms.In the rest of this section the use of tree structured lexicons and pruning is



CHAPTER 7. LARGE VOCABULARY DECODER 74assumed, and it is shown why these algorithms vectorize poorly.7.3.1 Vectorized Traversal of a Tree Structured LexiconTo vectorize evaluation over a tree structured lexicon, one must assign nodes inthe tree at a particular time to an element of a vector. One can conceptualize thisin terms of a token passing algorithm [75]. In the token passing algorithm, thereare an unlimited number of movable tokens, each of which has a node to which it isassigned, the current local score (equivalent to the score in the Viterbi table), andthe time index. To advance the algorithm, pick a token from a node, copy it to oneof the node's children in the tree (including itself), and update the local score. Thescore of a token at time t going from state r to state s is the likelihood from thephone probability estimator at time t and state s times the transition probabilityfrom state r to state s (self-loop probability of r if r is the same as s, and the exitprobability of r if r is di�erent from s). If a token already exists at the new node forthe same time, remove all but the best scoring token. If all the children have beenvisited already, remove the original token. Terminate when all tokens are at the endtime. Upon termination, each terminal state of a word will contain a token with thescore for that word.Di�erent choices for how to pick which node to update and which child to visitre
ect di�erent traversal strategies. As an example, consider evaluation of a singleword via the Viterbi table updates, where the entries in the table are updated fromtop to bottom (time axis) then left to right (state axis). The value of an entry in theViterbi table at state index s and time t is computed as the minimum of the scoresof the entries at (s� 1; t� 1) and (s; t� 1), times the local score. This is equivalentto passing two tokens, one from each source. Under the token passing paradigm, thealgorithm will pass the token with state index 1 at time index 1 to state 2 time 2,then pass a token from (2,1) to (2,2), then from (1,2) to (2,3), then (2,2) to (2,3),etc.To vectorize, one must assign tokens to elements of a vector. All elements are



CHAPTER 7. LARGE VOCABULARY DECODER 75updated, conceptually simultaneously. The amount of work in an update is quitesmall | a vector min and two vector additions. If instead of a tree, one has aseparate set of linear structures for each word, the problem becomes the same asdescribed in the previous chapter. One could pick tokens with the same time, butdi�erent (adjacent) states, and end up with the \Vectorizing by State" algorithmof Section 6.1. Or one could pick one token from each word with the earliest time,and end up with the \Vectorizing by Word" algorithm of Section 6.2. With the treestructure, one must account for traversal of the children (branching) and handle leafnodes (termination).BranchingAt a branch, a token can be passed to any of the children. In the course of thealgorithm, a token will eventually be passed to every child, but for the purpose ofthis discussion, the order is not important. As the token is copied, the old tokenmust remain in place so that the other children can be traversed. Either the newtoken or the old token must be saved. Either way, a token must be added to a listof tokens to be processed. Maintaining the list is a scalar operation, so each branchintroduces a non-vectorizable operation. Since the computation of the token scoreupdate is only a few operations, even a small amount of scalar overhead reduces theperformance. A large vocabulary will have a large number of branches. For example,the node with the largest number of branches in the LargeBN dictionary has 36children, while the average is just under 2 children.TerminationWhen the algorithm reaches a node with no children (a leaf), the token termi-nates. If not all elements of a vector reach a leaf at the same time, then an element ofthe vector is introduced that should not be operated upon. Many vector architecturesprovide a mask register, which allows the algorithm to specify which elements areactive. However, as the vector becomes more and more sparse, e�ciency is reduced.



CHAPTER 7. LARGE VOCABULARY DECODER 76Another option is to copy the sparse vector, leaving out the empty elements. Thisis known as vector compression, and is also supported on most vector architectures.A typical tree structured lexicon of a large dictionary has many such terminations,so compression must be done frequently (for example, the LargeBN dictionary has21830 terminations, nearly 30% of the total number of nodes). This overhead addsto the cost of the vectorized large vocabulary decoder.7.3.2 Vectorized PruningPruning exacerbates the problem. If a branch is pruned, all tokens at the currentnode or any child of the current node must be removed. The removal operation itselfusually requires a traversal of tree, which is as di�cult to vectorize as the evaluationitself. Also, if any of the tokens are currently resident in a vector element, theneither the vector must be compressed, or the mask must be set to avoid computationof that element. In either case, the number of elements in the vector shrinks, ande�ciency declines. This is very similar to the case described above for when a tokenreaches a leaf node.7.3.3 Memory RequirementsFor any traversal strategy on the tree, the algorithm must keep track of whichnodes have been visited at which time. This is the same as saying that the algorithmmust store all the active tokens. The number of tokens can be minimized if oneadvances each token to the end of the tree as quickly as possible (depth-�rst traversalof the tree). In such a case, there is only one \active" node, the node in the traversalthat is currently the furthest from the root. If there are n nodes in the tree from theroot to the active node and t time intervals in the utterance, then only n� t tokensneed to be stored. However, if a strategy other than depth-�rst is used, there can bemore than one active node. The total number of tokens becomes t�PNi=1 ni, whereN is the number of active nodes, and ni is the number of nodes between active nodei and the root. Not only does more tokens mean more memory storage requirements,



