
WORD-CONDITIONED PHONE N-GRAMS FOR SPEAKER RECOGNITION 
 

Howard Lei1,2 and Nikki Mirghafori1 

 
1The International Computer Science Institute, Berkeley, CA, USA 

2The University of California, Berkeley, CA, USA 
{hlei, nikki}@icsi.berkeley.edu 

 
 

ABSTRACT 
 
We extend the state-of-the-art by applying word-conditioning to 
constrain phone N-gram features used in speaker recognition. 
Feature-level combination of 52 word unigrams constraining phone 
N-grams of order 1, 2, and 3 proved to be the best approach. Our 
system achieves 15% and 10% improvements compared to a non 
word-conditioned phone N-grams system on SRE05 and SRE06, 
respectively. Furthermore, the system achieves 19% and 18% 
improvements compared to the non word-conditioned phone N-
grams system when each system is combined with a GMM-based 
system on SRE05 and SRE06, suggesting that the word-
conditioned features are more complementary. On SRE05 and 
SRE06, this approach achieves a 4.7% EER standalone, and a 
3.0% and 2.8% EER respectively in combination with the non 
word-conditioned phone N-grams and GMM-based systems. Note 
that the word-conditioning approach utilizes only 43% of SRE05 
data. 
 

Index Terms — Speaker-recognition, word-conditioning, 
phone N-grams, high-level features 
 

1. INTRODUCTION 
 
Speaker recognition has historically relied on low-level acoustic 
features with GMMs for speaker discrimination [1]. These GMM-
based systems typically use a frame by frame feature extraction 
approach, and capture time-dependent acoustic vocal-tract 
characteristics in human speech generation. This popular approach, 
however, ignores idiolect-based speaker information from word 
and phone N-grams, which have been shown to provide good 
speaker discriminative power [4,5]. Word and phone N-gram 
features have been used separately in the past, each with 
surprisingly good success. Word-conditioning of phone N-gram 
features is a logical follow-up to the previous approaches. 
 While speaker recognition systems have historically been 
text-independent, the use of word conditioning provides a method 
of relying on speech signal information from selected words which 
are rich in speaker characteristic information. This word-
conditioning introduces the advantages of text-dependence in a 
text-independent domain. An example of word conditioning is the 
word HMM system [2], where HMM models are built for a subset 
of words using low-level acoustic features (MFCCs). In this paper, 
we introduce an approach utilizing phone N-gram features 
constrained by a selected set of high-frequency words. 
 This paper is organized as follows: Section 2 describes the 
database. Section 3 describes preprocessing of speech, feature-
extraction for lattice and 1-best phone decodings, combination 

techniques for various word N-grams, and problems associated 
with the techniques. Section 4 describes target speaker model 
training and test-target pairs scoring. Section 5 describes 
experiments and results. Section 6 provides a summary and 
conclusion of our findings. 
 

2. DATA 
 
The training and test data are the SRE04, SRE05 and SRE06, 
which have been drawn from the MIXER corpus. MIXER is a 
conversation speech corpus, where two unfamiliar speakers speak 
for roughly 5 minutes. A conversation side (roughly 2.5 minutes) 
contains speech from one speaker only. 2,843 conversation sides 
are used for SRE04, 5,970 for SRE05, and 7,598 for SRE06. In 
addition, there are 7,336 trials for SRE04 (with 686 true speaker 
trials), 20,683 trials for SRE05 (with 2,072 true speaker trials), and 
16,831 trials for SRE06 (with 2,010 true speaker trials). Ten-
minute Fisher and five-minute Switchboard II English conversation 
sides (1,553 total) were used to provide the background model. 
Each speaker is represented in no more than one background 
conversation side. 

Target speaker models are trained using 8 conversation sides 
from the same target speaker. This provides better target speaker 
modeling than training on only one conversation side, especially 
since we are using SVMs and each training conversation is 
represented as one point in the high dimensional space. Thus, there 
are 8 positive and 1,553 negative training examples to train each 
target speaker model. 
 

