Speech Recognition on Vector Architectures
by

Adam Louis Janin

B.S. (California Institute of Technology) 1990

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy

in
Computer Science
in the

GRADUATE DIVISION
of the
UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:
Nelson Morgan, Chair
Jerry Feldman
David Wessel
Kathy Yelick

Fall 2004



The dissertation of Adam Louis Janin is approved:

Chair

Date

Date

Date

University of California, Berkeley

Fall 2004

Date



Speech Recognition on Vector Architectures

Copyright 2004
by

Adam Louis Janin



Abstract

Speech Recognition on Vector Architectures
by

Adam Louis Janin

Doctor of Philosophy in Computer Science
University of California, Berkeley

Nelson Morgan, Chair

From cellphones and PDAs to huge automated call centers, speech recognition is
becoming more and more ubiquitous. As demand for automatic speech recognition
(ASR) applications increases, so too does the need to run ASR algorithms on a va-
riety of unconventional computer architectures. One such architecture uses a vector
processor, which has many benefits in terms of performance, power consumption,
price, etc.

This thesis presents and evaluates ASR algorithms ported to run efficiently on
vector architectures. A vector simulation library was developed, and is used to
evaluate design trade-offs for both the algorithms and the hardware. Two of the
three major components of an ASR system vectorize well. The third component,
the decoder, vectorizes well for small vocabularies, especially on long vector length

architectures, but is difficult to vectorize as the vocabulary grows.



Contents

List of Figures
List of Tables
List of Algorithms

1 Introduction

1.1 Automatic Speech Recognition . . . . . . .. ... ... ... .....
1.2 Vector Processors . . . . . . . . . . . . . e

1.2.1 Advantages of Vector Processors . . . . . .. ... ... ....

1.2.2 Extensions to Conventional Architectures . . . . . . .. . . ..

1.2.3 Supercomputers . . . . . . . . ... e

1.2.4 Vector Microprocessors . . . . . . . . v v v v v v v v v v v v

1.2.5 Special Purpose Hardware . . . . . . . ... ... .......
1.3 Related Work . . . . . . . . . . . ..o

2 Vector Simulation Library
2.1 Instructions in the Simulation Library . . . . . ... ... ... ...
2.2 Reductions. . . . . . . . . . e e e
2.3 Saturating Arithmetic . . . .. ... ... ... ... ... ...
2.4 Vector/Scalar Operations . . . . . . ... .. .. ... .........
2.5 Vector Shift . . . . . . . . . . ...
2.6 Memory . . . . . . ... e
2.7 Compound Instructions . . . . . . ... ... ... ... ... . ...,
2.8 Strip-mining . . . . . ..o
29 Chaining . . . . . . . . L
3 Overview of Speech Recognition

3.1 Signal Processing . . . . . . . .. ... oL
3.2 Phone Probability Estimation . . . . . . ... ... ... .. .....
3.3 Decoding. . . . . . . oL

3.3.1 Continuous vs. Discrete Decoding . . . . . . . ... ... ...



3.3.2 Dictionaries . . . . . . . . v e e e e e e e e

4 Signal Processing

4.1 Pre-emphasis . . . . . . . . ...
4.2 Windowing . . . . . . . .. Lo
4.3 Filterbank . . . . .. o Lo
44 Logarithm . . . . .. .. .. ..
4.5 DCT . . . o e
4.6 SUMMATY . . . . . ot e e e e e e e

5 Phone Probability Estimator

5.1 Matrix-Matrix Multiply . . ... ... ... ... ... ..
5.2 Vectorizing by K' . . . . .. . ... Lo
5.3 Vectorizing by M or N . . . . .. . ... ... ..
5.4 Combination of Systems . . . . . . ... ... ... ...

6 Small Vocabulary Decoder

6.1 Vectorizing by State . . . . .. ... oo
6.1.1 Binpacking . .. .. .. ... ... oo
6.1.2 An Algorithm for Vectorizing by State . . . . . ... ... ..

6.2 Vectorizing by Word . . . . .. . ... o oo
6.2.1 An Algorithm for Vectorizing by Word . . . . . . . . ... ..

7 Large Vocabulary Decoder

7.1 'Tree Structured Lexicons . . . . . . . .. ... ... ... .. ...,

7.2 Pruning . .. .. .. . .. e
7.2.1 Branch Pruning . . . . . ... ... ... ... .. ...
7.2.2  Phone Deactivation Pruning . . . . . ... ... ... ... ..

7.3 Vectorizing Large Vocabulary Decoders . . . . . . .. .. ... .. ..
7.3.1 Vectorized Traversal of a Tree Structured Lexicon . . . .. ..
7.3.2 Vectorized Pruning . . . . . . ... ... ... ... ...
7.3.3 Memory Requirements . . . . ... ... ... .........

74 Tradeoffs . . . . . . . . . L

8 Conclusions

Bibliography

il

25

28
29
31
32
34
35
35

36
39
41
45
48

50
93
%)
58
62
66

69
69
72
72
73
73
74
76
76
7

81

84



List of Figures

1.1
3.1

4.1
4.2
4.3
4.4

5.1
5.2
5.3

6.1
6.2

6.3
6.4
6.5
6.6
6.7

6.8

7.1
7.2
7.3

Comparison of a scalar operation and a vector operation. . . . . . . .
ICSI’s hybrid speech recognition system. . . . .. ... ... ... ..

Block diagram of Mel-Frequency Cepstral Coeflicients algorithm. . . .
Hamming windowing function. . . . . . . .. ... ... ... ... ..
Triangular filters. . . . . . . . . ... o Lo oL
Multiple filters per vector register. . . . . . . . ... ... .. .. ...

Block diagram of an MLP Phone Probability Estimator. . . . . . ..
Register blocking example. . . . . . . .. ... oL
Combination of an MFCC system and a PLP system. . . . . ... ..

Finite state diagram of the word “about”. . . . ... ... ... ...
Viterbi dynamic program for the word “about”. The best path is

highlighted. . . . . . . . .. ... ... ... . . . .
Viterbi table for two words, “abbott” and “about”. . .. ... .. ..
Histogram of group size for LargeBN, vector length 48 . . . . . . . .
Histogram of number of states per word for LargeBN . . . . . . ..
Viterbi tables for multiple words with equal number of states . . . . .
Histogram of the number of phones in a word for a 65,000 word dic-

tlonary. . . . . . . e e e e e e e e e
Viterbi tables for multiple words with decreasing number of states. . .

Excerpt from tree structured lexicon from the Web dictionary. . . . .
Viterbi Table for “four” and “forward””. . .. ... ... ... ....
Vector architecture speedup required for the vector algorithms to per-

form equally with the tree structured and pruned scalar algorithms. .

iii

21

29
31
33
34

37
46
49

51

52
54
o7
58
62

63
64

70
71

79



List of Tables

1.1
1.2
1.3

3.1

6.1
6.2

7.1

Some details on selected vector extensions. . . . .. ... .. .. ...
Some details on selected vector supercomputers. . . . . ... .. ...
Some details on vector microprocessors. . . . . . . ... ... ...

Dictionary statistics . . . . . . . . . . ... ... . o

Bin packing on dictionaries. . . . . . .. .. ..o
Efficiency of vectorizing by word. . . . . .. .. ... ... ... ...

Number of updates to the Viterbi table and vector architecture
speedup required for the vector algorithms to perform equally with
the tree structured and pruned scalar algorithms. . . ... ... ...

iv



List of Algorithms

2.1
2.2
2.3
24
2.5
4.1
5.1
5.2
5.3
5.4
9.9
5.6
5.7
5.8
6.1
6.2
6.3

Masked vector-vector add . . . . . . . ... oL Lo 12
Strided vector load . . . . . . ... ... Lo L 15
Indexed vector load . . . . . . . . .. .. Lo 15
Typical multiply/accumulate . . . . . . . .. ... ... 18
Strip mining example. Squares elements of A, stores into B. . . . . . 19
Vectorizing pre-emphasis. . . . . . . . . ... ... . 0. 30
Conventional naive scalar matrix multiply . . . . ... ... ... .. 41
Matrix multiply using inner product, N followed M . . . . ... ... 41
Matrix multiply using inner product, M followed N . . . . . . . . .. 41
Scalar inner product . . . . .. .. ..o oL 42
Simple vector inner product . . . .. ... ... ... 0L 42
Strip-mined inner product code . . . . .. ... ... .. ... ... 43
Register blocked matrix multiply. . . . . .. .. ... ... ... ... 46
Vectorizing by M . . . . . . ..o 47
Ordered first fit bin packing. . . . . . .. .. ... ... ... ... .. 55
Decode a group of words vectorized by state . . . . . ... ... ... 61

Vectorize by word via dictionary sorting. . . . . .. ... .. .. ... 68



Chapter 1
Introduction

This thesis covers algorithms and analysis of a speech recognition system ported
to a simulated vector architecture. The approach is to design and analyze algorithms
that will run efficiently on vector architectures, rather than to port to a specific

system.

1.1 Automatic Speech Recognition

Automatic speech recognition (ASR) is becoming more and more popular on a

variety of computer architectures:

Desktop computers: On the desktop, speech recognition is used both for com-
mand and control (e.g. “open notepad”), as well as for general dictation tasks
(e.g. writing a letter). Providing efficient speech recognition allows a wider

range of applications that exploit speech as input.

Supercomputers: On supercomputers and mainframes, speech recognition is used
for applications such as automated call centers, where a large number of simul-
taneous users need to navigate a voice messaging system. Supercomputers are
also useful for experimenting with new algorithms — today’s supercomputers

are tomorrow’s desktops.



CHAPTER 1. INTRODUCTION 2

Consumer electronic devices: Consumer electronic devices, such as PDAs and
cellphones, present a whole new set of challenges. Not only is the hardware less
powerful than a typical desktop, but also the application domain (hands-free,
uncontrolled acoustic environments) stresses the speech recognition algorithms

to their utmost. Battery life also is a major factor.

Special purpose hardware: Video cards and game console systems often come
equipped with high speed processors. It may be possible to leverage the com-
putational power of these devices to provide ASR services, much as a video

card provides graphics services.

Speech recognition applications require a significant amount of processing power,
so the systems must contain a processor capable of providing the required compu-
tational speed. The problem is especially acute when real time response is required
or when multiple simultaneous users must be supported (e.g. call centers). How-
ever, power consumption is also a major concern in many applications. Furthermore,
since speech recognition systems tend to be large, complex, and frequently changing,
a general purpose computing environment is preferable over a specialized implemen-
tation. Currently available processors run the gamut from power-hungry x86-based

systems, to specialized application-specific integrated circuits (ASICs).

Data parallel architectures, including vector processors, stream processors, and
Single Instruction Multiple Data (SIMD) extensions, are emerging as an attractive
way to boost performance. The use of parallelism, rather than a high clock rate,
keeps power consumption down, and the simplicity of the data parallel execution
model avoids expensive chip and power costs that arise from dynamic parallelism
discovery in superscalar architectures. Data parallel architectures push the paral-
lelism discovery problem to the compiler and algorithm designer, and while there
are many algorithms in scientific computing and media processing that exhibit ex-
tensive data parallelism (see Section 1.3), some algorithms do not fit. In this thesis,
we explore the use of data parallelism in ASR, using a vector instruction set as our

test vehicle.



CHAPTER 1. INTRODUCTION 3

Although vector processors generally will execute non-vector code, efficiency on
such code is lower than with vectorized code. Amdahl’s Law [4] tells us that the
speedup we can expect on a vector processor will be limited by the amount of non-
vector code in the system. The programming challenge is therefore to discover paral-
lelism in as many parts of the application as possible. Software infrastructure, such
as hardware-specific math libraries and vectorizing compilers, ease some of these
difficulties by providing ready-made vectorized code for some part of the applica-
tion, but typically the core algorithms must be ported to run efficiently on vector

Processors.

For this thesis, vectorized algorithms were developed for a particular ASR system
using a vector simulation library. For each algorithm, the vectorized versions were
compared to an equivalent scalar algorithm. Results in each case were identical, vali-
dating the correctness of the vector algorithms. Where relevant, different algorithms

were developed to exploit varying architectural features (e.g. vector length).

The remainder of this chapter provides an overview of vector architectures, in-
cluding some history. Chapter 2 describes the vector simulation library that was
designed and implemented as part of this thesis. Chapter 3 presents a high level view
of a speech system, and forms a roadmap for the chapters that follow it. Chapters 4,
5, 6, and 7 contain details about the various components of a speech recognition sys-
tem designed to run on vector architectures. Finally, Chapter 8 contains conclusions

and future work.

1.2 Vector Processors

A vector processor implements a type of data parallelism. Instead of registers
holding a single value, vector registers hold multiple values. Vector instructions then
operate on all the values, conceptually simultaneously. Figure 1.1 compares scalar

addition on scalar registers with vector addition on vector registers.



CHAPTER 1. INTRODUCTION 4

Scalar Vector
Ri| . [R2|_ [R3 Vi V2 V3
10 317113 6 0 6
9 9 18
4 10 14
13| 4
3 3 6
5 6 11
13 9 22

Figure 1.1: Comparison of a scalar operation and a vector operation.

1.2.1 Advantages of Vector Processors

Since the vector instructions explicitly expose data parallelism, it is possible to
execute the different elements of a vector operation simultaneously. This improves
absolute performance with a modest increase in processor complexity [42]. Fur-
thermore, adding functional units® to the chip to allow more vector elements to be
executed in parallel can be done fairly easily, as the layout of these additional units is
quite regular [35] [7] [39]. The energy consumption can also be made fairly moderate

compared with conventional designs.

Another bottleneck on conventional processors, particularly in terms of power
consumption, is instruction dispatch [53]. Instruction dispatch is the portion of the
pipeline where the instructions are decoded and sent to the functional units. It can
be a major consumer of energy in conventional designs, as it cannot be parallelized,

and therefore must run at the full clock speed of the chip.

Since a single vector instruction can potentially cause a large number of arith-

metic operations to be initiated, the number of instructions per operation is reduced

LA functional unit is a sub-component of the processor that performs functions such as arith-
metic, memory access, etc.



CHAPTER 1. INTRODUCTION 5

on a vector processor. This eases the bottleneck at instruction dispatch.

Vector processors can also help with the so-called memory /processor performance
gap. As the clock speed of conventional processors has increased, memory latency
have not kept pace. This performance gap limits the efficiency of conventional pro-

cessors on memory intensive tasks [26].

The fact that a single vector instruction can spawn a large number of arith-
metic instruction allows efficient pipelining of vector operations. The resulting long
pipelines allow memory latency to be hidden, as more memory operations can be “in

process” as earlier arithmetic operations complete.

The actual speedup of a particular architecture due to vectorization is dependent
both on the algorithm and on low level details of the microarchitecture (e.g. memory
hierarchy, bus size, clock speed, etc.). A truly fair comparison requires porting the
algorithm to both the vector architecture and to an equivalent scalar architecture
(e.g. same memory subsystem, same clock rate, etc.). Different optimizations of the
algorithm would be required for the scalar and vector cases. Such detailed studies
are rare, and are certainly beyond the scope of this thesis. Where available, relevant

citations will be quoted below.

1.2.2 Extensions to Conventional Architectures

All of the major chip vendors provide vector extensions to their desktop pro-
cessors. These vector extensions are implemented primarily using components that
already exist on the chip. For example, vector arithmetic is performed using the
existing arithmetic logic units (ALUs), but with multiple elements of lower precision
types. So a 128 bit ALU might perform 16 simultaneous operations on 8 bit data, or
4 simultaneous operations on 32 bit data, etc. Ideally, the logic to control the opera-
tions is the only significant addition to the chip. In many cases, the additional logic
requires only a tiny increase (e.g. 0.1% [45]) in the chip area over the conventional

design.

With this approach, the number of vector registers is an issue. More vector



CHAPTER 1. INTRODUCTION 6

registers make it easier to code, and can reduce memory bottlenecks by providing
more on-chip storage. However, more registers means more chip area. The size of
the registers is also important. More bits in the registers allow more elements to be

operated upon at once.

The number of operations that can be performed per clock cycle determines the
overall maximum speedup over conventional designs. Note that this does not take
into account latency, the amount of time it takes a single instruction to complete.
Also, the peak performance may be difficult to achieve, as it is usually achieved with

a combination of multiply-adds and memory operations.

Table 1.1 provides some details on selected vector extensions to conventional

architectures.