CHAPTER 7. LARGE VOCABULARY DECODER 77it can also slow the algorithm because of memory hierarchy e�ects (e.g. if the tokensdo not �t in cache).7.4 Tradeo�sFor the reasons described above, it is very di�cult to vectorize a large vocabularydecoder. The amount of work per update is small, and there are intrinsically non-vectorizable components. However, the small vocabulary decoders of Chapter 6 arequite e�cient. This section discusses the tradeo�s between a scalar decoder thatimplements the methods of Section 7.1 and Section 7.2, and the vector decoders ofChapter 6.To measure the exact tradeo�s between implementations of a scalar vs. vectordecoder on a particular architecture is beyond the scope of this thesis. Instead, wecompare only the number of arithmetic operations used to update the Viterbi table.This provides an estimate of the vector speedup that would be required for the vectoralgorithms to out-perform scalar algorithms that implement the methods describedin Section 7.1 and Section 7.2.Table 7.1 compares the algorithms of Section 7.1 and Section 7.2 with those ofChapter 6 on the various dictionaries. Since the e�ciency of the \Vectorizing byState" algorithm of Section 6.1 and the \Vectorizing by Word" algorithm of Sec-tion 6.2 are quite high for their appropriate vector lengths, the table below assumes100% e�ciency for these algorithms.The Size column lists the the number of pronunciations in the dictionary. SeeSection 3.3.2 for more details on the dictionaries. The remaining entries in the ta-ble are the number of times each algorithm updates an entry in the Viterbi table,normalized by the length of the input stream (since each algorithm does work pro-portional to the length of the input stream). For each algorithm, this involves threeadditions and a min operation, as presented in Equation 6.2. For the scalar algo-rithms, the table also lists the vector speedup required for the vector algorithm to



CHAPTER 7. LARGE VOCABULARY DECODER 78perform equally with the scalar algorithm1.TheVector column lists the number of updates of the Viterbi table for the dictio-naries using the algorithms of the previous chapter. The column Scalar with TreeStructured Lexicon lists the number of updates and the required vector speedupfor the algorithms of this chapter. The column No Prune assumes the dictionary isarranged as a tree structured lexicon as in Section 7.1, but no pruning is performed.The columns labeled Light Prune and Heavy Prune both use a tree structured lexi-con, branch pruning (as outlined in Section 7.2.1), and phone deactivation pruning(as outlined in Section 7.2.2). The heavy pruning settings are appropriate for fast de-coding at the cost of some accuracy. The light settings perform more computations,but incur fewer search errors. The particular settings for the values were taken froman evaluation of a speech recognition system on the Broadcast News corpus [16].Vector Scalar with Tree Structured LexiconDictionary Size No Prune Light Prune Heavy PruneDigits 12 97 89 1:1� 89 1:1� 89 1:1�Numbers 30 336 209 1:6� 148 2:3� 133 2:5�Web 79 941 485 1:9� 329 2:9� 340 2:8�SmallBN 1000 14793 9720 1:5� 5820 2:5� 3501 4:2�MedBN 5000 74717 37347 2:0� 18518 4:0� 3721 20:1�LargeBN 32010 485330 151901 3:2� 43313 11:2� 13633 35:6�Table 7.1: Number of updates to the Viterbi table and vector architecture speeduprequired for the vector algorithms to perform equally with the tree structured andpruned scalar algorithms.Figure 7.3 shows the same data in graphical form. The vertical axis is the vectorspeedup required. The horizontal axis is the dictionary size (not to scale). Eachline represents a di�erent choice for pruning. The horizontal line at 4� indicatesthe approximate speedup of vector extensions to conventional processors. The lineat 10� represents the approximate speedup for vector supercomputers and vector1For example, a vector speedup of 4:0� is required for a vector processor implementing themethods of Chapter 6 to perform equally with an equivalent scalar processor implementing themethods of this chapter with light pruning on the MedBN dictionary.



CHAPTER 7. LARGE VOCABULARY DECODER 79microprocessors. See Section 1.2 for an overview on vector speedups for variousarchitectures.

