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Abstract

We improve upon our measures relating feature vector distri
butions to speaker recognition (SR) performances for perfo
mance prediction and potential arbitrary data selectiorSR,

as described in [1]. In particular, we examine the means and
variances of 11 features pertaining to nasality (each otkwhi

is denoted as a measure), computing them on feature vedtors o
phones to determine which measures give good SR performance
prediction of phones. We've found that the combination of
nasality measures give a 0.917 correlation with the EqualrEr
Rates (EERSs) of phones on SREO08, exceeding the correlation
of our previous best measure (mutual information) by 12.7%.
When implemented in our data-selection scheme (which does
not require a SR system to be run), the nasality measuresg allo
us to select data with combined EER better than data selected
via running a SR system in certain cases, at a fortieth of the
computational costs. The nasality measures also requénatla t

of the computational costs to compute compared to our pugvio
best measure.

Index Terms: Text-dependent speaker recognition, data selec-
tion, nasality measures, relevance, redundancy

1. Introduction

Unit-based text-dependent speaker recognition (UTSR)es t
speaker recognition approach where only certain speedh uni
(i.e. words, phones, syllables) found in speech data aré use
to construct entire speaker recognition systems [2]. These
approaches have been successfully applied in converahtion
speaker recognition tasks, where the data consists ofHgngt
conversations between speakers, and the speech is not lexi-
cally constrained [2][3]. While discarding much of the sgiee

the advantages of UTSR for conversational speaker re¢ognit
(SR) are three-fold: to focus speaker modeling power on more
informative regions of speech, to reduce intra-speakdcdéx
variability, and to reduce the total amounts of data requfos
faster processing.

The units examined in the past include word N-grams, syl-
lables, phones, and Automatic Language Independent Speech
Processing (ALISP) units [4] (which are designed to mimi th
phones) and MLP-based phonetic units [5]. Many of the units,
such as the words and phones, are used only because their tran
scripts are readily available via Automatic Speech Redamgni
and are incorporated without regard to their actual spegiker
criminative abilities. Moreover, there has been no evideng-
gesting that words, phones, and/or syllables are idealdfets
units for UTSR. The eventual aim of this work is to allow one
to step beyond the use of these units, and to examine thespeak
discriminative capabilities of all possible speech segsémat
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can act as units.

This work involves the development of measures as com-
putationally inexpensive ways of determining which units a
speaker discriminative based solely on feature vectorhi®f t
units. The measures would allow for a quick determination of
SR performances of each unit without having to run the SR sys-
tem, which could take days depending on the units used. For
an arbitrary set of units, one task is to compute the measures
the feature vectors of each unit separately. Measures dechpu
in this matter (referred to as relevance measures) woutdagiv
indication of the relevance of the unit with respect to the SR
task. Measures that have high correlation (in magnitudé) wi
the SR EERs of the units would have good predictive value for
SR, and would eventually be good measures for arbitrary data
selection.

To get a good prediction of the effectiveness of unit combi-
nation, another task is to compute the measures on pooled fea
tures for sets of units, so that a correlation between thesorea
and the EER achieved via the combination of the set of units is
obtained. Measures computed in this manner (referred te-as r
dundancy measures) give an indication of the redundandyeof t
units amongst one another, whereby units that combine weell a
less redundant, and vice versa.

Finding effective relevance and redundancy measures will
allow for the eventual selection of arbitrary sets of unftatt
produce the best SR performances. In [1], we showed the
promise of our approach by demonstrating that measures such
as mutual information, kurtosis, and Pearson’s corraidéd to
effective data selection. In this work, we improve upon ae-p
vious work by examining measures pertaining to nasality and
their effectiveness in data selection.

This paper is organized as follows: Section 2 describes the
database and our SR system for computing the EERs, section
3 describes the nasality measures, section 4 describestar d
selection scheme, section 5 describes the units usedorsécti
describes the experiments and results and provides a lsief d
cussion, and section 8 provides a summary of the current work
and describes the applicability of this work to future reshan
UTSR.

2. Data, preprocessing, and speaker
recognition

We used the Switchboard Il and Fisher corpora for universal
background speaker model training, SREQ6 for development,
and SREO08 for testing. All corpora consists of telephone con
versations between two unfamiliar speakers. A convensatio
side (roughly 2.5 minutes for non-Fisher and 5 minutes for
Fisher) contains speech from one speaker only. 1,060, and



1,180 conversation sides with 128, and 160 speakers are used than 80Hz.

for SREO6, and SREO08 respectively. 1,553 background con-
versation sides are used from Switchboard Il and Fisher. One
conversation side is used to train each target speaker model
and only female English telephone conversation sides a®@ us
for this work. There are-55,000 total trials for SRE06 with
~7,000 true speaker trials, andd7,000 trials for SREO8 with
~6,500 true speaker trials. In addition, we created two split

of SRE06 (SRE06s1 and SRE06s2) for development purposes.

There are-65 speakers;-530 conversation sides;15,000 tri-

als, and~3,400 true speaker trials in each split. We are pro-
vided with force-aligned phone ASR decodings for all conver
sation sides by SRI, obtained via the DECIPHER recognizer
[6].

A 512-mixture GMM-UBM system [7] with MAP adap-
tation and MFCC features C0-C19 (with 25 ms windows and
10 ms intervals) with deltas is used for computing the EERs of
units. The ALIZE implementation is used [8], and the MFCC
features are obtained via HTK [9].