Vendor Name Citation | # of registers | Bits/register | Max Ops/cycle
HP MAX [44] 32 64 1
Tntel MMX [55] 8 64 2
Intel SSE [59] 8 128 4
Motorola AltiVec [50] 32 128 8
Sun VIS 3] 32 64 10

Table 1.1: Some details on selected vector extensions.

Since one of the goals of the vector extension design is to minimize the addi-
tional chip area, the vector extensions typically do not implement all possible vector
instructions. For example, scalar/vector addition, where a scalar is added to each
element of a vector, is not generally available. Instead, an instruction is provided
that copies a scalar to all elements of a vector, and a vector/vector operation is
provided. In Chapter 2, which provides information on the vector simulator used in

this research, details will be provided as needed.

In [1], a vector speedup of 2.1x was reported on matrix-matrix multiply for Intel
SSE compared to a highly optimized scalar version. [42] reports a speedup of 1.9-
2.7x for HP MAX on a variety of video encoding benchmarks. [60] reports 1.1-4.2x



CHAPTER 1. INTRODUCTION 7

speedup for Sun VIS on a variety of video and image processing benchmarks. Anec-
dotal evidence seems to support the 2—4x range for speedups of highly vectorizable

code (e.g. matrix operations) on conventional architectures with vector extensions.

1.2.3 Supercomputers

Vector processors have a long and successful history in supercomputers. Of the
early vector supercomputers, the Cray-1 is probably the best known. Later machines
combined multiple processors, each itself a vector processor. In the mid 80s, several
so-called “mini-supercomputers” were released that also contained vector processors
[56].

Table 1.2 lists some relevant details on a few of the major vector supercomputers.
The table lists the year introduced, the clock rate in MHz, the number of vector

registers, the number of elements per register?, and the peak operations per clock

cycle.
Machine Year Cite | Clock | # of regs | Elems/reg | Ops/cycle
CRAY-1 1976  [64] 80 8 64 4
Hitachi S810 1983  [46] 53 32 256 12
Fujitsu VP2600 1989  [72] 312 64 256 16
NEC SX-3 1990 [73] 345 72 256 16
CRAY X1 2002 [52] 800 32 64 16
NEC SX-6 2002 [52] 500 72 256 16

Table 1.2: Some details on selected vector supercomputers.

Vector supercomputers typically implement a very complete set of vector instruc-

tions, since the goal is maximal absolute performance rather than minimal chip area.

The introduction of inexpensive and fast microprocessors spelled the end of an era

2All machines use 64 bit data types. Note also that the Fujitsu VP series has configurable
registers. The number of registers and number of elements can be adjusted as long as the total is
16K.



CHAPTER 1. INTRODUCTION 8

for vector supercomputers. Although vector supercomputers are still being produced
(the NEC SX-8 was announced as I was writing this paragraph), so-called “scalar
parallel]” machines have eclipsed pure vector supercomputers for most applications.
These machines consist of large numbers of scalar processors, often connected with
a fast bus or even a network. These systems are typically much less expensive than
the traditional vector supercomputer, mostly because of the commodity nature of
their components. Also, memory for the vector supercomputers is typically quite
expensive compared to memory cost for scalar parallel machines, as the latter can

use commodity memory.

Nevertheless, vector processors will continue to fill a role in the supercomputer
market. First, some tasks are very difficult to implement on a multiprocessor ma-
chine. Second, a combination of approaches, where each node of a multi-processor
consists of a commodity-level vector processor, could yield a system with very high
performance. Although no computers on the market currently fill this niche, I believe

it is only a matter of time until such a machine is available.

Many papers have been written on vectorization methods for supercomputers.
However, only a few present a careful comparison with scalar algorithms on the
same architecture. In [5], a vectorized garbage collector was implemented. A vector
speedup of 9x was reported vs. a scalar algorithm on the same architecture. In [20],
performance of compiled code achieved a maximum of a 6x speedup. An anecdotal
rule of thumb seems to be that a speedup of around 5—10x can be expected on

highly vectorizable code on vector supercomputers.

1.2.4 Vector Microprocessors

In addition to vector supercomputers, microprocessors have also been constructed
that implement vector instructions. Table 1.3 provides some details on two such

processors, both developed as part academic research.

Torrent-0 only implements 32 bit integer and fixed point arithmetic, while IRAM
supports 16, 32, and 64 bit integer, fixed point, and floating point arithmetic. Also



CHAPTER 1. INTRODUCTION 9

Name Year Citation | # of regs | Bits/reg Clock | Ops/cycle
Torrent-0 1995 [7] 16 512 | 40 MHz 24
IRAM 2002 [40] 32 2048 | 200 MHz 48

Table 1.3: Some details on vector microprocessors.

of note is that IRAM is implemented with “processor in memory” (PIM), where the
processor and memory reside on the same chip. This has advantages for power con-
sumption, memory latency, memory bandwidth, and also allows finer architectural
control of memory access patterns. Both microprocessors implement a full set of
vector operations, with IRAM also providing a few specialized operations (e.g. for

reductions and Fast Fourier Transforms). See Chapter 2 for details.

Note the very high operations per clock cycle. These numbers are the maximal
achievable, and require a particular mix of operations. For example, on Torrent-0,
the 24 operations must be 8 multiplies, 8 adds, and 8 memory operations. If an
algorithm does not have this balance of operations, the actual performance will be

less.

[7] reported results for a carefully conducted comparison of vector vs. scalar
algorithms (the SPECint95 benchmark) on Torrent-0. For the most vectorizable
components of the benchmarks, vector speedups of 8-14x were reported. Given the
similarity in architecture between IRAM and Torrent-0, one would expect similar
(or better) results on IRAM. In fact, [39] reports results for a set of embedded
benchmarks on IRAM and for a similar scalar processor, the NEC MIPS VR5000.
Although the benchmarks were run on a simulator of IRAM, and the NEC MIPS
VR5000 is more capable than a scalar version of IRAMS3, the reported results were

also in the 8-14x range.

3The VR5000 is a dual-issue MIPS processor running at 250MHz. It also has cache, while IRAM
has no cache for vector loads and stores.



CHAPTER 1. INTRODUCTION 10

1.2.5 Special Purpose Hardware

Several video cards and game consoles use vector processors. Although details
on the video cards is typically proprietary, Sony provides many details on the archi-

tecture of the Playstation II [66].

The Playstation II uses two architecturally similar vector processors. One is
highly specialized for computer graphics rendering, and is not of interest for the
current discussion. The other is a general purpose vector processor, tightly coupled
to a conventional scalar processor. The vector processors has 32 vector registers.
Each register element consists of 128 bits. An element can hold integer types of 8,
16, 32, or 64 bits, or a 32 bit floating point type. Peak performance is 8 operations
per clock cycle. The memory subsystem is quite complex, including local caches for
the different processors, shared caches, scratch RAM, etc. It also implements some
highly specialized instructions that are useful in computer graphics (e.g. reciprocal

square-root).

Since special purpose hardware rarely has any scalar equivalent, it is quite difficult
to compute vector speedups. For the Playstation II, anecdotal reports of 5-8x have

been circulated, but I know of no published results.

1.3 Related Work

Much work has been done on porting “multimedia” algorithms to particular
vector architectures. Many of these algorithms are similar in nature to parts of
a speech recognition system. Particularly successful work includes video encoding
[43] [70] [67] [51], graphics transformations [70], and basic linear algebra subroutines
(BLAS) [10] [6] [30]. References to previous work on architecture-specific algorithms

that are presented in this thesis appear in the appropriate chapters.



11

Chapter 2

Vector Simulation Library

A vector simulation library was designed and implemented as part of this thesis.
It enables us to simulate, at a coarse level, many different architectural features
of vector processors. The vector simulator implements, as a C library, many of
the common opcodes that are present in a vector architecture. The library does
not attempt to simulate the performance of any particular architecture (e.g. cache,
memory, chaining behavior, etc.). Such simulation is quite complex and is different
for every architecture. Instead, the library allows simulation of a subset of the

features of a vector processor.

First, the simulator assumes that the architecture is register-based. Each register
holds not just a single value, as a scalar processor’s register would hold, but rather a
set of values. Vector instructions operate on vector registers in a fashion analogous to
scalar instructions operating on scalar registers, except that elements are considered
pairwise. So, for example, a vector-vector add takes two registers as input, computes

the pairwise sum of each of the elements, and stores the results in another vector.

Each architecture has a maximum possible number of elements per vector register,
known as the maximum vector length (MVL). On some architectures, this value is
available either in a register or by using an instruction. This allows portability of
the software across hardware with the same ISA (Instruction Set Architecture) but

different MVL (maximum vector length). In other architectures, MVL is assumed to



CHAPTER 2. VECTOR SIMULATION LIBRARY 12

be known (e.g. at compile time). Although the vector simulation library does allow

access to MVL at run-time, none of the algorithms depend on this feature.

The instructions in a vector architecture do not necessarily operate on all MVL
elements. First, the programmer can set the vector length. The vector length is
specified either using an operand to the instruction, or, more commonly, by setting
a control register to the desired vector length. Typically, if one attempts to set the
length to a value greater than MVL, then either an exception is raised or the vector
length is set to MVL. The latter allows code to be written that is independent of
MVL. All instructions in the simulator operate only on vector elements 1 through the

vector length.

In addition to setting the vector length, some architectures allow a mask to
be specified. The mask is itself a vector of length MVL. If a mask is used for an
instruction, then only those elements for which the mask has a non-zero element are
touched. The mask can either be an operand to an instruction or a mask register can
be set. In the simulator, only the instructions so indicated respect the mask settings

(e.g. vaddvv_mask).

As an example of how the vector length and masks interact, consider the following
pseudo-code for a masked, vector add. It takes two vectors as input, and computes
the pairwise sum of the elements. It assumes that the vector length is in vl and
that the mask is passed in vector register Mask (as an array of booleans). See

Algorithm 2.1.

procedure ADDVV_MASK(V'1, V2, V3, Mask)
for i < 1,vl do
if Mask; then
V1« V2, +V3;
end if
end for

end procedure

Algorithm 2.1: Masked vector-vector add




CHAPTER 2. VECTOR SIMULATION LIBRARY 13

At compile time, the user of the library can specify the precision and type of
the elements of the vectors. Although some architectures allow one to change the
precision on-the-fly, this library does not allow it. The scalar type is assumed to be
the same precision and type as the elements of the vectors. The maximum value of

the type is denoted V,,,;, while the minimum is denoted V,,;,.

2.1 Instructions in the Simulation Library

In the following list of instructions, the type vector indicates a vector register.
The type scalar indicates a scalar of the same type as the vector elements. Memory
addresses are represented either with vectorElement*, if it points to a block of
memory with the same type as the vector elements, or bytex* if it points to raw
bytes (signed 8-bit integers). In a function’s argument list, “out variable” indicates
that variable is modified by the function. “in/out” indicates that the variable should
be set before entering the function, and that it is modified by the function. With
neither “out” nor “in/out”, the variable should be set before entering the function,

but the function does not modify the variable.

integer len = getvl()

Return the current vector length.

setvl(integer len)
Sets the vector length to 1len. If len is greater than MVL, the simulation library

signals an error.

vaddvv(out vector dest, vector srcl, vector src2)

Pairwise addition of the elements of vector registers src1 and src2.

vaddsv(out vector dest, scalar srcl, vector src2)
The scalar srcl is added to separately to the elements of vector register src2,

with results stored in vector register dest.



CHAPTER 2. VECTOR SIMULATION LIBRARY 14

vaddvv_mask (out vector dest, vector srcl, vector src2, vector mask)
Masked pairwise addition of the elements of vector registers srcl and src2.
Only those elements of srcl, src2, and dest for which elements of mask are

non-zero are operated upon. See Algorithm 2.1 for an example.

vaddsv_mask (out vector dest, scalar srcl, vector src2, vector mask)
For each element of vector register src2 for which the mask is non-zero, add

the scalar srcl and store into vector register dest.

scalar v = vextract(vector src, integer position)
Set v to the value of the vector element at the given position (e.g. v =

src[position]).

vinsert(in/out vector v, scalar src, integer position)
Set the element of vector register v corresponding to the given position to

the scalar src (e.g. v[position] = src).

vload(out vector dest, vectorElement* base)

Set the vector register dest to the elements starting at memory location base.

vload_b(out vector dest, byte* base)
Same as vload, except that memory is assumed to be stored as signed 8-bit
integers, and is converted by the library on-the-fly to the internal precision and

type of the vector registers as specified at compile-time.

vloads(out vector dest, vectorElement* base, integer stride)
Strided vector load. The first element of vector register dest is set to the value
at memory location base. The second element is set to the value at base +

stride. The third is set to base + 2-stride. See Algorithm 2.2.

vloadx(out vector dest, vectorElement* base, vector offsets)
Indexed vector load. Use the elements of vector register offsets as indices

into memory starting at location base. See Algorithm 2.3.



CHAPTER 2. VECTOR SIMULATION LIBRARY 15

procedure VLOADS(dest, base, stride)
for i + 1,vl do
dest[i] < base[stride - (i — 1)]
end for

end procedure

Algorithm 2.2: Strided vector load

procedure VLOADX(dest, base, Of f sets)
for i + 1,vl do
dest[i] < base|Of f sets;]
end for

end procedure

Algorithm 2.3: Indexed vector load

vmin(out vector dest, vector srcl, vector src2)

Pairwise minimum of the elements of vector registers srcl and src2.

vmultvv(out vector dest, vector srcl, vector src2)

Pairwise multiplication of the elements of vector registers srcl and src2.

vmultsv(out vector dest, scalar srcl, vector src2)
The scalar src1 is multiplied separately by the elements of vector register src2,

with results stored in the vector dest.

scalar x = vreduce_max(vector src)

Returns the scalar that is the maximum value of all the elements in src.

scalar x = vreduce_min(vector src)

Returns the scalar that is the minimum value of all the elements in src.

scalar x = vreduce_sum(vector src)

Returns the scalar that is the sum of all the elements in src.

vsaddvv(out vector dest, vector srcl, vector src2)

Saturating vector/vector add. Same as vaddvv, except that if the sum of




CHAPTER 2. VECTOR SIMULATION LIBRARY 16

two elements is greater than the maximum or less than the minimum possible
given the precision of the representation, the resulting element is pegged to the
extreme value. For example, if the vector elements are 8 bit signed integers,

then 125 + 10 will results in 127 and —125 — 10 results in —128.

vsaddsv(out vector dest, scalar srcl, vector src2)
Saturating vector/scalar add. Same as vaddvv except that srcil is a scalar

rather than a vector.

vsets(out vector dest, scalar src)

Sets all elements of vector register dest to the scalar given by src.

vshift(out vector dest, vector src, integer nelems)
Shift the elements of vector register src by nelems to the right (or to the
left if nelems is negative). For example, if nelems equals 1, then dest[2] =

src[1], dest[3] = src[2], etc.

vstore(vector src, vectorElement* dest)

Store the elements of vector register src to memory starting at location dest.

vsubvv(out vector dest, vector srcl, vector src2)

Pairwise subtraction of of the elements of vector registers srcl and src2.

2.2 Reductions

Reductions (such as vreduce_sum) are often not available directly. On some
architectures, reductions can be implemented by a series of other specialized vector
instructions (e.g. vhalf on IRAM [48] allows many reductions in O(logn) time where
n is the vector length). On architectures where reductions are not available in any
form, scalar operations must be used. Note that the relative cost of using scalar

operations to perform a vector reduction is lower if the vector length is shorter.



CHAPTER 2. VECTOR SIMULATION LIBRARY 17

2.3 Saturating Arithmetic

Saturating arithmetic operations (such as vsaddvv) are commonly implemented
in vector architectures meant for DSP (Digital Signal Processing) applications. Other
architectures instead provide a higher precision version of arithmetic operations, fol-
lowed by an instruction that reduces the precision and simultaneously saturates.
On these architectures, saturating arithmetic typically takes two vector operations.
For architectures where neither saturating arithmetic operations nor saturating pre-
cision shifts are available, saturating arithmetic can be implemented in terms of

vector compares and vector adds.

2.4 Vector/Scalar Operations

Not all architectures provide arithmetic operations between scalars and vectors
(e.g. vaddsv, vmultsv). Instead, one must first copy a scalar to all elements of
a vector (e.g. vsets), followed by the desired vector/vector operation. This will

require one extra vector register and one extra vector operation.

