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Abstract
Our goal in this work was to develop an accurate method
to identify laughter segments, ultimately for the purpose of
speaker recognition. Our previous work used MLPs to per-
form frame level detection of laughter using short-term fea-
tures, including MFCCs and pitch, and achieved a 7.9% EER
on our test set. We improved upon our previous results by in-
cluding high-level and long-term features, median filtering, and
performing segmentation via a hybrid MLP/HMM system with
Viterbi decoding. Upon including the long-term features and
median filtering, our results improved to 5.4% EER on our test
set and 2.7% EER on an equal-prior test set used by others. Af-
ter attaining segmentation results by incorporating the hybrid
MLP/HMM system and Viterbi decoding, we had a 78.5% pre-
cision rate and 85.3% recall rate on our test set. To our knowl-
edge these are the best known laughter detection results on the
ICSI Meeting Recorder Corpus to date.
Index Terms: laughter segmentation, emotion recognition, hy-
brid MLP/HMM

1. Introduction
As the sophistication of speech systems increases, there ismore
of a need to recognize features other than words. One area of
research that could improve speech and speaker recognitionis
the study of nonverbal sounds like laughter.

Laughter recognition could be useful in many aspects of
speech processing. For example, identifying laughter could de-
crease the word error rate by identifying nonspeech sounds [10].
Also, in diarization, identifying overlapped speech reduced the
diarization error rate [3] and for the ICSI meeting recordercor-
pus 40% of laughter time was overlapped [13]. Therefore, iden-
tifying laughter may help reduce the diarization error rate.

The motivation for this study is to enable us to use laughter
for speaker recognition, as our intuition is that many individu-
als have distinct laughs. Currently, state-of-the-art speech rec-
ognizers include laughter as a ‘word’ in their vocabulary. How-
ever, since laughter recognition is not the ultimate goal ofsuch
systems, they are not optimized for laughter segmentation.For
example, SRI’s conversational telephone speech recognizer [16]
was run on the same test set used in this study and achieved a
0.1% false alarm rate and 78% miss rate; in other words when
it identified laughter it was usually correct, however, mostof
the laughter segments were not identified. Due to the high miss
rate along with the fact that laughter occurred in only slightly
more than 6% of the evaluated time in this dataset, SRI’s con-
versational telephone speech recognizer would not be useful for
speaker recognition since there would be very few laughter seg-
ments recognized from which to identify speakers. Therefore,
to be able to explore the utility of laughter segments for speaker
recognition, it is first necessary to build a robust system toseg-
ment laughter, which is the focus of this paper. Note that SRI’s

conversational telephone speech recognizer was not trained on
the training set used in this study.

Earlier work pertaining to automatic laughter detection fo-
cused on identifying whether apredeterminedsegment (usually
1 second or longer) contained laughter using various machine
learning methods including Hidden Markov Models (HMMs)
[6], Gaussian Mixture Models (GMMs) [19], and Support Vec-
tor Machines (SVMs) [10]. More recently, automatic laughter
recognition systems improved upon the previous systems by de-
tecting laughter with higher precision as well as identifying the
start and end times of the segments. In particular, we previ-
ously used Multi-Layer Perceptrons (MLPs) trained on short-
term features to classify each frame (10 ms) as laughter or non-
laughter and achieved an 8% Equal Error Rate (EER) on our
test set [12]. This system was the basis of our current work and
will be referred to as theshort-term MLP system. Also, Truong
and van Leeuwen utilized GMMs with a Viterbi decoder to seg-
ment laughter and achieved an 8% EER on an equal-prior test
set [20], which will be described in Section 3.

In this work, we extend upon the short-term MLP system
[12] in two ways: including additional features which capture
the longer duration characteristics of laughter and using the out-
put of the MLP (the posterior probabilities) to calculate the
emission probabilities of the HMM. The reasons for pursuing
these approaches are:

• Laughter has temporal qualities different than speech,
namely a repetitive disposition [2, 14, 18]. By includ-
ing long-term features we expect to improve upon the
accuracy attained by the short-term MLP system.