3. FEATURE EXTRACTION 
 
3.1 Preprocessing 
 
We used the same preprocessing approach as in the non word-
conditioned phone N-grams system [5]. For a given conversation 
side, segments containing speech were extracted using a 
speech/non-speech detector, and word and open-loop phone 
recognition were performed using the DECIPHER recognizer [7], 
developed by SRI. Our version of DECIPHER uses gender-
dependent, 3-state hidden Markov models for openloop phone 
recognition. The Markov models were trained using mel-frequency 
cepstral coefficient features of order 13 plus deltas and double 
deltas, with overall dimensionality of 39, on the Switchboard I 
corpus [5,7]. Phone recognition was performed on segments 
containing speech only. 
 
3.3 Phone N-gram feature extraction from phone lattices 
 



A phone lattice decoding for a voiced segment of a conversation 
side, produced by the recognizer, is a set of nodes and edges 
denoting the probability of occurrence of particular phones at 
particular time segments of a conversation side. Each edge 
represents a phone and an acoustic probability for its occurrence; 
each node at the beginning and end of each edge represents a time 
instance. For each selected word N-gram, phone lattice segments 
containing edges with at least one node within word N-gram time 
boundaries are kept for feature extraction, as shown in Fig. 1.  
 The features used are the relative frequencies of phone N-
grams within the extracted lattice segments. Phone N-grams are 
phone sequences along N consecutive lattice edges, where N 
denotes the order. Phone N-gram feature values, p(Ni|W,C), 
represent the relative frequency of a phone N-gram Ni given a 
conversation side C and word N-gram W. They are computed as 
follows: 
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where p(Sj|W,C) is the posterior probability of a phone sequence Sj 
given a word N-gram and conversation side, count(Ni|Sj) is the 
number of occurrences of Ni in the phone sequence S, and 
count(W|C) is the number of occurrences of W in conversation side 
C. If there are multiple occurrences of a word N-gram in a 
conversation side, the phone N-gram counts are averaged over the 
occurrences. A feature vector is a vector of relative frequencies 
indexed by the corresponding phone N-gram. 

Fig. 1 provides a summary of the process of phone N-gram 
feature extraction from phone lattices. The term p(Sj|W,C) (where 
W represents WORD2) is computed using the forward-backward 
Viterbi algorithm involving the nodes and edges of the lattice 
containing Sj. Because the only phones of interest are ones 
belonging to the desired word (i.e. word-conditioning), phones 
belonging to edges between the very first node of the lattice and 
the nodes at the beginning of the segment corresponding to the 
desired word (the nodes and edges shown in gray under WORD2), 
and also phones belonging to edges between the end of the 
segment and the very last node, are irrelevant; only their 
probabilities are used in the algorithm. As a good estimate of the 
probabilities of paths connecting the first and last nodes of the 
lattice to the boundary nodes of the desired segment, only paths 
with the highest probabilities (computed via Dijkstra’s algorithm) 
are considered and used in the Viterbi algorithm. A feature vector 
consists of all phone N-grams for a particular word N-gram of a 
conversation side. 
 
3.4 Feature extraction from 1-best recognition hypothesis 
 
A 1-best phone decoding consists of the most probable path in the 
lattice decoding. Lattice edges along this path with one of two 
nodes within word N-gram time boundaries are extracted, and 
phone N-gram feature counts are computed as follows: 
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where count(Ni|W,C) is the number of times phone N-gram Ni 
occurs given word N-gram W and conversation side C.  
 

3.5 Feature- and score-level combination 
 
Different word N-grams constraining subsets of phones N-grams 
can be used as speaker recognition systems, where each system 
uses only the phone N-grams that it constrains. Combination of 
these “word systems” at the feature level requires a concatenation 
of feature vectors for multiple word N-grams of a conversation 
side, repeated for all conversation sides. In the final feature 
vectors, each phone N-gram is flagged with its appropriate word 
N-gram tag. Training, testing and scoring is completed on these 
feature vectors. Fig. 2 illustrates this process. Because not all word 
N-grams appear in all conversation sides, phone N-gram data for a 
particular word N-gram in a conversation side may not exist. They 
are assigned feature values of 0, as shown in Fig. 2. This is 
undesirable since the values of 0 do not accurately reflect phone N-
gram counts should the word N-gram exist in the conversation 
side. One way to address this missing data problem is to choose 
high frequency word N-grams, with the majority of conversation 
sides containing most or all of the N-grams. An alternative method 
is to substitute existing values for the missing values. 