2.5 Vector Shift

Vector shift is central to an efficient small vocabulary decoding algorithm (see
Chapter 6). Most architectures provide some means of computing a vector shift,
usually through a more general operation. For example, many architectures provide
a vector compress operation, which takes all elements of a vector for which the mask
is non-zero, and stores them, in order, into a vector register. By setting the mask to
0111111 ... and performing a vector compress, elements are shifted to the

left by one. All algorithms in this work use vshift, as described above.



CHAPTER 2. VECTOR SIMULATION LIBRARY 18

2.6 Memory

Although details on the efficiency of the memory subsystem are beyond the scope
of this thesis, it should be noted that unit-stride loads (vload) and stores (vstore)
are typically more efficient than strided or indexed loads and stores. The exact
trade-off is a function not only of the architecture, but also of the algorithm (for
example, some architectures can support more simultaneous unit stride loads than

strided or indexed loads).

2.7 Compound Instructions

Most architectures implement some combinations of arithmetic operations in a
single instruction. For example, since multiply-accumulate is a very common oper-
ation (see Algorithm 2.4), many architectures implement it as a single instruction.
The vector simulation library described here does not use compound instructions,

although many algorithms presented herein could benefit from them.

total <+ 0
for i <+ 1,n do
total < total + X; - Y;

end for

Algorithm 2.4: Typical multiply /accumulate

2.8 Strip-mining

It is often the case that the vector length required by an algorithm exceeds
the maximum vector length supported by the architecture. In these cases, it is
necessary to operate on “strips” of the data of length less than or equal to MVL.
If the vector length is an integer multiple of MVL, then the algorithm may simply
run on V/MVL strips of the input data. More usually, the vector length is not an




CHAPTER 2. VECTOR SIMULATION LIBRARY 19

integer multiple of MVL. Also, the vector length is not always known at compile time
(although the algorithms described herein assume that MVL is known at compile
time). The algorithm for operating on vector lengths longer than MVL is known
as strip-mining, and is exemplified in Algorithm 2.5. Note that [z] indicates the
ceiling operation, in which fractions are converted to integers by truncating towards

positive infinity. For example, [1] =1,[1.2] =2,[-1.2] = —1.

vl + L%V > Input size L modulo vector length V.
for strip < 1,[L/V| do

setvl vl > Loads the remainder first, then loads chunks of maximum length.

vload VR1, A > Load from memory location A
vmultvv VR2, VR1, VR1 > Square elements of VR1, store into VR2
vstore VR2, B > Store into memory location B

advance A by vl
advance B by vl
vl 'V

end for

Algorithm 2.5: Strip mining example. Squares elements of A, stores into B.

Some architectures have direct support for strip mining, including auto-increment
and saturation of vector lengths. Auto-increment obviates the need for the “advance
X by vl” calls). Saturation of the vector lengths causes the vector length to “max
out” at MVL. If one attempts to set the vector length to a value greater than MVL,

the vector length is set to MVL. The vector simulator assumes neither is available.

2.9 Chaining

A vector architecture does not always have to complete a vector instruction be-
fore starting on the next vector instruction. This overlap of execution is known as
“chaining”. Whether a new operation can start before an existing operation has

completed depends both on algorithmic dependencies and on architectural issues.




CHAPTER 2. VECTOR SIMULATION LIBRARY 20

If a later instruction requires the results of an earlier instruction, the later in-
struction must obviously wait until the early instruction completes. Examples in-
clude vector reductions followed by other vector operations, memory stores followed

by overlapping memory loads, etc.

In addition to intrinsic dependencies, architectural limitations can also disallow
chaining. To chain two operations, the hardware must forward the results of the ear-
lier operation to the functional units (or memory load/store) of the later operation.
Because this takes chip space, not all combinations of chaining are implemented
in any particular vector architecture. Typically, only common, easily implemented
patterns are supported. For example, many architectures will chain a memory load
followed by an arithmetic operation. The arithmetic operation can therefore start
before the final element of the vector load has completed. Note that chaining only
speeds up the processing, allowing more operations to complete in a given amount

of time. Chaining has no other effect on the code.



21

Chapter 3
Overview of Speech Recognition

To effectively describe the manner in which I modified the automatic speech
recognition (ASR) algorithms to run efficiently on vector architectures, it is necessary
to explain “conventional” ASR (automatic speech recognition) in more detail. In
this section, I will present an overview of a full speech transcription system. In
the following chapters, each component of the full system will be described in more

detail, along with specifics on running the components on vector architectures.

Signal ) Phone Prob. Decoder )
St [Processing | pheckatie | Estmators | fhore, | e | Recosnieed
9 u Neural Network
16 bits 20 floats /a/ 0.263 “the”

/e/ 0.104 “cat”

/k/  0.002 e ° ° “is”

16 kHz m every 10 ms

Figure 3.1: ICSI’s hybrid speech recognition system.

Figure 3.1 shows a block diagram of ICSI’s hybrid speech recognition system [13].
Sounds are digitized from a microphone, and are delivered to the Signal Processing
unit, typically at 16,000 values per second and 16 bits per value. Sampling at higher

rates helps very little, since meaningful features of speech generally occurs below 8



CHAPTER 3. OVERVIEW OF SPEECH RECOGNITION 22

kHz. Also, sampling with higher precision has not been shown empirically to improve

recognition accuracy.

3.1 Signal Processing

The Signal Processing unit performs feature extraction, in which the linear am-
plitude signal is converted to a sparser, spectral-like representation. Typically, the
Signal Processor operates on overlapping time windows of 20-32 ms, and produces
something like 20 “features” at every time step (typically 8-12 ms). The purpose of
the Signal Processor is simply to produce features on which the later processing can
operate. While the raw digitized waveform contains all the available information
about the acoustic signal, as a practical matter, signal processing is critical. See

Chapter 4 for more details.

3.2 Phone Probability Estimation

From the Signal Processor, the features representing a particular time interval are
sent to the Phone! Probability estimator. This component estimates the probability
that the given features represent a particular sound or combination of sounds in
the language. For each sound or combination of sounds, the Phone Probability
Estimator outputs a value between 0.0 and 1.0, once every time interval. Since the
goal is to produce probabilities, the sum of the probabilities of all sounds in a given
time interval should equal 1.0. Each phone probability is typically divided by its
prior probability, yielding a scaled version of the emission likelihood that is used by

the decoder component.

State of the art systems typically use a large number of context dependent phones

[19] (e.g. /a/ preceded by a vowel and followed by a dental consonant) and Gaussian

LA phoneme is the minimal speech sound which distinguishes two words (e.g. “Sat” vs. “Cat”).
Allophones are variant pronunciations of a phoneme, often dependent on context (e.g. “Sat” vs.
“waS”). A phone is a set of allophones.



CHAPTER 3. OVERVIEW OF SPEECH RECOGNITION 23

mixture models [58] to estimate their likelihoods®. Other groups have successfully
used recurrent neural networks [14], decision trees [22], and support vector machines
[57]. Although any standard machine learning algorithm can be used, Gaussian

mixtures currently provide the most accurate systems.

At ICSI, we implement the Phone Probability Estimator using between 46 and 64
context independent phones and a multi-layer perceptron neural network to estimate
their probabilities [12]. Accuracy suffers somewhat compared to context dependent
Gaussian mixtures, but the system is smaller and simpler. Also, the vectorization
methods presented here would be quite similar for a context dependent Gaussian
mixture system, as the matrix operations involved are quite similar. Finally, for
large vocabularies and conventional front ends, the Signal Processing and Phone
Probability Estimator components typically consume a small fraction of the total
computational load of a full ASR system. The decoder, described in the next section,
consumes the lion’s share. This balance can change for small vocabularies, where
the decoder consumes a relatively smaller fraction of the computational load, and
for more complex front-end (e.g. Section 5.4), where the Signal Processing and
Phone Probability Estimator components consume a relatively greater fraction of

the computational load.

Chapter 5 describes methods of running a multi-layer perceptron efficiently on

vector architectures.

3.3 Decoding

Conceptually, the decoder takes the sequences of estimates of the phone probabil-
ities, and compares them against models of every possible utterance in the language.
It then outputs the most likely utterance. In practice, of course, the search space

must be massively pruned for the process to be computationally tractable.

(phone|feature) _  P(feature|phone)
P(phone) - P(feature)

Gaussian mixture systems estimate P(feature|phone), while neural networks typically estimate
P(phone| feature).

2 Acoustic likelihoods are related by Bayes’ Rule, namely P



CHAPTER 3. OVERVIEW OF SPEECH RECOGNITION 24

The decoder is normally implemented as a search through Hidden Markov Models
(HMMs) of sub-word units (e.g. phones), with one HMM per word in the vocabulary.
The sequence of words is computed by combining the probability of each individual

word according to an HMM with the language model.

The language model provides a score for a given sequence of words based on
the likelihood of the sequence according to some model of how words group in the
language. The language model may consist of a grammar (for command-and-control
applications), or of statistics for runs of words® (for a transcription application).
Although it may be possible to vectorize the language model evaluation, it is typically
not a significant computational bottleneck. Language modeling will not be discussed

further in this thesis.

The decoder is often the most computationally and memory intensive component
of a large vocabulary ASR system. It is also the most challenging to vectorize. Chap-
ter 6 provides more details on efficient algorithms for decoding when the vocabulary
size is relatively small. Chapter 7 discusses issues when the vocabulary becomes
large. The remainder of this section describes some aspects of decoding that are

relevant to later sections.

3.3.1 Continuous vs. Discrete Decoding

Decoders can be categorized into two major types: discrete and continuous. Dis-
crete decoders only recognize words (or short phrases) spoken in isolation. Con-
tinuous decoders recognize more natural, continuous speech. A common type of
continuous decoder, called a stack decoder [54], uses a very slightly modified discrete
decoder as its innermost loop. This inner loop is also the most computationally
expensive component of a stack decoder. Therefore, if one can make a discrete ut-
terance decoder that runs efficiently on vector architectures, it would be possible to

write a continuous speech decoder that would run efficiently as well.

For purposes of this research, I restrict myself to discrete utterance decoders.

3For example, the sequence “the cat is” is much more likely to occur than “the cat blue”.



CHAPTER 3. OVERVIEW OF SPEECH RECOGNITION 25

Although there are other aspects of a continuous decoder that may be vectorizable
(e.g. A* estimation [32]), the discrete decoder is the most computationally expensive

component.

3.3.2 Dictionaries

Since one of the major factors that affect decoding is the size and composition
of the recognition dictionary, several dictionaries of different sizes were used. The
dictionaries consist of some number of words, along with one or more pronunciations

for each word. Each pronunciation consists of an ordered list of phones.

In addition to the words, the dictionaries contain information about the phones.
Each phone has a minimum duration, specified by the number of states in the phone,
as well as additional data describing the distribution of durations (see Chapter 6 for
details). All the dictionaries used the same data for the phones, derived from training

on Broadcast News [16].

Table 3.1 summarizes some of the statistics of the dictionaries used in this thesis.

The following subsections also give a brief description of the dictionaries.

Dictionary | # of words | # of prons | Longest word * # of states ®
Digits 12 12 | six 12
Numbers 30 30 | sixteen 19
Web 38 79 | sixteen 19
SmallBN 983 1000 | examinations 28
MedBN 4609 5000 | significantly 28
LargeBN 19999 32010 | telecommunications 42

Table 3.1: Dictionary statistics

4The word containing the largest number of states.
5The number of states in the word with the largest number of states.




CHAPTER 3. OVERVIEW OF SPEECH RECOGNITION 26
Digits

The Digits dictionary contains single digits from one to nine, plus “zero”, “oh”,
and “ten”. Only a single pronunciation per word is used (the pronunciation that
occurred most frequently in the training data). This dictionary could be used, for

example, in a menu system, for entering simple phone numbers, etc.

Numbers

The Numbers dictionary is similar to Digits, but contains additional words
for larger numbers (e.g. “fifteen”, “thirty”, “hundred”). It also uses only a single
pronunciation per word. It could be used for any task involving only numbers (e.g.

credit card numbers, zip codes, flight numbers, more complex menu systems, etc).

Web

This dictionary was used in a web navigation application, where every link on
a web page was supplemented with a number. In addition to the words in the
Numbers dictionary, it also contains words like “home”, “bookmarks”, “back”,
“page up”, “page down”, etc. Also, there are multiple pronunciations per word

(providing better accuracy).

Large Broadcast News

The Large Broadcast News dictionary (LargeBIN) consists of just under 20,000
words, with multiple pronunciations. It was used during the 1998 DARPA evalua-
tions for quick decoding (65,000 words is more typical of a full system).

Medium Broadcast News

The Medium Broadcast News dictionary (MedBN) is a subset of LargeBN,

with 5000 pronunciations chosen at random. Although not realistic in terms of



CHAPTER 3. OVERVIEW OF SPEECH RECOGNITION 27

content, it represents a medium sized dictionary for a dictation task.

Small Broadcast News

Called SmallBN, this dictionary is a subset of MedBN, with 1000 pronuncia-

tions chosen at random.



28

Chapter 4

Signal Processing

Since the waveform contains all the captured acoustic information, one might
think that the Signal Processing component would not be required in an ASR sys-
tem; the raw audio signal could be fed directly into the Phone Probability Estimator.
However, in practice the Signal Processing component turns out to be vitally impor-

tant in real ASR systems.

Firstly, the Signal Processing unit typically reduces the data rate of the raw au-
dio input, thereby decreasing the computational load of later processing. Secondly,
providing features that are more closely related to the desired output (phones) makes
the job of the Phone Probability Estimator much easier. For example, if spectral
features are useful for determining phone identity, one should feed spectral features
into the Phone Probability Estimator directly, rather than requiring it to learn the
mapping from the raw data to a spectrum. It is also important not to waste the
learning power of the trained system on aspects of the signal that do not gener-
alize well, like waveform shape (for which the Signal Processing unit attempts to

compensate). In practice, no working ASR system uses just the raw digitized audio.

Generally, spectral-like features fulfill the requirements of data reduction and data
representation. In fact, it is well-known that the human auditory system processes
input in a way similar to a spectral filterbank [21]. Most of the successful signal

processing front-ends used in speech recognition are at least partially based on human



CHAPTER 4. SIGNAL PROCESSING 29

auditory perception [17] [27].

Figure 4.1 shows one type of signal processing that is commonly used in speech
recognition systems, known as Mel-Frequency Cepstral Coefficients (MFCC) [17]. In
the following sections, I will outline methods of vectorizing MFCC feature genera-
tion. Other signal processing systems use similar methodologies, so much of what
is presented could easily be applied to other signal processing algorithms. Previous
work on vectorizing speech frontends on a particular architecture can be found in

[34].

Pre-emphasis Hamming window
Filters Logarithm IDCT

Wﬁ*W

Figure 4.1: Block diagram of Mel-Frequency Cepstral Coefficients algorithm.

4.1 Pre-emphasis

The first step in processing is to apply pre-emphasis to the signal. This acts
as a first order high-pass filter. The pre-emphasis is used both to filter out very
low frequency components (which typically do not contribute to the intelligibility of
speech), and to flatten spectral tilt associated with speech. It also mimics some of

the equal loudness characteristics of the human auditory system [18].



CHAPTER 4. SIGNAL PROCESSING 30

Equation 4.1 gives the formula for computing the signal taking pre-emphasis into
account. y(t) is the output signal at time frame index ¢. z(t) is the input at time
frame index ¢. z(t — 1) is the input at time frame index ¢ — 1. « is the pre-emphasis
coefficient. A typical value is a = 0.98, yielding a high-pass filter with cutoff at
about 60 Hz.

yt) =z(t) —a-z(t —1) (4.1)

Vectorizing pre-emphasis is quite easy. Simply read a chunk of data, shift it by
one, multiply by the pre-emphasis coefficient, and subtract. The only minor compli-
cation is strip-mining (see Section 2.8), since the signal will rarely be smaller than

the vector length. Algorithm 4.1 shows pseudo-code for performing pre-emphasis.

vl + L%MVL > Input size L modulo maximum vector length MVL.
f«<0 > Stores the final element of the previous strip.
for strip < 1,[L/V] do
setvl vl
vload VR1, X > Load signal from memory location X.
vshift VR2, VR1, 1 > VR2 is X shifted by 1.
vinsert VR2, f, 0 > Load the final element of the previous strip.

vmultsv VR3, «, VR2

vsubvv VR4, VR1, VR3

vstore VR4, Y > Store results into memory location Y
f < vextract VR1, vl > Set the final element of the “previous” strip.
advance X by vl

advance Y by vl

vl < MVL

end for

Algorithm 4.1: Vectorizing pre-emphasis.