• The short-term MLP system scored well. Yet, its down-
fall was that since it classified laughter at the frame level,
even small differences between the posteriors (MLP out-
puts) of sequential frames could result in the abrupt start
or end of a segment. By incorporating an HMM with
Viterbi decoding, the transition probabilities can be ad-
justed to reflect distinct transitions from laughter to non-
laughter and vice versa and the output of our system
would be segments of (non-)laughter instead of frame
based scores.

• An HMM alone typically assumes conditional indepen-
dence between sequential acoustic frames, which may
not be a good assumption for laughter (or speech). How-
ever, our MLP is set up to estimate the posterior condi-
tioned on the features from a context window of succes-
sive frames. By including the MLP outputs in the HMM,
we introduced additional temporal information without
complicating the computation of the HMM.

This paper is outlined as follows: in Section 2 we explain
our laughter segmentation system, in Section 3 we describe the



data used in this work, in Section 4 we provide the results of
our systems, in Section 5 we discuss our results, and in Section
6 we give our conclusions as well as areas of future work.

2. Method
We extracted short-term and long-term features from our data.
Similar to the short-term MLP system we trained an MLP on
each feature class to output the posterior probabilities of(non-
)laughter. We then used an MLP combiner, with a softmax
activation function, to perform a posterior level combination.
The softmax activation function guarantees that the sum of the
two MLP outputs (the probabilities that the frame was (non-
)laughter given the acoustic features) is equal to one. The out-
put of the posterior level combiner was then median filtered to
smooth the probability of laughter for sequential frames. The
median filtered posterior level combination will be referred to
here as theMF MLP system. The outputs of the MF MLP sys-
tem (the ‘smoothed’ posterior probabilities of (non-)laughter)
were then used in the hybrid MLP/HMM system [5] to calculate
the emission probabilities for the HMM. A trigram language
model was included in the HMM. Finally, the output of the hy-
brid MLP/HMM system was laughter segmentation.

2.1. Features

We will describe the short-term and long-term features usedto
train the MLPs. Note that not all of the extracted features were
used in the final system.

2.1.1. Mel Frequency Cepstral Coefficients (MFCCs)

In this study, first order regression coefficients of the MFCCs
(delta MFCCs) were used to capture the short-term spectral fea-
tures of (non-)laughter. The delta features were calculated for
the first 12 MFCCs as well as the log energy, which were com-
puted over a 25 ms window with a 10 ms forward shift using the
Hidden Markov Model Toolkit [7]. From our short-term MLP
system results [12], we found that delta MFCCs performed bet-
ter than both MFCCs and delta-delta MFCCs. Moreover, the
results degraded when using delta MFCCs in combination with
one or both of the aforementioned features. Thus, we only used
delta MFCCs in this work.

2.1.2. Pitch and Energy

Studies in the acoustics of laughter [1, 2] and in automatic
laughter detection [19] investigated the pitch and energy of
laughter as potentially important features for distinguishing
laughter from speech. Thus, we used the ESPS pitch tracker
get f0 [17] to extract the fundamental frequency (F0), local
root mean squared energy (RMS), and the highest normalized
cross correlation value found to determineF0 (AC PEAK) for
each frame (10 ms). The delta coefficients were computed for
each of these features as well.

2.1.3. Phones

Laughter has a repeated consonant-vowel structure [2, 14, 18].
We hoped to exploit this attribute of laughter by extracting
phone sequences. We used SRI’s unconstrained phone recog-
nizer to extract the phones. However, the phone recognizer
annotated nonstandard phones including a variety of filled in
pauses and laughter. Although this was not the original informa-
tion we intended to extract it seemed plausible for the ‘phone’
recognition to improve our previous results. Each frame pro-
duced a binary feature vector of length 46 (the number of pos-
sible ‘phones’), where the only non-zero value was the ‘phone’
label associated with the frame.