 
 

Fig. 1. Word N-gram-conditioned phone N-gram feature extraction 
from phone lattices 

 
 



Word N-gram systems can also be combined at the score level. 
One method is to use a neural network with two hidden nodes and 
one hidden layer, implemented via the Lnknet package [8]. Score-
level combination requires each word N-gram system to be 
individually trained, tested, and scored before combination, as 
shown in Fig. 3 (note that scores of each system affects its weight 
in combination). 
 

 
Fig. 2. Feature-level combination of multiple word N-grams 

 
 

 
Fig. 3. Score-level combination of multiple word N-grams 

 
 

4. TRAINING AND SCORING 
 
The support vector machine (SVM) with linear kernel is used for 
target speaker model training and speaker model-test utterance 
scoring. The kernel is obtained from Campbell et al [3]. The 
background model conversation sides serve as negative training 
examples, while target speaker model conversation sides provide 

positive training examples. Each conversation side is one data 
point in the high-dimensional space. The SVMlight software is used 
for training and scoring [6]. 
 

5. EXPERIMENTS AND RESULTS 
 
Feature-level combination on SRE05 using 1-best phone decoding 
is performed on a subset of word bigrams (3,889 total) which 
appear more than 30 times in the 1,553 background conversation 
sides. Results are shown in Table 1. Word bigrams used for 
combination are selected based on their individual EERs for 
NIST’s 2004 evaluation corpus (SRE04), with at least 10 true 
speaker tokens in each “word system.” (Note that the individual 
EERs are computed using the procedure explained in sections 3 
and 4, except with only one desired word.) A threshold is applied 
to phone N-gram features, keeping only those with counts greater 
than 20 in the accumulation of the background conversation sides. 
Phone N-grams of order 1 and orders 1, 2, and 3, corresponding to 
each bigram, are experimented with. A bigram is used in 
combination for a particular phone N-gram order if its EER falls 
below a certain percentage using those phone N-grams (as shown 
in Table 1). As with the approach by Hatch et al., the SVMlight 
software with c=1 was used for SVM training and scoring, and a 
bias term was included in the SVM kernel [5].  

Results show that EER is correlated with the number of word 
bigrams combined, and the type of phone N-grams used (order 1 
vs. 1, 2, and 3) has little impact. The missing data problem is 
evident since EER is worse when combining word bigrams with 
lower individual EER, which have fewer word bigram 
observations. This results in larger chunks of missing data in 
feature vectors.  

To address the missing data problem, feature values 
corresponding to a particular word bigram in background 
conversation sides are summed and divided by the number of 
background conversation sides in which the word bigram exists. 
These averaged values replace missing feature values for the 
particular word bigram in all conversation sides. However, as 
shown in table 1, this approach only marginally improves EER for 
experiments with missing data. It is likely that substituting missing 
feature values with background values makes conversation sides 
difficult to distinguish from background conversation sides, from a 
SVM standpoint. In addition, the absence of a word from a 
conversation side carries speaker discriminative information, 
which is lost after substitution. 

A second way to handle the missing data problem is to select 
word N-grams that are unlikely to be missing from any 
conversation side. Specifically, word unigrams with more than 
4,000 appearances in the background conversation sides are 
combined at the feature and score level (via Lnknet), with 1-best 
and phone lattice decoding. These 52 word unigrams occupy 43% 
of total conversation time among the ~6,000 conversation sides of 
SRE05. Interestingly, they represent only ~0.5% of tokens in the 
corpus. Lnknet was trained on results from SRE04. 