The algorithm requires [L/MVL]| times through the loop, where L is the input size

(number of samples in the input utterance), and MVL is the maximum vector length.




CHAPTER 4. SIGNAL PROCESSING 31

Compared to a scalar algorithm, the only “extra” operation is a vector shift and a
vector insert. There are two vector memory operations (one load and one store), two

arithmetic vector operations, and one vector shift each time through the loop.

4.2 Windowing

Once pre-emphasis has been applied, a window is selected. A typical size for the
window is 256 samples, which, at 8 kHz sampling, equals 32 ms. Using a tapered
window removes discontinuities at the edges, and has been observed to improve
performance. In the frequency domain, this corresponds to reducing the ripples in
the frequency domain that would result from using a rectangular (untapered) window

(i.e. computing spectra from a range of points without explicit windowing).

A windowing function that is a good compromise between signal distortion and
smoothing is the raised cosine known as the Hamming window [25]. Equation 4.2

and Figure 4.2 show the function used in a Hamming window.

y(i) = 0.54 — 0.46 - cos(2mi/255) (4.2)

0.9+

0.8

0.7+

0.6

051

0.4

03

0.2

0.1

sample

Figure 4.2: Hamming windowing function.



CHAPTER 4. SIGNAL PROCESSING 32

To vectorize the application of the Hamming window, one can pre-compute the
coefficients as specified in Equation 4.2, and simply multiply them by the output of
the pre-emphasis filter. Modulo strip-mining, this can be done with a single vector
multiply. The inner loop will be called | L/MVL]| times, where L is the size of the win-
dow. Since there is only one vector arithmetic operation each time through the loop,

the bottleneck for the algorithm will be memory bandwidth on most architectures.

4.3 Filterbank

The computational bottleneck of MFCC analysis is the computation of the fil-
terbank outputs. Typically, a filterbank is implemented as a Fast Fourier Transform
(FFT), followed by an inner product with the various filters. The FFT requires
a particular pattern of strided memory access. As the FFT is an important com-
putational kernel, vector architectures quite commonly provide some level of direct
support for it. This can either be specialized addressing schemes or methods to
quickly move data in ways that facilitate the FF'T. Details of FFT implementations
are beyond the scope of this thesis, but are well documented in other works [71] [10]
8].

Once the FFT of the windowed, pre-emphasized signal is determined, the output
of the filters must be computed. For MFCC features, these are composed of a
sequence of triangular filters. Commonly, the spacing is uniform in the linear domain
under 1000 Hz, and then linear in the logarithmic domain (exponential in the linear
domain) for high frequencies. The number of filters is dependent on the bandwidth.
Figure 4.3 shows a set of filters using 5 linear and 8 logarithmic filters!. For each
filter, the inner product of the output of the FFT and the filter is computed. This

results in a single number for each filter.

1 Typically, more filters would be used. The lower number of filters makes the figure more legible.



CHAPTER 4. SIGNAL PROCESSING 33

i

0 500 1000 1500 2000 2500 3000 3500 4000

0.8

0.6

0.4

0.2

Figure 4.3: Triangular filters.

Vectorizing the filterbank

Since the input signal is discrete, usually sampled at 8 or 16 kHz, the filters can
be discrete as well. The outputs of the filterbank can therefore be computed as
0; = Z?Ll A(f) - Fi(f), where the amplitude of the output of the FFT is given by
A(f), the filter coefficient of filter 7 is given by F;(f), and filter ¢ has N; coefficients.

Given the typical filter parameters (starting frequency, spacing), NV; ranges in size
from 3 elements to about 30 elements. If MVL is in this range, an efficient vectorized
algorithm for computing the filterbank outputs is a simple strip-mined loop for each
filter, followed by vreduce_sum, a vector reduction operation (see Section 2.1). For
each filter, there is a loop that executes [L/MVL| times, where L is the size of the
filter. Each time through the loop, there are three memory accesses (two loads and
one store), one multiply, and one vector reduction. Note that the filter sizes are

known at compile time, so loop overhead can be minimized.

If MVL is much longer than the filter sizes, or if vector reductions are expensive,



CHAPTER 4. SIGNAL PROCESSING 34

the above algorithm can be wasteful. An alternative is to compute the output of
several filters at once. This requires an indexed load, which can be expensive on
some architectures. Furthermore, the product of the signal and the filters are left
in a vector register, as shown in Figure 4.4. These values from each filter must be
summed to achieve the output of the filterbank. The computation of these sums will
require almost the same amount of work as the algorithm described in the previous
paragraph. Unless vector multiplication is much more expensive than the summing,
it will be more efficient to perform the multiplication and the summing as described

in the previous paragraph.

Products from Products from Products from
Filter 1 Filter 2 Filter 3

Figure 4.4: Multiple filters per vector register.

4.4 Logarithm

Human perception of loudness is compressive, commonly simulated with a cube
root or a logarithm function. This stage mimics human perception by applying the
logarithm function to each filter output. It is not a computational bottleneck, since
the number of filters is fairly small, and the logarithm is taken independently on

each element.

If a vector implementation of this stage is required, a typical approach would
be to use a vectorized version of one of the many approximation algorithms for
the logarithm function. This is generally straight-forward. The only complication
involves algorithms that require table lookup. Such algorithms can be efficiently

implemented only if the indexed load operation is available. If the architecture does



CHAPTER 4. SIGNAL PROCESSING 35

not support indexed load, table-driven logarithms may be inefficient. Details of
implementation are beyond the scope of this thesis, but have been well-reported in

the literature. See, for example, [69] [37] [2].

4.5 DCT

The output from the logarithm stage has high feature-to-feature correlation. To
reduce this correlation, it is typical to transform the data. At the same time, the
number of outputs can be reduced. A common transform that achieves these goals is
the discrete cosine transform [18|. One may implement the discrete cosine function
using a “fast” algorithm very similar to the fast Fourier transform described in
Section 4.3. Again, details are out of scope for this thesis. Typically, the first 8 to
14 coefficients of the output of the DCT are used for further processing, as described

in the following chapters.

4.6 Summary

All the elements of the Signal Processing component vectorize well. The FFT is
the most costly element, but is usually optimized on vector architectures. As a result,
the Signal Processing component tends to be a minor addition to the computational
load of a vectorized ASR system. This balance can shift if multiple signal processing
components are used (see Section 5.4). Also, for small vocabulary systems, the Signal

Processing component can be a higher fraction of the total computation.



36

Chapter 5

Phone Probability Estimator

The purpose of the Phone Probability Estimator is to output the probability
of each sound in the language given a sub-sample of the input features. Since the
context around a sub-sample provides additional information about the identity of
the central element, systems often take as input not only the features output from
the Signal Processing unit for the current time interval, but also some number of
frames before and after the current time interval. Given this context window, the
Phone Probability Estimator outputs a vector consisting of numbers between 0 and
1, representing the probability of each phone in the language for the current time
interval. Since the outputs are probabilities, and there is a fixed set of possible
outputs, the probabilities must sum to 1.0. The number of distinct phones for
our standard English language systems (and therefore the output vector length) is

between 46 and 64.

As mentioned in Chapter 3, any probabilistic machine-learning algorithm can be
used to compute this mapping between input features and output probabilities. At
ICSI, we have used multi-layer perceptrons (MLP), which work well on a variety
of problems [12]. Furthermore, MLPs (multi-layer perceptrons) are easy to vector-
ize, and will therefore run efficiently on vector architectures. Similar methods can

generally be used for other machine learning algorithms.

A typical MLP Phone Probability Estimator that was used in the Broadcast



CHAPTER 5. PHONE PROBABILITY ESTIMATOR

37

Output Layer
56 Phones

Hidden Layer

2000 Fully
Connected Units

NV Vv Input Layer
. , V' 9 Frames of 20 Features
T Total of 180 Units
- Current Frame N
Left Context o Y o Right Context
| S T T N NN N

40ms 30ms  20ms  10ms 10ms  20ms 30ms 40ms

Figure 5.1: Block diagram of an MLP Phone Probability Estimator.



CHAPTER 5. PHONE PROBABILITY ESTIMATOR 38

News evaluation [16] is shown in Figure 5.1. A context window of 9 frames and 20
features for a total of 180 input units is shown. The 180 input units are multiplied by
the input-to-hidden weight matrix Wj;, a matrix consisting of 2000 x 180 numbers.
This yields 2000 numbers at the hidden layer. A sigmoid function is applied to these
2000 numbers, producing the hidden layer values. The processes is repeated with
the 56 x 2000 hidden-to-output weight matrix W, followed by a soft-max function.
The soft-max takes N inputs ¢; and produces N outputs p; according to equation
Equation 5.1. It is easy to see that > p; = 1. These outputs can be interpreted as
probabilities [15].

eqi
pi = 729,:1 s (5.1)

The sigmoid and softmax functions are not typically the computational bottle-
neck of the MLP computation. However, if we fail to vectorize them, Amdahl’s Law
4] tells us that they will eventually dominate as the other parts of the algorithm
become more efficient. Both sigmoid and softmax require a vectorized version of the
exponential function. Similar to the discussion of the logarithm in Section 4.4, the
exponential is generally easy to vectorize, although if a table-lookup algorithm is
used, architectures that do not support indexed loads will perform poorly. Details
of implementation are out of scope, but have been well-covered in the literature [37]
2] [65].

The MLP must be trained on large amounts of data that are typical of the
conditions in which the application will be used. The training procedure picks values
for Wp; and W, such that the mapping between the input features and the output
probabilities is as accurate as possible on the training set. Training procedures
for MLPs are out of scope for this thesis, but are computationally similar to the

procedure described in this chapter.



CHAPTER 5. PHONE PROBABILITY ESTIMATOR 39

5.1 Matrix-Matrix Multiply

For efficiency, several input vectors are usually queued up, and a matrix-matrix
multiply (rather than a matrix-vector multiply) is performed. This matrix-matrix

multiply is the computational bottleneck of the Phone Probability Estimator.

Previous work on matrix-matrix multiply for specific vector architectures can be
found in [30], [1], and others. In this section, I will discuss methods of choosing a
particular matrix-matrix multiply algorithm based on architectural variables such as

vector length and the efficiency of various operations (e.g. vector reduce).

Matrix-matrix multiply is a very regular operation. Also, the number of arith-
metic operations is O(n®) while the theoretical minimum number of memory accesses
is O(n?) (where n is, for example, the maximal dimension of the matrix). For maxi-
mal performance, it is therefore very important to access memory as infrequently as
possible. Locality of reference becomes quite important — register access is much
faster than cache; cache is faster than memory, etc. The memory subsystem therefore

is crucial to the performance of a matrix-matrix multiply on most architectures [41].

To achieve higher performance (through locality of reference) given the memory

hierarchy, the matrices are typically broken down into submatrices.

ago o1 boo  bo1 o * boo + @o1 - bio  ago - bo1 + agy - b1y
A * B < =
G an bio b1 aio - boo + @11 - bro @10 - bor + a1 - bu
In the example above, each element (e.g. ap;) can itself be a matrix, and the “.”
operator represents a matrix-matrix multiply. The algorithm then recursively divides
the matrix. Efficiency is improved because of data locality. Different divisions can
be performed such that, at any point in the algorithm, the current matrix block fits
into one level of the memory hierarchy. For example, at the lowest level, the block

should fit into the registers of the processor. The next level up might fit into the L1

cache, etc.

It is also possible to organize the recursion to trade off recursive calls to the

matrix multiply for additions. These so-called “Strassen-like” algorithms have better



CHAPTER 5. PHONE PROBABILITY ESTIMATOR 40

asymptotic performance (O(n'°92") instead of O(n?)), but have additional overhead
compared to the standard algorithm [68] [9]. Typically, only very large matrices
benefit from Strassen-like algorithms, and even then only for the first few iterations

of the recursion [29].

Optimizing for each particular memory subsystem is itself quite difficult, as the
best approach is dependent on many fine-grain details of the memory system design.
Results from one architecture do not necessarily translate into other architecture.
Therefore, we instead advocate a “generate-and-test” approach, whereby various
choices of the blocking sizes are automatically generated and benchmarked, and the
most efficient one is chosen for a particular architecture [11] [74]. The vectorized
matrix-matrix multiply will simply be the final, smallest block size. Implementing
a full generate-and-test methodology is beyond the scope of this thesis. Instead, I

present various schemes for implementing the lowest level of the algorithm.

The problem is to compute the product of an input matrix I of size N x K and
a weight matrix W of size K x M, yielding an output matrix of size N x M. Note
that N, M, and K are the sizes of the lowest level blocks in the generate-and-test

scheme described above.

000 001 o s e OOM IOO IO]. o .. IOK WOO WO]. v e WOM
Opw O -+ Owm B Lo Iii --- Lix Wi Wi - Wiu
Ono On1 -+ Onm Ino Ini -+ Ink Wgo Wk1 -+ Wgkn

K
Oy = > I+ Wi
k=0

A conventional scalar and naive method would be to execute the pseudo-code:
To vectorize the above, first one must decide what the vector registers should

hold. Then, one must decide the order of the loops (the above order is just one of 6

possible orders even for the naive algorithm).



CHAPTER 5. PHONE PROBABILITY ESTIMATOR 41

for n <+ 0,N do
for m + 0, M do
Out[n, m] < 0.0
for k£ <+ 0,K do
Out[n, m| < Out[n,m| + In[n, k| - Weight[k, m]
end for
end for

end for

Algorithm 5.1: Conventional naive scalar matrix multiply

5.2 Vectorizing by K

Perhaps the most obvious way to organize the algorithm is to vectorize by the
inner, common dimension K. Rows of the input matrix I and columns of the weight
matrix W are stored in vector registers. A single scalar value of the output is
computed at a time. One may execute either the N loop or the M loop first. See

Algorithm 5.2 and Algorithm 5.3.

for n <+ 0,N do
for m < 0, M do
Out[n, m| = InnerProduct(In|n,:|, Weight|[:, m|)
end for

end for

Algorithm 5.2: Matrix multiply using inner product, N followed M

for m < 0, M do
for n < 0,N do
Out[n, m] = InnerProduct(In[n,:], Weight[:, m])
end for

end for

Algorithm 5.3: Matrix multiply using inner product, M followed N

Which ordering of the loops is more efficient will depend on details of the memory

subsystem and how the matrices are stored in memory. One or the other will likely




CHAPTER 5. PHONE PROBABILITY ESTIMATOR 42

result in fewer bank conflicts [23]. We recommend including both orders in the

“generate-and-test” methodology, and picking the better of the two.

The problem is now reduced to an efficient implementation of an inner product

on a vector architecture.

The inner product takes two equal-length vectors as input and produces a scalar
as output. With no error checking, the pseudo-code for a scalar algorithm is shown

in Algorithm 5.4.

procedure INNERPRODUCT(a, b)
sum < 0
for i+ 1,L do > L is the input length
sum <— sum + al[i] - b[i
end for
return sum

end procedure

Algorithm 5.4: Scalar inner product

The first architectural consideration is the vector length. Usually, the greater the
vector length, the higher the efficiency of the architecture. However, shorter vector
lengths are typically easier to vectorize, since strip-mining overhead can be avoided.

The inner product is no exception.

If the vector length is longer than the size of the input, then a vectorized version

of Algorithm 5.4 might read something like that of Algorithm 5.5.

procedure INNERPRODUCT(A, B)
setvl vl > vl is the length of A and B
vload VR1, A
vload VR2, B
vmultvv VR3, VR1, VR2
return vreduce_sum(VR3)

end procedure

Algorithm 5.5: Simple vector inner product




CHAPTER 5. PHONE PROBABILITY ESTIMATOR 43

Algorithm 5.5 depends on vreduce sum being both available and efficient on
the architecture (vreduce_sum simply sums all the elements of a vector and returns
the scalar result). Frequently, such a function is unavailable as a primitive in the
architecture, although methods of implementing it efficiently are often available. See

Section 2.2.