2.1.4. Prosodics
Our previous system, the short-term MLP system, included only
short-term features. However, laughter has a distinct repeti-
tive quality [2, 14, 18]. Since prosodic features are extracted
over a longer interval of time, they likely would help differ-
entiate laughter from non-laughter. We used 18 prosodic fea-
tures, which were standard measurements and statistics of jitter,
shimmer, and long-term average spectrum. These features were
extracted over a moving window of 0.5 seconds and a forward
shift of 0.01 seconds using PRAAT [4].

2.1.5. Modulation-Filtered Spectrogram (MSG)
Modulation-filtered spectrogram (MSG) features were calcu-
lated usingmsgcalc [11]. The MSG features compute the am-
plitude modulations at rates of 0-16 Hz. Similar to Kennedy and
Ellis [10], we used modulation spectrogram features to charac-
terize the repetitiveness of laughter. Furthermore, MSG features
have been shown to perform well in adverse acoustic settings
[11] which could improve the robustness of our system.

2.2. MLP
A multi-layer perceptron (MLP) with one hidden layer was
trained using Quicknet [9] for each of the 7 feature classes (delta
MFCCs, RMS, AC PEAK,F0, phones, prosodics, and MSG),
resulting in a total of 7 MLPs. Similar to the short-term MLP
system [12], the input to the MLP was a context window of
feature frames where the center frame was the target frame as
shown in Figure 1. We used the softmax activation function at
the output layer to compute the probability that the target frame
was laughter.

The development set was used to prevent over-fitting the
MLP parameters. Specifically, the MLP weights were updated
based on the training set via the back-propagation algorithm and
then the development set was scored after every training epoch
resulting in the cross validation frame accuracy (CVFA). The
learning rate, as well as deciding when to conclude training,
was determined by the CVFA improvement between epochs.
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Figure 1: For each frame evaluated, the inputs to the MLP were
features from a context window of 101 frames.

2.3. Posterior Level Combination/Median Filter
We performed a posterior level combination of the 7 scores at-
tained from the MLPs for each feature class using an additional
MLP with the softmax activation function. As in [12], because
the input to the combiner was computed over a large context
window (101 frames), we reduced the context window of the
combiner to 9 frames. We also reduced the number of hidden
units to 1 in order to keep the complexity of the MLP small.

We found that although from one frame to the next the MLP
inputs minimally changed, the outputs of the posterior level
combination varied more than expected. To discourage erro-
neously small (non-)laughter segments, we used a median filter
to smooth the posterior level combination.

2.4. Hybrid MLP/HMM
The MF MLP system, described above, computed the probabil-
ity that each frame was laughter given the acoustic featuresover
a context window. While the MF MLP system performed well,



it was not addressing the goal of this paper, which is segment-
ing laughter. In order to segment laughter, we implemented the
hybrid MLP/HMM system [5], where the posteriors from the
MF MLP system were used to determine the emission probabil-
ities of the HMM using Bayes’ rule and the training data was
used to build a trigram language model. Viterbi decoding was
performed to label the data as laughter and non-laughter seg-
ments using Noway [15]. In order to speed up Noway runtime,
we concatenated the vocalized data, the data evaluated in this
work, leaving out audio that contained crosstalk and silence.

3. Data
We trained and tested the segmenter on the ICSI Meeting
Recorder Corpus [8], a hand transcribed corpus of multi-party
meeting recordings, in which the participants were recorded in-
dividually on close-talking microphones and together on distant
microphones. Since our main motivation was to investigate the
discriminative power of laughter for speaker recognition,we
only used the close-talking microphone recordings. By doing
so, we could be more sure of the speaker’s identity. The full
text was transcribed in addition to non-lexical events (including
coughs, lip smacks, mic noise, and most importantly, laughter).
There were a total of 75 meetings in this corpus. Similar to pre-
vious work [10, 12, 19, 20], we trained and tested on the ‘Bmr’
subset of the corpus, which included 29 meetings. The first 21
were used in training, the next 5 were used to tune the parame-
ters (development), and the last 3 were used to test the detector.