Results on SRE05 are shown in Table 2. Approximately 90 
percent of background conversation sides have at least 44 of the 
following 52 word unigrams: a, about, all, and, are, be, because, 
but, do, for, get, have, i, if, in, is, it, just, know, like, mean, my, no, 
not, of, oh, okay, on, one, or, people, really, right, so, that, the, 
there, they, think, this, to, uh, uhhuh, um, was, we, well, what, with, 
would, yeah, you.  

The results improve dramatically using the 52 unigrams with 
phone lattice decoding and feature-level combination (compare 



Table 2 to Table 1). Each unigram has an EER less than 50% in 
SRE04, computed using phone N-gram features of order 1, 2, and 
3 with phone lattice decoding. Feature-level combination using 
phone N-gram features of order 1, 2, and 3 is superior to 
combination using those with order 1, as one would expect. Score-
level combination for the 52 unigrams is inferior to feature-level 
combination, while the richer phone lattice decoding is superior to 
1-best phone decoding, as expected. Note that the top ~33,000 
features are used for feature-level combination, which led to the 
best results with EER of 5.0%. 

 

 
 Table 1. Feature-level combination results using 1-best phone 

decoding on SRE05 
 

 
Table 2. Combination using 52 common word unigrams on SRE05 
 

 
Table 3. System fusion results 

 
System fusion with a GMM-based system [7] and a non word-
conditioned phone N-grams system [5] is performed on SRE05 and 
SRE06 using 6,117 Fisher and Switchboard 2 background 
conversation sides, and the fusion weights are trained on SRE04. 
Feature-level combination (using the top ~33,000 features) for the 
52 word unigrams using phone unigram, bigram, and trigram 
features is performed for the word-conditioned (WC) phone N-
grams system. Systems are fused via score level combination, and 
Tnorm was applied [1]. Tnorm was trained using 249 1-
conversation side target speaker models from the Fisher corpus. 
Results are shown in table 3. 

The WC phone N-grams system (4.7% EER on both SRE05 
and SRE06) achieves a 14.5% improvement on SRE05 and a 9.6% 
improvement on SRE06 compared to the non WC phone N-grams 

system (5.5% EER on SRE05 and 5.2% EER on SRE06). The 
system also achieves an 18.9% improvement on SRE05 and 17.6% 
improvement on SRE06 compared to the non WC phone N-grams 
system when both systems are combined with the baseline GMM-
based system. Improvements over the non WC phone N-grams 
system may be because the 52 unigrams represent a more clear and 
concise characterization of variability amongst speakers than the 
set of all words in conversation sides. The combination of word-
conditioned and non word-conditioned phone N-grams systems has 
slightly lower EER than each system alone on SRE06, despite 
similarities in approach. 

 
6. CONCLUSION 

 
We have extended the state of the art of using phone N-grams for 
speaker recognition by application of word-conditioning. The 
word-conditioned phone N-grams system contributes more to error 
reduction than its non word-conditioned counterpart. Our best 
system demonstrates the high speaker discriminative power of just 
52 word unigrams using phone lattice N-gram features. Alternative 
approaches to handling the missing data problem and other 
methods of system combination can be explored in the future. 
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Filled 
missing 

data 

Bigram 
EER 

Phone 
N-gram 
features 

# of word 
bigrams 

combined 

EER 

N < 50% order 1 882 15.8% 
N < 50% order 1,2,3 855 16.0% 
Y < 50% order 1,2,3 855 15.3% 
N < 40% order 1,2,3 150 25.4% 

Phone 
decoding 

Phone 
N-gram features 

Word N-gram 
Combination 

EER 

lattice order 1 Feature-level 6.5% 
lattice order 1,2,3 Feature-level 5.0% 
1-best order 1,2,3 Feature-level 10.2% 
lattice order 1,2,3 Score-level 20.5% 

Systems combination: SRE05 
EER  

SRE06 
EER 

WC phone N-grams 4.7% 4.7% 
Phone N-grams 5.5% 5.2% 
GMM 4.8% 4.6% 
GMM + phone N-grams 3.7% 3.4% 
GMM + WC phone N-grams 3.0% 2.8% 
WC phone N-grams + phone N-grams 4.2% 3.8% 
WC phone N-grams + phone N-grams + 
GMM 

3.0% 2.8% 