If the vector length is shorter than the size of the input (the more common case),
then the inner loop of the vectorized algorithm must be strip-mined (see Section 2.8).
The partial sums can be stored in a vector register. The final sum must then be

reduced. Algorithm 5.6 demonstrates this.

procedure INNERPRODUCT(A, B)
setvl V > VR4 collects the partial sums. Set all elements to zero.
vsets VR4, 0
vl +— L%V > Input size L modulo vector length V.
for strip < 1,[L/V| do
setvl vl
vload VR1, A
vload VR2, B
vmultvv VR3, VR1, VR2;
vaddvv VR4, VR4, VR3;
advance A by vl
advance B by vl
vl 'V
end for
return vreduce_sum(VR4)

end procedure

Algorithm 5.6: Strip-mined inner product code

As you can see, even when the vector length is shorter than the input length,
InnerProduct still requires a call to vreduce_sum. However, it only requires one call
per call to InnerProduct, whereas many multiply /adds are performed. Therefore,

this algorithm can be quite efficient if the vector length is short relative to both the




CHAPTER 5. PHONE PROBABILITY ESTIMATOR 44

input size and the cost of vreduce_sum.

Performance

To perform InnerProduct requires 2 - [L/V'] vector loads, [L/V| vector multi-
plies, [L/V| vector adds, and one vreduce_sum. The vector length in all cases is the
maximal vector length V| except for two vector loads, one vector multiply, and one

vector add (for the case where V' does not evenly divide L).

When calling InnerProduct in the inner loop of a matrix-matrix multiply, note
that the columns of the second matrix require a strided load. If strided loads are
expensive, it is possible to store the transpose of the second matrix, and use unit

stride instead. InnerProduct must be called a total of M - N times.

A small performance gain can be obtained if the matrix sizes are known at compile
time. This is the usual case, since the generate-and-test methodology will pick a
particular size for the lowest level blocks. Strip-mining can be avoided if V' divides L
evenly, and the loops can be unrolled. Better performance can be achieved on some

architectures through software pipelining [3].

The algorithm uses four vector registers. There is one memory access per arith-

metic operation, leading to O(n®) memory accesses.

Cache Considerations

Since the size and order of evaluation of the matrix-matrix multiply is computed
during the generate-and-test cycle, cache considerations are not directly an issue.
The best algorithm should be selected given your memory architecture. That being
said, a few general comments can be made. If the local cache is too small to hold the
intermediate results (about 4 times the vector length for the inner product version
of Algorithm 5.6), then the best block size will probably be the vector length. This
allows an inner loop with no strip-mining. Typically this will only be the case if

there is no cache at all. If the caches are large enough to hold all the matrices, then



CHAPTER 5. PHONE PROBABILITY ESTIMATOR 45

the block size will probably be the matrix size.

Chaining Behavior

The inner loop is a typical load/operate loop. As such, most architectures try to
optimize chaining behavior for such cases. Loop unrolling and software pipeline can

improve the chaining. See Section 2.9 for discussion of chaining.

Register Blocking

The algorithm as described above requires two memory accesses for each output
value. Since memory access is usually quite a bit slower than arithmetic operations,
this can be quite inefficient. One method of improving performance is to store
elements of the matrices in the vector registers — in effect, using the registers as a
cache. This is known as register blocking [74] or tiling. The basic idea is presented in
Figure 5.2. Rows of the input matrix and a column of the weight matrix are stored
in vector registers. Algorithm 5.7 shows a fragment of the code that computes the
matrix product (strip-mining is omitted for brevity). As the number of available
registers increases, so too does the size of the algorithm. However, the code is quite

regular, and can be generated with an automated procedure.

With this algorithm, only O(n?) memory accesses are required, rather than the
O(n®) of the previous algorithm. The drawback is that there must be enough vector
registers to hold the entire sub-matrix. On architectures with plentiful registers, it
is common that the block size that allows the entire sub-matrix to be stored will be

the most efficient size, as computed by the generate-and-test method.

5.3 Vectorizing by M or N

Another way to organize the vectorization is to vectorize over one of the “outer”

dimensions, M or N. The algorithms to vectorize by M and N are quite similar. In



CHAPTER 5. PHONE PROBABILITY ESTIMATOR

VRl = Qoo Qo1 Qo2 bOO b01 b02
VR2 = a1 Q11 Q12 b10 bll b12
VR3 = Ayp Q21 Q22 bao  bar  ba

VR4 VR5 VR6

Figure 5.2: Register blocking example.

setvl K

vload VR1, In

vloads VR4, Weight, M
vmultvv VR0, VR1, VR4
Out[1, 1] = vreduce_sum VRO
advance Weight by 1

vloads VRbH, Weight, M
vmultvv VR0, VR1, VRS
Out[1, 2] = vreduce_sum VRO
advance Weight by 1

vloads VR6, Weight, M
vmultvv VR0, VR1, VR6
Out[1, 3] = vreduce_sum VRO
advance In by K

vload VR2, In

vmultvv VR0, VR2, VR4
Out(2, 1] = vreduce_sum VRO

etc.

Algorithm 5.7: Register blocked matrix multiply.




CHAPTER 5. PHONE PROBABILITY ESTIMATOR 47

this section, I will only describe vectorization by M. Whether to vectorize by N or
M will again depend on the details of the architecture, and should be decided with

the same generate-and-test approach as described above.

When vectorizing by M, rows of the second matrix are stored in a vector. This
vector is multiplied by a scalar taken from the first matrix. The resulting vectors

are summed and stored into rows of the output matrix.
K
On,: - Z In,k ’ Wk,:
k=0

Vectorized pseudocode for this ordering can be seen in Algorithm 5.8. For brevity,

strip-mining has not been included.

VR1 — A row from the Weight matrix.
VR2 — A scalar from In times VRI.
VR3 — A row of the Out matrix.

setvl M > Row size of output.
for n <+ 1,N do
vsets VR3, 0
for k£ <+ 1,K do
vload VR1, Weight
vmultsv VR2, In[n, k|, VR1
vaddvv VR3, VR2, VR3
end for
vstore VR3, Out
advance Weight by M
advance Out by M

end for

Algorithm 5.8: Vectorizing by M



CHAPTER 5. PHONE PROBABILITY ESTIMATOR 48

Performance

The number of operations performed by this ordering is exactly the same as in
Section 5.2 for vectorizing by K. However, no vector reduction operation is needed.
This ordering is therefore a better match for architectures in which reductions are

unavailable or expensive.

Cache, Chaining, Register Blocking

Even if reductions are cheap and available, it is possible that this ordering will
perform better, depending on the details of the memory hierarchy. The same ar-
guments as in Section 5.2 apply. Once again, generate-and-test is the method of

choice.

The innermost loop of Algorithm 5.8 consists of a load, a multiply, and an add.
On most architectures, this is extremely efficient, both in terms of chaining, and
possibly in terms of compound instructions (e.g. multiply-accumulate). Again, loop
unrolling, software pipelining, and register blocking can improve the performance.

See Section 5.2.

5.4 Combination of Systems

Previous work has shown the efficacy of combining multiple representations of
the audio stream [31]. Multiple frontends, each with its own phone probability es-
timator, are combined. Figure 5.3 shows on example of combining an MFCC [17]
system and a PLP [27] system. The phone probabilities can be combined either
using a simple averaging rule, or with more complex methods [49] [36]. Such sys-
tems consistently show improvements over either system alone, especially on unseen

acoustic conditions.

Because the Signal Processing and Phone Probability Estimating components

are both highly compatible with vector architectures, the cost of including multiple



CHAPTER 5. PHONE PROBABILITY ESTIMATOR 49

MECC Phone Prob.
Estimator
Neural Network

Speech : s Decoder
Signal LaNvaN \ HMM
PLP Phon_e Prob. —/ % z B
Estimator
Neural Network

Figure 5.3: Combination of an MFCC system and a PLP system.

copies of these components is usually small compared to the cost of the decoder. Once
again, this balance can shift for small vocabularies, where the Signal Processing and
Phone Probability Estimating components take up a relatively larger fraction of the

total computational load.



50

Chapter 6
Small Vocabulary Decoder

In this section, small vocabulary decoders are described. These decoders take
a list of words and output the most likely words given the probability stream from
the Phone Probability Estimator. Note that by “small vocabulary” I do not mean
simply that the dictionary has fewer than N words. Rather, the algorithms described
in this section evaluate the probability of every word in the dictionary. As the
dictionary gets large, this becomes inefficient compared to methods that are able
to avoid evaluating low probability words. The advantage of the former type of
algorithm in the current context is that they tend to be much more regular, and
therefore more amenable to efficient execution on vector processors. For details on

large vocabularies, where avoiding extraneous computations is critical, see Chapter 7.

Since the task of the discrete utterance decoder is to compute the likelihood that
a stream of phone probabilities match a word, we must start our discussion with how
words in the dictionary are modeled. In the simplest case, each word can be thought
of as consisting of a finite state machine, with one state per phone in the word, and
transitions from phone ¢ to phone ¢ and 7 + 1. Figure 6.1 shows an example of such
a finite state machine for the word “about”. The word starts in the state labeled
ax (the “uh” sound), stays there for a while, then transitions to the state b, stays
there for a while, and so on until the end of the word. In real systems, a phone is

usually composed of several states, but the left to right ordering is maintained. By



CHAPTER 6. SMALL VOCABULARY DECODER 51

using several states per phone, we impose a minimum duration on the phone equal

to the number of states in the phone multiplied by the duration per state.

-

Figure 6.1: Finite state diagram of the word “about”.

Given the finite state machine representing a word and the phone probability
stream as output from the Phone Probability Estimator, the next task is to compute
the likelihood that the finite state machine and the phone stream match. Most ASR
systems, including ours, use the so-called “Viterbi approximation”!. The Viterbi
algorithm can be implemented as a dynamic program, as shown in Figure 6.2. Every

entry in the table is filled in according to the following rule:

E(t,s) = P(X,|S,) -max(E(t—1, s), E(t—1, s — 1)) (6.1)

where t is a time index, s is a state index, E(t, s) is the table entry at time ¢ and
state s, and P(X;|Ss) is the scaled likelihood of phone S; at time ¢ as output by the
Phone Probability Estimator.

The above procedure computes the best path through the finite state machine.
The probability of a given word is simply the value of the lower right table entry
E(tmaz, Smae)- The discrete utterance decoder computes the score for each word, and

outputs either the best word or the top few words.

!Briefly, the Viterbi method it is an approximation because it only takes into account the
likelihood of the best path, rather than incorporating the likelihood of all possible paths. See, for
example, [13] for details on the Viterbi approximation to the Hidden Markov Model.



CHAPTER 6. SMALL VOCABULARY DECODER

52

time

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

HMM state

Figure 6.2: Viterbi dynamic program for the word “about”.

highlighted.

The best path is



CHAPTER 6. SMALL VOCABULARY DECODER 53

Some Complications

There are a few complications in the actual algorithm. First, we take —log of both
sides of Equation 6.1. The multiplications become additions, and the max becomes
a min. This is done both because additions are computationally less expensive
than multiplications, and because the numerical stability of performing a sequence

of additions is better than performing a sequence of multiplications.

Another complication is that we model the durations of the phone states by
assigning a self-loop and an exit probability to the transitions in Figure 6.1. This
models the durations as an exponentially decaying distribution. Typically, both the
number of states per phone and the self-loop and exit probabilities are selected during
the training procedure. For our purposes, we will assume that this information is

part of the dictionary.

With these two changes, Equation 6.1 becomes:

E(t,s) = —log P(X¢|Ss) + min( E(t —1, s)+self;, E(t—1, s—1)+exit;_1) (6.2)

E(t, s) is the table entry for state s at time ¢, but is this time a log probability that
we are minimizing. logP is the log likelihood from the Phone Probability Estimator.
self, is the —log of the self-loop probability of state s, and exit,_; is the —log of the

exit probability of the previous state.

6.1 Vectorizing by State

There are several ways in which the discrete utterance decoder can be vectorized.
For example, one could try to vectorize along the time axis in Figure 6.2, where a
vector register would hold a column of the figure, and each element would hold a
different time. However, there is a problem with this approach. E(t, s) is a function
of E(t — 1,s). The dependency of vector element ¢ on vector element ¢ — 1 within

the vector prevents vectorization along the time axis.



CHAPTER 6. SMALL VOCABULARY DECODER 54

One could also vectorize along the state axis in Figure 6.2. A vector register

holds a row in the figure, and each element holds a different state.

One drawback of this arrangement is that words longer than MVL (where MVL is
the maximum vector length as described in Chapter 2) will not fit into a single vector
register. Although it is possible to split long words up into multiple registers and
stitch them together, the overhead reduces the efficiency of the algorithm. Therefore,

this method is not recommended for architectures with short vector lengths.

On architectures with MVL much longer than the typical number of states in a
word, the arrangement as presented is inefficient. More efficiency can be achieved if
we can increase the vector length. A simple method of extending the vector length

for vectorization by state is to put words side by side, as in Figure 6.3.

"Abbot" States "About" States

time

Figure 6.3: Viterbi table for two words, “abbott” and “about”.

Details on an algorithm to simultaneously compute the score for each word in the
figure will be presented in Section 6.1.2. Next, an algorithm is presented for picking

which words to group together.



CHAPTER 6. SMALL VOCABULARY DECODER 55

6.1.1 Bin packing

Of course, using just two words as in Figure 6.3 is unlikely to be optimal. Rather,
it is desirable to match the number of total states (the sum of the number of states in
each word) with the vector length of the architecture. This minimizes strip-mining

overhead, while maximizing the vector length.

Imagine we have N words in our dictionary. Each word 7 has n; states. We want
to arrange the words into G groups such that each group has no more than MVL total
states, while simultaneously minimizing the total number of groups. This is the
classic “bin packing” algorithm [47]. Computing the optimal case is NP-complete.
However, it has been shown that the best possible polynomial time algorithm is,
at the worst, 22% less optimal than the best possible packing [28]. One algorithm
that achieves this level is the so-called “ordered first fit” algorithm [33], shown in

Algorithm 6.1.

Sort N words by the number of states in the word from largest to smallest.
for i < 1,N do > Word index
for g < 1,G do > Group index
if word ¢ will fit in group g then
Put word 7 into group g, incrementing group g’s current size.
last > Exit the inner for loop
end if
end for
if word 7 did not get put into any group then
Create a new group g
Put word ¢ into group g, incrementing group g’s current size.
end if

end for

Algorithm 6.1: Ordered first fit bin packing.

Table 6.1 shows the results of using the ordered first fit bin packing algorithm on

the dictionaries (see Section 3.3.2 for details on the dictionaries). The first column




CHAPTER 6. SMALL VOCABULARY DECODER 56

lists the dictionary and the total number of states in the whole dictionary. This is the
sum of the number of states in each phone in each word in the dictionary. The column

“MVL” shows the maximum vector length (the size of the group). “Best” lists the
States

. |- This is the best possible packing, assuming

best possible packing, equal to |
you are allowed to break words up between groups. To compute the optimal packing
assuming you cannot break up words is NP-complete, and is therefore not computed.
The column “Actual’ lists the actual number of groups computed by the bin packing
algorithm. The closer this is to “Best”’, the better. “Loss” lists the percentage of

overhead incurred by imperfect packing.

Name / mvl | Best | Actual | Loss Name / mvl | Best | Actual | Loss

States %0 States %0
Digits 16 7 7 SmallBN | 16 - -
97 24 5 5 14793 24 - -

32 4 4 32 463 470 1.5

48 3 3 48 309 314 1.6

64 2 2 64 232 235 1.2
128 1 1 128 116 116
256 1 1 256 58 58
Numbers | 16 - - MedBN 16 - -
336 24 14 15 7.1 74717 24 - -

32 11 11 32 | 2335 2370 1.5

48 7 7 48 | 1557 1585 | 1.8

64 6 6 64 | 1168 1183 1.3

128 3 3 128 584 586 | 0.3

256 2 2 256 292 294 0.7
Web 16 - - LargeBN 16 - -
941 24 40 41 2.5 485330 24 - -
32 30 31 3.3 32 - -

48 20 20 48 | 10112 | 10273 1.6

64 15 15 64 | 7584 7681 1.3

128 8 8 128 | 3792 3805 | 0.3

256 4 4 256 | 1896 1906 | 0.5

Table 6.1: Bin packing on dictionaries.

Blank entries in the table represent vector lengths that are too short for the

longest word in the dictionary to fit into a single vector register. For example, the



CHAPTER 6. SMALL VOCABULARY DECODER 57

longest word in Web is “sixteen”, with 19 states. Vector lengths shorter than 19

will therefore not work with this algorithm and dictionary.