We trained and tested only on data which was hand tran-
scribed as vocalized. Cases in which the hand transcribed doc-
umentation had both speech and laughter listed under a single
start and stop time were disregarded since we could not be sure
which exact time interval(s) contained laughter. Also, unanno-
tated time was excluded. This exclusion reduced training and
testing on crosstalk and allowed us to train and test on channels
only when they were in use. Ideally a silence model would be
trained in this step instead of relying on the transcripts. This
data is consistent with the results shown in [13], which found
that over all 75 meetings in the ICSI Meeting Recorder Corpus
9% of vocalized time was spent laughing.

We also reported results on anequal-prior test setin or-
der to compare to the work of others. Similar to our test set,
the equal-prior test set used in [20] contained data from the
last 3 meetings of the ‘Bmr’ subset. However, for the equal-
prior test set, the number of non-laughter segments was reduced
to be roughly equivalent to the number of laughter segments.
Since the data was roughly equalized between laughter and non-
laughter, this test set is referred to as the equal-prior test set. A
summary of the datasets is shown in Table 1.

Table 1:‘Bmr’ dataset statistics.
Develop- Eq-Prior

Train ment Test Test

Laughter (s) 4479 1418 744 596
Non-Laughter (s) 75470 15582 7796 593

% Laughter 5.6% 8.3% 8.7% 50.2%

4. Experiments and Results
4.1. Development Set Results
Delta MFCC features performed best in our short-term MLP
system [12]. Therefore, we experimented using these features
to determine an appropriate context window size. We trained
many MLPs varying the context window size as well as the
number of hidden units. We found that on our development

set, a window size of 101 frames and 200 hidden units per-
formed best. We then continued to use a context window of
101 frames (1.01 seconds) for each of our other features and
varied the number of hidden units to see what performed best.
We also experimented with mean-and-variance normalization
for each of the features over the close-talking microphone chan-
nels. In Table 2 we show the parameters for our best systems for
each feature class along with the lengths of the feature vectors,
the number of hidden units, whether or not it was mean-and-
variance normalized, and the achieved EER.

Table 2:Feature class results on development set.

Feature (#) Hidden Units Normalized EER (%)

∆MFCCs (13) 200 No 9.3
MSG (36) 200 No 10.5
Prosodic (18) 50 No 13.9
AC PEAK (2) 1000 No 14.4
Phones (46) 50 No 17.3
RMS (2) 1000 Yes 20.1
F0 (2) 1000 Yes 22.5

The MLP described in Section 2.3 was used to combine
the posterior probabilities from each feature class using forward
selection. As shown in Table 3, delta MFCCs, MSG, RMS,
AC PEAK, and prosodic features combined to achieve a 6.5%
EER on the development set, which was the best posterior level
combination.

Table 3:Posterior level combination results on development set.

System EER (%)

∆MFCCs + MSG 7.2
∆MFCCs + MSG + RMS 7.0
∆MFCCs + MSG + RMS + AC 7.0
∆MFCCs + MSG + RMS + AC + PROS 6.5
∆MFCCs + MSG + RMS + AC + PROS +F0 7.0
∆MFCCs + MSG + RMS + AC + PROS +F0 + Phones 7.8

After examining the output of the posterior level combina-
tion, we discovered that for sequential frames the output poste-
riors still sometimes varied. In order to smooth the output and
subsequently attain more segment-like results, we median fil-
tered the best posterior level combination output. Empirically,
we found that a median filter of 25 frames worked well. After
applying the median filter, our EER reduced to 6.1% for the MF
MLP system.

The segmentation results were scored in a similar manner
to the MLP results in that we did frame by frame scoring. We
calculated the false alarm and miss rates for the Viterbi decoder
output and found them to be 1.8% and 20.8%, respectively. De-
spite the high miss rate, the hybrid MLP/HMM system was in-
correct only 3.4% of the time due to the large number of non-
laughter examples in the dataset.