Figure 7.3: Vector architecture speedup required for the vector algorithms to performequally with the tree structured and pruned scalar algorithms.Roughly speaking, the speedup provided by a vector architecture must be largerthan the indicated speedup for the desired pruned case for the vectorized algorithmto compare favorably with the scalar algorithm.In the case of long vector length architectures, there is an additional advantageto the \Vectorizing by State" algorithm. It is very memory e�cient, both in terms ofstorage, and in terms of memory accesses in the inner loop. As a result, the vectorizeby state algorithm will likely run faster than the typical speedups listed.For small vocabularies, the vectorized algorithms are competitive with the scalaralgorithms. As the vocabulary gets larger, the vector speedup must increase for thevectorized algorithms to be competitive. The problem is exacerbated by high levelsof pruning.



CHAPTER 7. LARGE VOCABULARY DECODER 80Given the fast pace of improvements in the capabilities of scalar processors, itis unlikely that the current batch of vector processors will be competitive for largevocabularies and high pruning levels. However, there is no intrinsic reason thatvector processors cannot improve at the same rate as scalar processors. Given anequivalent architecture, a vector processor remains competitive for all but the largestdictionaries and highest pruning levels.
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Chapter 8
Conclusions

Speech recognition on vector architectures would bene�t many applications, in-cluding dictation on the desktop, command and control of PDAs and cellphones,and automated call centers using supercomputers. Low power consumption, highabsolute performance, and low cost all contribute to the value accrued to vectorarchitectures. To realize these bene�ts, speech recognition algorithms must be vec-torized to run on these platforms.For this thesis, a vector simulation library was developed to aid in the analysis ofspeech recognition algorithms on vector architectures. The vector simulation libraryimplements many of the common opcodes found on vector processors, but does notattempt to simulate the �ne details of the architectures (cache, chaining behavior,etc.). Instead, the focus of the research is on generating code that vectorizes well onany vector processor.Of the three major components of ICSI's hybrid speech recognition system, twovectorize quite well. The signal processing component's principle computationalbottleneck is the computation of the �lterbank, which is typically implemented usinga Fast Fourier Transform (FFT). Since the FFT is used in many, many applicationfor which vector processors are used, most architectures provide some support forFFT computations. The other elements of the signal processing component typicallyvectorize quite well.



CHAPTER 8. CONCLUSIONS 82The phone probability estimator used in this work is implemented as a multi-layer perceptron (MLP). The computational bottleneck of an MLP is a matrix-matrixmultiply. This operation is quite regular, and vectorizes well. However, for optimalperformance, �ne details of the memory hierarchy must be taken into account. Sincesuch details vary widely, we advocate a generate-and-test approach, where manyalgorithms are generated automatically, and the fastest is used. Several algorithmswere presented that would form the basis for the automatically generated code.The case of the �nal component, the decoder, is divided into small and largevocabularies. For large vocabularies, it is desirable to avoid repeatedly computingcommon pre�xes of words (e.g. \four", \fourteen", \forty", \forward"). Also, onecan use several methods to avoid altogether the computation of some of the words.For small vocabularies, the savings using these methods are less important, and it isacceptable to simply evaluate each word in full.Two algorithms were presented for small vocabularies, where every word in thedictionary is evaluated. The �rst involves batching together words such that thesummed length (in states) of a batch is equal to the vector length. The algorithmvectorizes along the state axis of the Viterbi table. The batches are computed usinga bin packing algorithm, and all the dictionaries packed quite well. The algorithmitself vectorizes e�ciently, and accesses memory minimally. However, it depends onreasonably long vectors, making it unsuitable for some architectures.The other algorithm batches together words with similar numbers of states. Thealgorithm vectorizes by word, such that elements of a vector each hold a state froma di�erent word. The algorithm vectorizes well, although it requires extra memoryaccesses avoided by the algorithm described above. Also, for long vector lengtharchitectures, the e�ciency can be low, as not all the vectors will be full. For shortvector length architectures, however, the e�ciency is excellent for all but the smallestdictionary.For large vocabularies, no method was found that vectorizes e�ciently whenpruning and tree structured lexicons are used. The base of the problem is that thetree structured lexicons are bushy and unbalanced. The amount of work necessary



CHAPTER 8. CONCLUSIONS 83to arrange for a vectorized operation is nearly the same as just performing theoperation directly. Comparisons with the vectorizable small vocabulary systemsgive an indication of the vector speedup required for a particular dictionary to runmore e�ciently on vector processor than on a scalar processor. The vectorized smallvocabulary system is competitive for all but the largest dictionaries and the highestpruning levels.A possible future direction is a mixed-mode operation, where a scalar algorithmdetermines what operations to perform, and a vector algorithm does the actual work.If the scalar and vector algorithms can run in parallel, this method may allow e�cientvectorization of large vocabulary systems.
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