Notice that all the dictionaries pack quite well for all legal choices of MVL. The
worst percentage losses are for cases where only one extra group is created over the
best possible case (e.g. 15 actual groups vs. 14 best possible groups for Numbers

with vector length of 24).

7000

6000

5000

4000 -

Count

3000

2000

1000

I I I I I I I
35 36 37 38 39 40 41 42 43 44 45 46 a7
Group size

Figure 6.4: Histogram of group size for LargeBN, vector length 48

Another measure of the efficacy of the packing is the fullness of each group.
Ideally, each group should have nearly the maximal number of states. Figure 6.4
shows a histogram of group size for LargeBIN with vector length of 48. Notice that

almost all groups are fully occupied?.

One explanation for the good packing is that the distribution of word lengths (in
number of states) is nearly normal, having many words near the median length, and
few very long words. Figure 6.5 shows a histogram of the number of states per word

for LargeBN.

2The scale of the figure does not allow it to be seen, but one group has size 35. The next smallest
group has size 42, which is visible in the plot.



CHAPTER 6. SMALL VOCABULARY DECODER 58

2500

2000 -

1500

Count

1000 -

500 -

0 5 10 15 20 25 30 35 40 45
Number of states in word

Figure 6.5: Histogram of number of states per word for LargeBN

6.1.2 An Algorithm for Vectorizing by State

Now that we have an algorithm for dividing words from the dictionary into groups
that can be efficiently evaluated, we present the algorithm for computing the scores

for each word.

To compute the best word in a dictionary, the dictionary is split into G groups
as presented above. Each group is evaluated, producing one score for each word in
the group. The scores can then be sorted to produce an ordered list, or just the best

word can be output.

In the current work, the dictionary is assembled ahead of time. Since the algo-
rithm for dividing the dictionary into groups is quite efficient, it would be possible
to generate the groups on-the-fly. Either way, certain information (described below)

is assumed to be available when a group of words is evaluated.

T — The number of frames in the utterance.



CHAPTER 6. SMALL VOCABULARY DECODER 59

N — The number of states in the group (the sum of the number of states in each

word in the group).

P — The number of output probabilities from the Phone Probability Estimator.

Also the number of phones in the inventory.

self — The self-loop —log probabilities of each state in the group. The length of self

is IV, and its elements can be determined when the dictionary is assembled.

exit — The exit —log probability of each state in the group. The length of exit is

N, and its elements can be determined when the dictionary is assembled.

X — The acoustic —log probabilities. Its length is P - T; X is computed by the
Phone Probability Estimator.

S — The phone state indices. Each element is an offset into X, representing which
phone state is being considered. Its length is N. S can be determined when

the dictionary is assembled.

The key to the algorithm is that one can set certain elements of exit to infin-
ity (zero probability) in such a way as to prevent “bleed through” from one word
into another. Consider the dotted lines in Figure 6.3. These lines represent the
dependence of elements in the table on the previous state. This dependence, if left
unmodified, would cause the first state in one word to be dependent on the last state
of the word to the left in the Viterbi table. For example, in Figure 6.3, the state
ax in “about” is dependent on the state t in “abbott”. Clearly, this would lead to

incorrect results.

The dependence can be eliminated by setting the exit probability of the last state
in each word to 0.0. Since exit is the —log of this probability, one can set elements of
exit corresponding to the last state of each word to infinity. This segmenting of the
exit probabilities allows all the words in the group to be evaluated simultaneously
using a very regular algorithm. Also, the exit probabilities for the group are all

shifted one element to the right (so that vector element i gets stored in vector



CHAPTER 6. SMALL VOCABULARY DECODER 60

element ¢ + 1). The algorithm requires the shifted exit probabilities, so storing them

in shifted form saves an operation during decoding.

Some comments on initialization, running, and result reporting will help clarify
the algorithm. To start the loop, the first row of the Viterbi table (¢ = 0) must
be initialized. All elements get set t0 Up,, (the maximum value able to be stored
in a vector element) except for the first state in each word, which gets set to the
appropriate —log probability. Then, each row is evaluated in order. This represents
forward steps in time. Finally, the score for the last state of each word in the group
is output. One can either use the single best result, or store all the results for later

processing.

The algorithm for decoding a single group is presented in Algorithm 6.2. To

decode over all the groups in the dictionary, just repeat for each group.

Notice that the algorithm does not store the Viterbi table to memory. Rather,
each row of the table is computed and stored in a vector register. Because each row
only depends on the row immediately above it, the intermediate values need not be
stored. By not saving these data, we do not have to perform any storage to memory
in the inner loop. Although this makes the algorithm quite efficient, it does mean
that the “backtrace” is not available. In other words, the algorithm only outputs
the score for each word, not the path through the Viterbi table that was taken to
arrive at the score. The backtrace would tell you the duration of each phone in the
word (for the best path). In some applications, the backtrace may be necessary. In
these cases, the algorithm can easily be modified to store the decision at each step

(which way the min function went), at the cost of an extra store in the inner loop.

The algorithm is very efficient. Other than a small amount of overhead for loop
maintenance and the vshift call, the inner loop performs only necessary arithmetic
operations. On most architectures, all operations in the inner loop chain. Finally,
as was shown in Table 6.1, packing is very efficient — most vector operations have
vector length equal to MVL. Other than issues of redundant or irrelevant computations
as discussed in the next chapter, the only drawback of this algorithm is the inability

to run dictionaries with long words on short vector length machines.



CHAPTER 6. SMALL VOCABULARY DECODER

61

VR1 — Row ¢ of the Viterbi table.
VR2 — Row ¢ of the Viterbi table shifted by one to the right.

VR3 — Scaled acoustic negative log probabilities for the group.

> Initialize VR1 with the first row of the Viterbi table (¢t = 1).
setvl N
vsets VR1, 40
11
for each word in group do
vinsert VR1, 4, X[S;]
¢ = t+number of states in word
end for
> Now process the rest of the table.
fort + 2,7 do

vloadx VR3, S, X +t- P > Load acoustic —log probabilities into VR3.
vshift VR2, VR1, 1 > Shift previous row by one, store in VR2.
vsaddvv VR1, VR1, self > Add self-loop —log probabilities.
vsaddvv VR2, VR2, exit > Add exit —log probabilities.

vmin VR1, VR1, VR2

vsaddvv VR1, VR1, VR3 > Add acoustic —log probabilities.

end for
> Extract the results for each word.
11
for each word in group do
¢ = i+number of states in word
Output VR1[i] as score for word

end for

Algorithm 6.2: Decode a group of words vectorized by state




CHAPTER 6. SMALL VOCABULARY DECODER 62

6.2 Vectorizing by Word

@O

& state q
© % b
t %D
© %
©ee

A\ 4

Figure 6.6: Viterbi tables for multiple words with equal number of states

Another approach is to vectorize across words containing similar number of states.
Imagine several copies of Figure 6.2 layered one upon the other, with each copy rep-
resenting a different word (see Figure 6.6). The algorithm proceeds simultaneously,
lock-stepped for each word. To cover words that have different numbers of states,
one simply repeats the process for the other word lengths, e.g. first all 1-state words
are computed, then all 2-state words, etc. A large dictionary will guarantee that the
vector lengths are long for all but a very few words. For example, Figure 6.7 shows

a histogram of the number of phones in a word for a 65,000 word dictionary.

Of course, it is unlikely that a dictionary will contain exactly MVL words with
a particular number of states. If words in the various “stacks” of Figure 6.6 have
different numbers of states, then it is necessary to avoid computing the values for

non-existent entries. One efficient way to do this is to sort the dictionary by the



CHAPTER 6. SMALL VOCABULARY DECODER 63

12000

10000

8000

6000

Count

4000

2000

0 5 10 15 20 25
Number of Phones

Figure 6.7: Histogram of the number of phones in a word for a 65,000 word dictionary.

number of states in each word from longest to shortest. Then take the first MVL
words, and create a “stack”, lining them up on the left. The width of the Viterbi
tables (the number of states) will decrease as you go down the stack. By reducing
the vector length as the stack is evaluated, the non-existent entries are avoided. This

is illustrated in Figure 6.8. Repeat until all the words have been processed.

Vector architectures rely on the parallelism within a vector to mask memory la-
tency and amortize instruction decode and control costs, so efficiency drops as the
vector length decreases. This effect is especially pronounced on vector supercom-
puters, which may have MVL of 64 and need an actual vector length of at least 32
to attain reasonable efficiency. With vector extensions to conventional processors,

which have very short vector lengths (typically 2 to 4 words), this is less of a problem.

Table 6.2 provides a lower bound on the efficiency of the algorithm. For each
dictionary, the table lists the number of states in the dictionary, MVL, and the number
of updates of the Viterbi table required assuming that setting the vector length

less than MVL incurs no penalty. The Efficiency column assumes the penalty is



CHAPTER 6. SMALL VOCABULARY DECODER

64

LR
y e
LR
| e

Figure 6.8: Viterbi tables for multiple words with decreasing number of states.



CHAPTER 6. SMALL VOCABULARY DECODER 65

exactly proportional to the difference between MVL and the vector length. On real

architectures, the efficiency will be somewhere between the listed efficiency and 100%.

Name / mvl | Updates | Efficiency Name / mvl | Updates | Efficiency
States % States %
Digits 2 100 97.0 SmallBN 2 14806 99.9
97 4 110 88.2 14793 4 14834 99.7
8 126 77.0 8 14874 99.5

16 156 62.2 16 14957 98.9

24 - - 24 15054 98.3

32 - - 32 15149 97.7

48 - - 48 15311 96.6

64 - - 64 15583 94.9

Numbers 2 344 97.7 MedBN 2 74728 100.0
336 4 363 92.6 74717 4 74750 100.0
8 393 85.5 8 74802 99.9

16 469 71.6 16 74907 99.7

24 505 66.5 24 75027 99.6

32 589 57.0 32 75099 99.5

48 - - 48 75243 99.3

64 - - 64 75483 99.0

Web 2 950 99.1 LargeBN 2 | 485357 100.0
941 4 964 97.6 485330 4 | 485387 100.0
8 992 94.9 8 | 485475 100.0

16 1056 89.1 16 | 485622 99.9

24 1088 86.5 24 | 485870 99.9

32 1168 80.6 32 | 485942 99.9

48 1264 74.4 48 | 486417 99.8

64 1360 69.2 64 | 486678 99.7

Table 6.2: Efficiency of vectorizing by word.

Blank entries indicate cases where MVL is greater than the number of pronuncia-
tions in the dictionary. Notice that the efficiency drops as MVL increases, especially
for small vocabularies. This should not be surprising, since the range of lengths will

increase as more words are included in a group.



CHAPTER 6. SMALL VOCABULARY DECODER 66

6.2.1 An Algorithm for Vectorizing by Word

Algorithm 6.3 presents pseudocode for the algorithm. Most of the variables have
similar meaning as in Section 6.1.2, but a group consists of words as assembled by

the sorting algorithm described in Section 6.2.

T — The number of frames in the utterance.

P — The number of output probabilities from the Phone Probability Estimator.

Also the number of phones in the inventory.

N — For each state index s, N, is the number of words with at least s states. This is
the height of a stack in column s of Figure 6.8. N; is therefore also the number
of words in the group. Since the words are sorted from longest to shortest,

N; >= N;;;. N can be determined when the dictionary is assembled.

self — The self-loop —log probabilities. For each state index s, there is a different
set of self-loop values. Set s has length N,. The elements of self can be

determined when the dictionary is assembled.

exit — The exit —log probabilities. As with self, there is a different set for each

state, and the values can be determined when the dictionary is assembled.

X — The acoustic —log probabilities. Its length is P - T; X is computed by the
Phone Probability Estimator.

S — The phone state indices. Each element is an offset into X, representing which
phone state is being considered. There is a different set of values for each
state. The length of set s is N,. S can be determined when the dictionary is

assembled.

Unlike the “Vectorize by State” algorithm, this algorithm cannot store the Viterbi
table just in vector registers. Rather, one vector register contains a set of scores for
all the words in a group at time ¢ and state s of the Viterbi table. To avoid storing

the entire Viterbi table in memory, the algorithm proceeds one column (state) at



CHAPTER 6. SMALL VOCABULARY DECODER 67

a time, storing only the current and the previous columns. In Algorithm 6.3, the
variables prev and cur are memory buffers that are large enough to store an entire
column of the Viterbi table. The size of prev and cur is 7" - Ny, although fewer
and fewer elements of prev and cur will be used as the algorithm proceeds across
the columns of the Viterbi table. The algorithm maintains prev as the values for
column s — 1 and cur as the values for column s. After each column is evaluated,

the roles of cur and prev are swapped.

By evaluating one column at a time, the algorithm avoids repeated memory
accesses to load self, exit, and S. Instead, these are stored in vector registers. The
vector registers need only be updated from memory each time the algorithm moves

from one column to the next.

One drawback of this algorithm is the necessity of storing one column of the
Viterbi table in memory. This requires an additional load and an additional store
each time through the inner loop. Additional memory accesses are also required each
time through the outer loop to load self, exit, and S. However, other than the extra
memory requirements, the algorithm only performs needed arithmetic operations.
On short vector length architectures, where vectorizing by state can be inefficient,

this algorithm can perform well.



CHAPTER 6. SMALL VOCABULARY DECODER 68

VR1 — Scores of row t state s of the Viterbi table.
VR2 - Scores of row t — 1 state s — 1 of the Viterbi table.
VR3 — Self-loop —log probabilities for state s.

VR4 — Exit —log probabilities for state s.
VR5 — Scaled acoustic —log probabilities.
VR6 — Phone state index for state s.

Set all elements of prev to v,,q.

for s < 1, maximum number of states in group do

setvl N, > Set the vector length to height of stack at column s.

vload VR3, self for column s
vload VR4, exit for column s

vload VR6, S for column s

if s =1 then

vloadx VR1, VR6, X
else

vsets VR1, 40
end if

for t < 2,7 do
vload VR2, prev[(t — 1) - N
vloadx VR5, VR6, X +t- P
vsaddvv VR1, VR1, VR3
vsaddvv VR2, VR2, VR4
vmin VR1, VR1, VR2
vsaddvv VR1, VR1, VR5
vstore VR1, cur(t - N

end for

vstore VR1, results for column s

swap cur and prev

end for

> Initialize first row.

> First column gets acoustic scores.

> Others get maximum possible score.

> Load scores from ¢t — 1, s — 1

> Acoustic scores.

> Viterbi score at ¢t — 1, s plus self

> Viterbi score at t — 1,s — 1 plus exit

> Store score from ¢, s.

Algorithm 6.3: Vectorize by word via dictionary sorting.




69

Chapter 7
Large Vocabulary Decoder

The decoding algorithms described in the previous chapter work quite well on
small vocabularies. However, as the vocabularies get larger, it is efficacious to im-
plement methods that avoid redundant or irrelevant computations. In this chapter,
three such methods are presented. The difficulties of vectorizing such methods are
discussed, and tradeoffs with using the small vocabulary methods of Chapter 6 for

large vocabularies are presented.

7.1 Tree Structured Lexicons

As the vocabulary gets larger, more and more words end up sharing common
prefixes. It is possible to arrange the evaluation of the decoder so that computation
of a common prefix occurs only once for all the words that share the prefix. Figure 7.1
is an excerpt from a tree structured lexicon for the Web dictionary. The excerpt
only includes words that start with “f”. An implicit edge from every node to itself

is omitted for clarity.

To read the figure, start at the root. Each node represents a speech sounds
(phone). At each time step, either stay at the current node, or follow a child node.
Continue until a node with a word is reached. For example, the word “four” can be

found by starting at “f”, staying there for some number of frames, going to “ao”,



CHAPTER 7. LARGE VOCABULARY DECODER 70

staying there for some number of frames, and ending at “r”. Notice that words that

start with the same sounds are all on the same branch. So one can continue after

“r [four]” to “w”, “axr”, “dcl [forward]” to get to “forward”.

Figure 7.1: Excerpt from tree structured lexicon from the Web dictionary.

In the evaluation of the Viterbi table, one need not recompute the values at the
nodes for common prefixes. Figure 7.2 shows an example of the evaluation of the
word “forward”. Notice that once the evaluation of “forward” is complete, all the
information for the evaluation of “four” is already present. Looked at another way,
if “four” has already been computed, only a little extra work (the last three columns

of Figure 7.2) need be done to compute the value of “forward”.