4.2. Test Set Results
After tuning on the development set, we evaluated our systems
on our withheld test set. The EER was calculated for the MF
MLP system. Its output was the probability that a frame was
laughter given the features and demonstrated the advantages of
the MF MLP system over the short-term MLP system, which
were adding the long-term features and smoothing the output
via median filtering. Our EER reduced from 7.9% for the short-
term MLP system to 5.4% for the MF MLP system, which was



a 32% relative improvement. Moreover, we wanted to compare
our MF MLP system with the work of others studying laugh-
ter recognition, namely [20]. When we evaluated our system
on the equal-prior test set, we found that the EER reduced to
2.7%, which was a 67% relative improvement from the 8.2%
EER reported in [20].

We then ran our test set through the hybrid MLP/HMM sys-
tem and the output segmentation had a 2.2% false alarm rate and
14.7% miss rate (or incorrect 3.3% of the time). The precision
and recall rates were 78.5% and 85.3%, respectively. For the
equal-prior test set, we had a 0.4% false alarm rate and 12.0%
miss rate, resulting in being incorrect 6.2% of the time. We cal-
culated the precision to be 99.5% and the recall to be 88.0% on
the equal-prior test set.

5. Discussion
The inclusion of long-term and temporal features significantly
improved our results on our test set (from 7.9% reported in
[12] to 5.4% EER for the MF MLP system). We believe these
features exploited the repetitive consonant-vowel structure of
laughter to distinguish laughter from non-laughter.

Furthermore, we found that our results dramatically im-
proved when we used the MF MLP system on the equal-prior
test set previously used in [20]. Specifically, the MF MLP sys-
tem had a 2.7% EER on the equal-prior test set, which was a
67% improvement over the previous best reported results on
the equal-prior test set. Note that although we evaluated this
system on the equal-prior test set, we never modified the pri-
ors of our training data which is summarized in Table 1. Our
hypothesis for the better EER for the equal-prior test set com-
pared to our test set is that the equal-prior test set focusedon
discriminating laughter from speech whereas our test set was
discriminating between laughter and all other vocalized sounds.
The frequency of misclassification for laughter and vocalized
sounds other than speech appears to be higher, particularlyfor
annotated heavy breathing.

Our results after segmentation were also promising. We
were not operating near the EER so we could not compare the
EER of the hybrid MLP/HMM system to that of the MF MLP
system; however, we could compare the segmentation operating
point with the results of the MF MLP system. The segmenta-
tion had a 14.7% miss rate and a 2.2% false alarm rate for our
test set. When the MF MLP system had a 14.7% miss rate, the
false alarm rate was 2.3%. Thus, at a 14.7% miss rate, the hy-
brid MLP/HMM system performed similar to the MF MLP sys-
tem for the more difficult task of marking start and stop times
of laughter. We feel that laughter segmentation and diarization
have similar structures. Thus, similar to diarization, we report
the precision and recall rates on our test set to be 78.5% and
85.3%, respectively.

In order to find the weaknesses of our segmentation system,
we listened to the errors for our test set. Similar to [20], many
of the errors occurred due to breathing sounds.

6. Conclusions and Future Work
We have significantly improved results in laughter segmentation
by including high-level and long-term features. We achieved a
5.4% EER for our test set using a median filtered posterior level
combination of short and long-term features (the MF MLP sys-
tem). After performing Viterbi, we segmented laughter as op-
posed to making a frame level decision. Our hybrid system had
a 78.5% precision rate and 85.3% recall rate. To our knowledge,
these are the best results reported on the ICSI Meeting Recorder
Corpus.

In the future, we intend to include silence in our detection
system in order to process all of the data instead of only vocal-
ized segments. We also plan on investigating the gains of using
laughter features in speaker recognition.
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