One efficient way to traverse the dictionary in a scalar decoder is to do a depth-
first search through the tree structured lexicon [63] As the search encounters nodes
that represent the end of a word, the algorithm outputs the word’s probability. In
terms of the Viterbi table, evaluation proceeds by adding columns to the right end of
the table as the child of a node is visited, and removing columns from the right end
of the table as the search returns to the parent node. The total size of the Viterbi
table in such a search is bounded by the length of the longest word in the dictionary
(in number of states). As such, this traversal strategy is very efficient in memory.

And as desired, each prefix is only evaluated once.

The total savings over evaluating each word in the lexicon are dependent on how

many words in the dictionary share prefixes. See Section 7.4 for details.



DECODER

VOCABULARY

CHAPTER 7. LAR




CHAPTER 7. LARGE VOCABULARY DECODER 72

7.2 Pruning

In addition to avoiding the unnecessary recomputation of common prefixes, one
can also prune the search using a number of strategies. In each case, the goal is to
avoid computations where the result is very unlikely to be useful. In the following

two subsections, two types of pruning are discussed.

7.2.1 Branch Pruning

The motivation for branch pruning is the observation that if a prefix is very
unlikely to match the input stream, then any words starting with that prefix are
also unlikely to match the input stream. To implement branch pruning, one keeps
track of the current probability that the subword matches the input stream. This
value is simply the value at the final time in the rightmost column of the Viterbi
table as one traverses the tree structured lexicon. If this probability falls below
a threshold, the current node and all its children are not evaluated. Any words

occurring along the node’s children are assumed to have probability 0.0%.

The threshold can be computed in a number of ways. An absolute value can be
chosen. However, the scale of the probabilities is not generally known in advance, and
therefore this is not typically used. A more common approach uses beam pruning
62]. In beam pruning, the score of the best match of the input stream to any
previously seen subword is stored. The threshold is then picked to be a fixed distance
below this best value. Choosing a small value for the distance reduces the amount

of computation at the cost of possibly excluding the correct answer.

Instead of beam pruning, one can keep track of the N best fragments that have
been seen, and prune anything that falls below the value of the Nth best fragment.
This is equivalent to a kind of adaptive beam pruning [24], where the beam is adjusted
dynamically to meet a memory constraint. For small vocabularies, /N best pruning
does not work too well, as few elements are pruned for large values of N (e.g. N

near the size of the dictionary), and accuracy suffers if N is too small. To make



CHAPTER 7. LARGE VOCABULARY DECODER 73

the results comparable across dictionaries, only beam pruning is used in the results

presented below.

7.2.2 Phone Deactivation Pruning

What is the likelihood that the input stream matches the word “four” if no frame
in the input stream contains /f/ with significant probability? Phone deactivation
pruning assumes that the likelihood would be very low [61]. More precisely, if any
frame ¢ in the input stream has probability for a phone p that is less than a threshold
€, then the probability for p in frame ¢ is set to 0.0%. Since the probability that a
word matches the stream is proportional the product of the probabilities that each
frame matches the correct phone, setting any phone to 0.0 causes the probability
that the word matches to fall to 0.0 also. Evaluation of such a word can immediately
cease. Varying e allows a time vs. accuracy tradeoff. When combined with branch
pruning, phone deactivation pruning will avoid computation of all words that share

the common prefix, since their probability will also be 0.0.

7.3 Vectorizing Large Vocabulary Decoders

The advantage of the algorithms in Chapter 6 is that they are very regular, and
therefore vectorize quite efficiently. To implement tree structured lexicons and prun-
ing require more irregular computations, which are difficult to perform on a vector
architecture. As the vocabulary gets larger and as pruning becomes more aggressive,
the benefits of the methods in Section 7.1 and Section 7.2 become greater and greater.
Significant speedup through vectorization of regular algorithms is required to out-
weigh the benefits of a pruned, tree structured scalar algorithm. Section 7.4 presents
the tradeoffs between vocabulary size, vector vs. scalar, and pruning, and will show
the amount of vectorization speedup required to compensate for the advantages of

the more irregular scalar algorithms.

In the rest of this section the use of tree structured lexicons and pruning is



CHAPTER 7. LARGE VOCABULARY DECODER 74

assumed, and it is shown why these algorithms vectorize poorly.

7.3.1 Vectorized Traversal of a Tree Structured Lexicon

To vectorize evaluation over a tree structured lexicon, one must assign nodes in
the tree at a particular time to an element of a vector. One can conceptualize this
in terms of a token passing algorithm [75]. In the token passing algorithm, there
are an unlimited number of movable tokens, each of which has a node to which it is
assigned, the current local score (equivalent to the score in the Viterbi table), and
the time index. To advance the algorithm, pick a token from a node, copy it to one
of the node’s children in the tree (including itself), and update the local score. The
score of a token at time ¢ going from state r to state s is the likelihood from the
phone probability estimator at time ¢ and state s times the transition probability
from state r to state s (self-loop probability of 7 if 7 is the same as s, and the exit
probability of r if r is different from s). If a token already exists at the new node for
the same time, remove all but the best scoring token. If all the children have been
visited already, remove the original token. Terminate when all tokens are at the end
time. Upon termination, each terminal state of a word will contain a token with the

score for that word.

Different choices for how to pick which node to update and which child to visit
reflect different traversal strategies. As an example, consider evaluation of a single
word via the Viterbi table updates, where the entries in the table are updated from
top to bottom (time axis) then left to right (state axis). The value of an entry in the
Viterbi table at state index s and time ¢ is computed as the minimum of the scores
of the entries at (s —1,¢ — 1) and (s,t — 1), times the local score. This is equivalent
to passing two tokens, one from each source. Under the token passing paradigm, the
algorithm will pass the token with state index 1 at time index 1 to state 2 time 2,
then pass a token from (2,1) to (2,2), then from (1,2) to (2,3), then (2,2) to (2,3),

etc.

To vectorize, one must assign tokens to elements of a vector. All elements are



CHAPTER 7. LARGE VOCABULARY DECODER 75

updated, conceptually simultaneously. The amount of work in an update is quite
small — a vector min and two vector additions. If instead of a tree, one has a
separate set of linear structures for each word, the problem becomes the same as
described in the previous chapter. One could pick tokens with the same time, but
different (adjacent) states, and end up with the “Vectorizing by State” algorithm
of Section 6.1. Or one could pick one token from each word with the earliest time,
and end up with the “Vectorizing by Word” algorithm of Section 6.2. With the tree
structure, one must account for traversal of the children (branching) and handle leaf

nodes (termination).

Branching

At a branch, a token can be passed to any of the children. In the course of the
algorithm, a token will eventually be passed to every child, but for the purpose of
this discussion, the order is not important. As the token is copied, the old token
must remain in place so that the other children can be traversed. Either the new
token or the old token must be saved. Either way, a token must be added to a list
of tokens to be processed. Maintaining the list is a scalar operation, so each branch
introduces a non-vectorizable operation. Since the computation of the token score
update is only a few operations, even a small amount of scalar overhead reduces the
performance. A large vocabulary will have a large number of branches. For example,
the node with the largest number of branches in the LargeBIN dictionary has 36

children, while the average is just under 2 children.

Termination

When the algorithm reaches a node with no children (a leaf), the token termi-
nates. If not all elements of a vector reach a leaf at the same time, then an element of
the vector is introduced that should not be operated upon. Many vector architectures
provide a mask register, which allows the algorithm to specify which elements are

active. However, as the vector becomes more and more sparse, efficiency is reduced.



CHAPTER 7. LARGE VOCABULARY DECODER 76

Another option is to copy the sparse vector, leaving out the empty elements. This
is known as vector compression, and is also supported on most vector architectures.
A typical tree structured lexicon of a large dictionary has many such terminations,
so compression must be done frequently (for example, the LargeBN dictionary has
21830 terminations, nearly 30% of the total number of nodes). This overhead adds

to the cost of the vectorized large vocabulary decoder.

7.3.2 Vectorized Pruning

Pruning exacerbates the problem. If a branch is pruned, all tokens at the current
node or any child of the current node must be removed. The removal operation itself
usually requires a traversal of tree, which is as difficult to vectorize as the evaluation
itself. Also, if any of the tokens are currently resident in a vector element, then
either the vector must be compressed, or the mask must be set to avoid computation
of that element. In either case, the number of elements in the vector shrinks, and
efficiency declines. This is very similar to the case described above for when a token

reaches a leaf node.

7.3.3 Memory Requirements

For any traversal strategy on the tree, the algorithm must keep track of which
nodes have been visited at which time. This is the same as saying that the algorithm
must store all the active tokens. The number of tokens can be minimized if one
advances each token to the end of the tree as quickly as possible (depth-first traversal
of the tree). In such a case, there is only one “active” node, the node in the traversal
that is currently the furthest from the root. If there are n nodes in the tree from the
root to the active node and ¢ time intervals in the utterance, then only n x ¢ tokens
need to be stored. However, if a strategy other than depth-first is used, there can be
more than one active node. The total number of tokens becomes t x Zﬁl n;, where
N is the number of active nodes, and n; is the number of nodes between active node

¢ and the root. Not only does more tokens mean more memory storage requirements,



CHAPTER 7. LARGE VOCABULARY DECODER 7

it can also slow the algorithm because of memory hierarchy effects (e.g. if the tokens

do not fit in cache).

7.4 'Tradeoffs

For the reasons described above, it is very difficult to vectorize a large vocabulary
decoder. The amount of work per update is small, and there are intrinsically non-
vectorizable components. However, the small vocabulary decoders of Chapter 6 are
quite efficient. This section discusses the tradeoffs between a scalar decoder that
implements the methods of Section 7.1 and Section 7.2, and the vector decoders of

Chapter 6.

To measure the exact tradeoffs between implementations of a scalar vs. vector
decoder on a particular architecture is beyond the scope of this thesis. Instead, we
compare only the number of arithmetic operations used to update the Viterbi table.
This provides an estimate of the vector speedup that would be required for the vector
algorithms to out-perform scalar algorithms that implement the methods described

in Section 7.1 and Section 7.2.

Table 7.1 compares the algorithms of Section 7.1 and Section 7.2 with those of
Chapter 6 on the various dictionaries. Since the efficiency of the “Vectorizing by
State” algorithm of Section 6.1 and the “Vectorizing by Word” algorithm of Sec-
tion 6.2 are quite high for their appropriate vector lengths, the table below assumes

100% efficiency for these algorithms.

The Size column lists the the number of pronunciations in the dictionary. See
Section 3.3.2 for more details on the dictionaries. The remaining entries in the ta-
ble are the number of times each algorithm updates an entry in the Viterbi table,
normalized by the length of the input stream (since each algorithm does work pro-
portional to the length of the input stream). For each algorithm, this involves three
additions and a min operation, as presented in Equation 6.2. For the scalar algo-

rithms, the table also lists the vector speedup required for the vector algorithm to



CHAPTER 7. LARGE VOCABULARY DECODER 78

perform equally with the scalar algorithm?.

The Vector column lists the number of updates of the Viterbi table for the dictio-
naries using the algorithms of the previous chapter. The column Scalar with Tree
Structured Lexicon lists the number of updates and the required vector speedup
for the algorithms of this chapter. The column No Prune assumes the dictionary is
arranged as a tree structured lexicon as in Section 7.1, but no pruning is performed.
The columns labeled Light Prune and Heavy Prune both use a tree structured lexi-
con, branch pruning (as outlined in Section 7.2.1), and phone deactivation pruning
(as outlined in Section 7.2.2). The heavy pruning settings are appropriate for fast de-
coding at the cost of some accuracy. The light settings perform more computations,
but incur fewer search errors. The particular settings for the values were taken from

an evaluation of a speech recognition system on the Broadcast News corpus [16].

Vector Scalar with Tree Structured Lexicon
Dictionary | Size No Prune Light Prune Heavy Prune
Digits 12 97 89 1.1x 89 1.1x 89 1.1x
Numbers 30 336 209 1.6x 148  2.3x 133  2.5x
‘Web 79 941 485 1.9x 329 29x 340  2.8x
SmallBN 1000 14793 9720 1.5x | 5820 2.5x | 3501 4.2x
MedBN 5000 74717 37347 2.0x | 18518 4.0x | 3721 20.1x
LargeBN 32010 | 485330 || 151901 3.2x | 43313 11.2x | 13633 35.6x

Table 7.1: Number of updates to the Viterbi table and vector architecture speedup
required for the vector algorithms to perform equally with the tree structured and
pruned scalar algorithms.

Figure 7.3 shows the same data in graphical form. The vertical axis is the vector
speedup required. The horizontal axis is the dictionary size (not to scale). Each
line represents a different choice for pruning. The horizontal line at 4x indicates
the approximate speedup of vector extensions to conventional processors. The line

at 10x represents the approximate speedup for vector supercomputers and vector

lFor example, a vector speedup of 4.0x is required for a vector processor implementing the
methods of Chapter 6 to perform equally with an equivalent scalar processor implementing the
methods of this chapter with light pruning on the MedBN dictionary.



CHAPTER 7. LARGE VOCABULARY DECODER 79

microprocessors. See Section 1.2 for an overview on vector speedups for various

architectures.
40
30 Q \)‘(\(\%
o
[a R
>
D
o 20
o
wn
W%
[0 Vector Supercomputers < o
and Vector Microprocessors O
Vector Extensigns ot \)((\0%
u Qo
0
S < & > > Ny
O\Q; ¢ Q\ ,§ 08’ q§)
N & N 3
<X S NV

Figure 7.3: Vector architecture speedup required for the vector algorithms to perform
equally with the tree structured and pruned scalar algorithms.

Roughly speaking, the speedup provided by a vector architecture must be larger
than the indicated speedup for the desired pruned case for the vectorized algorithm

to compare favorably with the scalar algorithm.

In the case of long vector length architectures, there is an additional advantage
to the “Vectorizing by State” algorithm. It is very memory efficient, both in terms of
storage, and in terms of memory accesses in the inner loop. As a result, the vectorize

by state algorithm will likely run faster than the typical speedups listed.

For small vocabularies, the vectorized algorithms are competitive with the scalar
algorithms. As the vocabulary gets larger, the vector speedup must increase for the
vectorized algorithms to be competitive. The problem is exacerbated by high levels

of pruning.



CHAPTER 7. LARGE VOCABULARY DECODER 80

Given the fast pace of improvements in the capabilities of scalar processors, it
is unlikely that the current batch of vector processors will be competitive for large
vocabularies and high pruning levels. However, there is no intrinsic reason that
vector processors cannot improve at the same rate as scalar processors. Given an
equivalent architecture, a vector processor remains competitive for all but the largest

dictionaries and highest pruning levels.



81

Chapter 8
Conclusions

Speech recognition on vector architectures would benefit many applications, in-
cluding dictation on the desktop, command and control of PDAs and cellphones,
and automated call centers using supercomputers. Low power consumption, high
absolute performance, and low cost all contribute to the value accrued to vector
architectures. To realize these benefits, speech recognition algorithms must be vec-

torized to run on these platforms.

For this thesis, a vector simulation library was developed to aid in the analysis of
speech recognition algorithms on vector architectures. The vector simulation library
implements many of the common opcodes found on vector processors, but does not
attempt to simulate the fine details of the architectures (cache, chaining behavior,
etc.). Instead, the focus of the research is on generating code that vectorizes well on

any vector processor.

Of the three major components of ICSI’s hybrid speech recognition system, two
vectorize quite well. The signal processing component’s principle computational
bottleneck is the computation of the filterbank, which is typically implemented using
a Fast Fourier Transform (FFT). Since the FFT is used in many, many application
for which vector processors are used, most architectures provide some support for
FFT computations. The other elements of the signal processing component typically

vectorize quite well.



CHAPTER 8. CONCLUSIONS 82

The phone probability estimator used in this work is implemented as a multi-
layer perceptron (MLP). The computational bottleneck of an MLP is a matrix-matrix
multiply. This operation is quite regular, and vectorizes well. However, for optimal
performance, fine details of the memory hierarchy must be taken into account. Since
such details vary widely, we advocate a generate-and-test approach, where many
algorithms are generated automatically, and the fastest is used. Several algorithms

were presented that would form the basis for the automatically generated code.

The case of the final component, the decoder, is divided into small and large
vocabularies. For large vocabularies, it is desirable to avoid repeatedly computing
common prefixes of words (e.g. “four”, “fourteen”, “forty”, “forward”). Also, one
can use several methods to avoid altogether the computation of some of the words.
For small vocabularies, the savings using these methods are less important, and it is

acceptable to simply evaluate each word in full.

Two algorithms were presented for small vocabularies, where every word in the
dictionary is evaluated. The first involves batching together words such that the
summed length (in states) of a batch is equal to the vector length. The algorithm
vectorizes along the state axis of the Viterbi table. The batches are computed using
a bin packing algorithm, and all the dictionaries packed quite well. The algorithm
itself vectorizes efficiently, and accesses memory minimally. However, it depends on

reasonably long vectors, making it unsuitable for some architectures.

The other algorithm batches together words with similar numbers of states. The
algorithm vectorizes by word, such that elements of a vector each hold a state from
a different word. The algorithm vectorizes well, although it requires extra memory
accesses avoided by the algorithm described above. Also, for long vector length
architectures, the efficiency can be low, as not all the vectors will be full. For short
vector length architectures, however, the efficiency is excellent for all but the smallest

dictionary.

For large vocabularies, no method was found that vectorizes efficiently when
pruning and tree structured lexicons are used. The base of the problem is that the

tree structured lexicons are bushy and unbalanced. The amount of work necessary



CHAPTER 8. CONCLUSIONS 83

to arrange for a vectorized operation is nearly the same as just performing the
operation directly. Comparisons with the vectorizable small vocabulary systems
give an indication of the vector speedup required for a particular dictionary to run
more efficiently on vector processor than on a scalar processor. The vectorized small
vocabulary system is competitive for all but the largest dictionaries and the highest

pruning levels.

A possible future direction is a mixed-mode operation, where a scalar algorithm
determines what operations to perform, and a vector algorithm does the actual work.
If the scalar and vector algorithms can run in parallel, this method may allow efficient

vectorization of large vocabulary systems.



84

Bibliography

1]

D. Aberdeen and J. Baxter. Emmerald: a fast matrix-matrix multiply using In-
tel’s SSE instructions. Concurrency and Computation: Practice and Experience,

13(2):103-119, 2001.

R. C. Agarwal, J. W. Cooley, F. G. Gustavson, J. B. Shearer, G. Slishman,
and B. Tuckerman. New scalar and vector elementary functions for the IBM

System/370. IBM Journal of Research and Development, 30(2):126—144, 1986.

V. H. Allan, R. B. Jones, R. M. Lee, and S. J. Allan. Software pipelining. ACM
Computing Surveys, 27(3):367-432, 1995.

G.M. Amdahl. Validity of the single processor approach to achieving large-scale
computing capabilities. In Proceedings of the AFIPS Spring Joint Computer
Conference, volume 30, pages 483-485, Atlantic City, New Jersey, USA, 1967.

A. W. Appel and A. Bendiksen. Vectorized garbage collection. Journal of
Supercomputing, 3:151-160, 1989.

Apple. Vector libraries web page.
http://developer.apple.com/hardware/ve/vector_libraries.html.

K. Asanovic. Vector Microprocessors. PhD thesis, University of California at

Berkeley, May 1998.

D. Bailey. A high-performance fast Fourier transform algorithm for the Cray-2.
The Journal of Supercomputing, 1(1):43—-60, July 1987.



BIBLIOGRAPHY 85

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

D. Bailey. Extra-high speed matrix multiplication on the Cray-2. SIAM Journal
on Scientific and Statistical Computing, 9(3):603—-607, May 1988.

R. Bhargava, L. K. John, B. L. Evans, and R. Radhakrishnan. Evaluating
MMX technology using DSP and multimedia applications. In Proceedings of the

31st IEEE International Symposium on Microarchitecture, pages 37-46, Dallas,
Texas, USA, November 1998.

J. Bilmes, K. Asanovic, C. Chin, and J. Demmel. Optimizing matrix multiply
using PHiPAC: A portable, high-performance, ANSI C coding methodology. In
International Conference on Supercomputing, pages 340-347, Vienna, Austria,

July 1997.

H. Bourlard and N. Morgan. Merging multilayer perceptrons & hidden Markov
models: Some experiments in continuous speech recognition. In E. Gelenbe,
editor, Artificial Neural Networks: Advances and Applications. North Holland
Press, 1991.

H. Bourlard and N. Morgan. Connectionist Speech Recognition: A Hybrid Ap-
proach. Kluwer Academic Publishers, 1993.

J. S. Bridle. Alpha-nets: a recurrent neural network architecture with a hidden
Markov model interpretation. Speech Communications, 9(1):83-92, February

1990.

J. S. Bridle. Probabilistic interpretation of feedforward classification network
outputs, with relationships to statistical pattern recognition. In Neurocom-
puting: Algorithms, Architectures and Applications, pages 227-236. Springer,
Berlin, 1990.

G. Cook, J. Christie, D. Ellis, E. Fosler-Lussier, Y. Gotoh, B. Kingsbury,
N. Morgan, S. Renals, T. Robinson, and G. Williams. The SPRACH system
for the transcription of broadcast news. In DARPA Broadcast News Workshop,
Herndon, Virginia, February 1999.



BIBLIOGRAPHY 86

[17]

18]

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

S. B. Davis and P. Mermelstein. Comparison of parametric representations for
monosyllabic word recognition in continuously spoken sentences. IEEE Transac-

tions on Acoustics, Speech, and Signal Processing, 28(4):357-366, August 1980.

J. Deller, J. Proakis, and J. Hansen. Discrete-Time Processing of Speech Signals.
Macmillan Publishing, New York, 1993.

L. Deng, M. Lennig, F. Seitz, and P. Mermelstein. Large vocabulary word
recognition using context-dependent allophonic hidden Markov models. Com-

puter Speech and Language, 4:345-357, 1990.

R. Espasa, M. Valero, D. Padua, M. Jiménez, and E. Ayguadé. Quantitative
analysis of vector code. In Proceedings of the 3rd Furomicro Workshop on

Parallel and Distributed Processing, January 1995.
H. Fletcher. Auditory patterns. Reviews of Modern Physics, 22:47-65, 1940.

J. T. Foote. Tree-based Probability Estimation for HMM Speech Recognition.
PhD thesis, Brown University, Providence, RI, June 1993.

J. Hake and W. Homberg. The impact of memory organization on the perfor-
mance of matrix multiplication. In Proceedings of the 1990 ACM/IEEE confer-
ence on Supercomputing, pages 34—40, November 1990.

H. Van Hamme and F. Van Aelten. An adaptive-beam pruning technique for
continuous speech recognition. In Proceedings of the 4th Int’l Conference on
Spoken Language Processing (ICSLP-96), volume 4, pages 2083-2086, Philadel-
phia, PA, October 1996.

R. W. Hamming. Digital Filters. Englewood Cliffs, New Jersey, 1983.

J. L. Hennessy and D. A. Patterson. Computer Architecture — A Quantative
Approach. Morgan Kaufmann, 1990.

H. Hermansky. Perceptual linear predictive (PLP) analysis of speech. J. Acous-
tical Society of America, 87(4), April 1990.



BIBLIOGRAPHY 87

28]

[29]

31]

32]

33]

[34]

[35]

[36]

37]

P. Hoffman. The Man Who Loved Only Numbers: The Story of Paul Erdos and
the Search for Mathematical Truth. Hyperion, 1998.

S. Huss-Lederman, E. M. Jacobson, A. Tsao, T. Turnbull, and J. R. Johnson.
Implementation of Strassen’s algorithm for matrix multiplication. In Proceedings

of the 1996 ACM/IEEE conference on Supercomputing, page 32, 1996.

F. G. Gustafson J. J. Dongarra and A. Karp. Implementing linear algebra
algorithms for dense matrices on a vector pipeline machine. SIAM Review,

26(1):91-112, 1984.

A. Janin, D. W. Ellis, and N. Morgan. Multistream: Ready for prime-
time? In 6th European Conference on Speech Communication and Technology

(Eurospeech-99), volume 2, pages 591-594, Budapest, September 1999.

F. Jelinek. Fast sequential decoding algorithm using a stack. IBM Journal of
Research and Development, 13(6):675—685, 1969.

D. S. Johnson. Approximation algorithms for combinatorial problems. Journal

of Computer and System Sciences, pages 256-278, August 1974.

S. Joshi and P. Dubey. Some fast speech processing algorithms using AltiVec
technology. In Proceedings IEEFE Int’l Conference on Acoustics, Speech, € Signal
Processing (ICASSP-99), pages 2135-2138, Phoenix, March 1999.

B. Khailany, W. Dally, U. Kapasi, P. Mattson, J. Namkoong, J. Owens,
B. Towles, A. Chang, and S. Rixner. Imagine: Media Processing with Streams.

IEEFE Micro, 21(2):35-47, March 2001.

K. Kirchhoftf and J. Bilmes. Dynamic classifier combination in hybrid speech
recognition systems using utterance-level confidence values. In Proceedings
IEEE Int’l Conference on Acoustics, Speech, € Signal Processing (ICASSP-99),
pages 693696, Phoenix, March 1999.

D. E. Knuth. The Art of Computer Programming, Vol.2: Semi-Numerical Al-
gorithms. Addison-Wesley, Reading, Massachusetts, 1969.



BIBLIOGRAPHY 88

38

[41]

42]

[43]

[44]

[45]

[46]

[47]

L. Kohn, G. Maturana, M. Tremblay, A. Prabhu, and G. Zyner. The visual
instruction set (VIS) in UltraSPARC. In Proceedings of the 40th IEEE Computer
Society International Conference, pages 462-469, March 1995.

C. E. Kozyrakis. Scalable vector media-processors for embedded systems. PhD
thesis, University of California at Berkeley, 2002.

C. E. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson, K. Asanovi¢, N. Card-
well, R. Fromm, J. Golbus, B. Gribstad, K. Keeton, R. Thomas, N. Treuhaft,
and K. Yelick. Scalable processors in the billion-transistor era: IRAM. IEEE
Computer, 30(9):75-78, September 1997.

M. D. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance and
optimizations of blocked algorithms. In Proceedings of the Fourth International

Conference on Architectural Support for Programming Languages and Operating

Systems, pages 63—-74. ACM Press, 1991.

R. Lee. Accelerating multimedia with enhanced microprocessors. IEEE Micro,

15(2):22-32, April 1995.

R. Lee. Realtime MPEG video via software decompression on a PA-RISC pro-
cessor. In Proceedings of the 40th IEEE Computer Society International Con-
ference, pages 186-192, San Francisco, CA, USA, March 1995.

R. Lee. Subword parallelism with MAX-2. IEEE Micro, 16(4):51-59, August
1996.

R. Lee. Multimedia extensions for general-purpose processors. IEEE Workshop

on Signal Processing Systems, pages 9-23, November 1997.

O. Lubeck, J. Moore, and R. Mendez. A benchmark comparison of three su-
percomputers: Fujitsu VP-200, Hitachi S810/20 and Cray X-MP /2. Computer,
18(12):10-24, December 1985.

S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer Im-
plementations. John Wiley and Sons, 1990.



BIBLIOGRAPHY 89

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

D. Martin. Vector Extensions to the MIPS-1V Instruction Set Architecture
(The V-IRAM Architecture Manual). Available through IRAM web pages at
http://iram.cs.berkeley.edu, March 2000.

N. Mirghafori and N. Morgan. Combining connectionist multi-band and full-
band probability streams for speech recognition of natural numbers. In Proceed-
ings of the 5th Int’l Conference on Spoken Language Processing (ICSLP-98),
pages 743-746, Sydney, Australia, November 1998.

Motorola. AltiVec web page. http://motorola.com/altivec.

T. Nguyen, A. Zakhor, and K. Yelick. Performance analysis of an H.263 video
encoder on VIRAM. International Conference on Image Processing (ICIP),
September 2000.

L. Oliker, A. Canning, J. Carter, J., and S. Ethier. Scientific computations on
modern parallel vector systems. In Proceedings of the 2004 ACM/IEEE Con-
ference on Supercomputing, Pittsburgh, Pennsylvania, USA, November 2004.

S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-effective superscalar
processors. In Proceedings of the 24th Annual International Symposium on Com-

puter Architecture, pages 206-218, June 1997.

D. Paul. An efficient A* stack decoder algorithm for continuous speech recogni-
tion with a stochastic language model. In Proceedings IEEE Int’l Conference on
Acoustics, Speech, € Signal Processing (ICASSP-92), pages 25-28, San Fran-
cisco, 1992.

A. Peleg and U. Weiser. MMX technology extension to the Intel architecture.
IEEE Micro, 16(4):42-50, August 1996.

R. Perron and C. Mundie. The architecture of the Alliant FX/8 computer.
In Proceedings of the IEEE Computer Society International Conference, pages
390-394, Washington, D.C., March 1986.



BIBLIOGRAPHY 90

[57]

[61]

[62]

[66]

[67]

C. Philip and P. Moreno. On the use of support vector machines for phonetic
classification. In Proceedings IEEFE Int’l Conference on Acoustics, Speech, €&
Signal Processing (ICASSP-99), Phoenix, March 1999.

L. Rabiner. A tutorial on hidden Markov models and selected applications in

speech recognition. Proceedings of the IEEE, 77(2), February 1989.

S. K. Raman, V. Pentkovski, and J. Keshava. Implementing streaming SIMD
extensions on the Pentium III processor. IEEE Micro, 20(4):47-57, July 2000.

P. Ranganathan, S. V. Adve, and N. P. Jouppi. Performance of image and
video processing with general-purpose processors and media ISA extensions. In
Proceedings of the 26th Annual International Symposium Computer Architecture

(ISCA), pages 124-135, Atlanta, Georgia, USA, May 1999.

S. Renals. Phone deactivation pruning in large vocabulary continuous speech
recognition. In IEEFE Signal Processing Letters, volume 3, pages 4-6, January

1996.

S. Renals and M. Hochberg. Start-synchronous search for large vocabulary
continuous speech recognition. In IEEFE Transactions on Speech and Audio

Processing, volume 7, pages 542-553, July 1999.

T. Robinson and J. Christie. Time-first search for large vocabulary speech
recognition. In Proceedings IEEE Int’l Conference on Acoustics, Speech, €
Signal Processing (ICASSP-98), pages 829-832, Seattle, WA, May 1998.

R. M. Russell. The Cray-1 computer system. Communications of the ACM,
21(1):63-72, January 1978.

N. N. Schraudolph. A fast, compact approximation of the exponential function.

Neural Compututing, 11(4):853-862, May 1999.
Sony. PlayStation web page. http://www.us.playstation.com.

SourceForge. libmpeg2 web page. http://libmpeg2.sourceforge.net.



BIBLIOGRAPHY 91

[68]

[69]

[72]

73]

[74]

[75]

V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik,

13:354-356, 1969.

P. Tang. Table-driven implementation of the logarithm function in IEEE floating
point arithmetic. ACM Transactions on Mathematical Software, 16(4):378-400,
1990.

S. Thakkar and T. Huff. The Internet streaming SIMD extensions. Intel Tech-
nology Journal, 3(Q2):1-8, 1999.

R. Thomas and K. Yelick. Efficient FFTs on IRAM. In Proceedings of the 1st
Workshop on Media Processors and DSPs (MICRO-32), Haifa, Israel, November
1999.

N. Uchida, M. Hirai, M. Yoshida, and K. Hotta. Fujitsu VP2000 series. In
IEEE Computer Society International Conference (CompCon), pages 4-11, Los
Alamitos, California, USA, February 1990.

T. Watanabe. The NEC SX-3 supercomputer system. In IEEE Computer
Society International Conference (CompCon), pages 303-308, San Francisco,
California, USA, February 1991.

R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimization
of software and the ATLAS project. Parallel Computing, 27(1-2):3-35, 2001.
Also available as University of Tennessee LAPACK Working Note #147, UT-
CS-00-448, 2000 (www.netlib.org/lapack/lawns/lawn147.ps).

S. J. Young, N. H. Russell, and J. H. S. Thornton. Token passing: A sim-
ple conceptual model for connected speech recognition systems. Technical Re-
port TR38, Cambridge University Engineering Department, 1989. Available at
http://mi.eng.cam.ac.uk /reports/svr-ftp /young_tr38.ps.Z.