3. Nasality features asrelevance measures

Previous work suggests that nasal regions of speech are an ef
fective speaker cue, because the nasal cavity is both speake
specific, and fixed in the sense that one cannot change its vol-
ume or shape [10]. Various acoustic features have been pro-
posed for detecting nasality. Glass used six features tecte
ing nasalized vowels in American English [11]. Pruthi exted

Glass's work and selected a set of nine knowledge-based fea-

tures for classifying vowel segments into oral and nasa-cat
gories automatically [12].

Our goal, however, is to determine if the nasality fea-
tures would allow us to identify which speech units have good
speaker discriminative power. The fact that the feature® ha
been used to detect nasalization in vowels would possibly al
low the features to better determine which speech units hold
greater speaker discriminative power, since nasals tHeesse
hold great speaker discriminative power [10]. The means and
variances of each nasality feature, computed over all data ¢

strained by a speech unit, are used as relevance measures for

that unit.

3.1. Description of nasality features

All nasality features described below are computed using&5
windows with 10 ms shifts. A total of 11 nasality features are
implemented.

stdOlk: The standard deviation of frequency around the center
of mass of the frequency region below 1000Hz. Standard devi-
ation is calculated using the spectral amplitudes 500 Hzagch e
side of the center of mass, but constrained to within 0 an® 100
Hz [11].

ctm01lk: The center of mass of the short-term log magnitude
squared (dB) spectrum amplitude in the frequency band be-
tween 0 and 1000 Hz. It is computed using a trapezoidal win-
dow with flatness between 100-900Hz.

alhlmax800: The difference, measured in the log magnitude
squared spectrum, between the amplitude of the first formant
(A1) and the first harmonic (H1) [12]. Al is estimated using
the amplitude of the maximum value in the band between 0 and
800 Hz. H1 is obtained using the amplitude of the peak closest
to OHz which had a height greater than 10dB and a width greater

almax800: The amplitude of the first formant (Al) relative to
the total spectral energy between 400 Hz and 800 Hz.

tefl: The teager energy operator for detection of hypernasality
[13]. It finds the correlation between the teager energy leofi

of narrow bandpass-filtered speech and wide bandpas®dilter
speech centered around the first formant.

c0: The Oth cepstral coefficient representing the energy of the
spectrum. Our intuition is that this feature would be smale
average for nasals because nasals appear to be softer in ampl
tude in general.

frat: The ratio of the spectral energies between 300 to 700 Hz
and between 2,500 to 3,400 Hz. We observed the ratio to be
higher on average for nasals.

Four additional features are extracted based on the datesti
possible poles below and above the first formant. These poles
are computed using a smoothed version of the FFT spectra. De-
notep0 andfp0 as the amplitude and frequency of the pole be-
low the first formantpl andfpl as the amplitude and frequency

of the pole above the first formant, aadl andfl as the ampli-
tude and frequency of the first format. The featuresedre0,
al-pl, f1-fp0 andfpl-f1.

3.2. Pearson’scorrelation asredundancy measure

We've used the same redundancy measure described in our pre-
vious work [1]. For a pair of units, Pearson’s correlationas-

puted using the average MFCC feature values of each unit for
each conversation side. For each conversation side, thageve
values of the MFCC feature vectors for each unit are computed
A correlation across all conversation sides is then conuplge
tween the averaged MFCC feature values of unit 1 and unit2.
Note that the correlation is computed separately for eatieni

sion of the feature vectors, and an overall correlation faiokd

by averaging the correlations of each dimension.

Each pair of units is thus associated with a correlation (de-
note bycorrA). We have shown in [1] that there is a -0.486 cor-
relation between the unit pair’s relative improvement inrse
level combination, and iteorrA value, indicating thatorrA is
a valid indicator of the unit pair's redundancy.

4. Data selection schemeinvolving the
measures

Our data selection scheme is based off of the feature safecti
approach in [14]. Specifically, given a set of units, the tissk

to select N units that produce the best SR result in combina-
tion. Given the relevance measures for each unit and redun-
dancy measures for unit pairs, our data selection appraach i
the following: for a given set of pre-selected unitsdetermine

if an additional unitQ should be selected by maximizing the
following objectiveOBJ:

OBJ(Q) = Rel(Q) — a Y _ Red(Q,p).

peP

1)

whereRel(Q) is the value of the relevance measure for @it
Red(Q, p) is the value of the redundancy measure betw@en
andp, anda is a weight between the relevance and redundancy
factors. This objective allows one to select units that rgoed
standalone speaker discriminative power (accordingdk{())

and are not redundant in their speaker discriminative chera



istics with pre-selected units.

5. Theunits

The following set of 30 phones represent the units used fsr th
work: fal, leel, h/, b/, Isf, a1, Ibl, [dl, 181, £1, I3, lel, [, Inl,

N il Ik, I Il Il ol Ipl, PUH, Il Isl, I, Igiivi, i, Tl

/zl, where PUH is the vowel in a filled pause, and the remain-
ing phones are denoted by their IPA symbols. These phones
are selected from the set of all phones because they occiir mos
frequently in the SREOQ6 conversation sides.

Phones intuitively represent a good starting point for the
evaluation of measures because they span the vast majbrity o
the acoustic space of speech. Hence, the use of phones allows
the measures to be computed on many different segments of the
acoustic space, and the value obtained for a measure usang a p
ticular phone would be largely specific to the section of aticu
space represented by the phone. Note that for each conwersat
side, some phone instances are removed to ensure rouglaly equ
numbers of frames for all phones in the conversation side.

6. Experimentsand results
6.1. Nasality features asrelevance measure

As discussed in 3, the mean and variance of each of the 11 nasal
ity features constrained by a unit are used as relevance mea-
sures for that unit. We also computed the EER of each unit by
running our speaker recognition system using data constlai

by that unit, such that each unit is associated with 11 rtgsali
means and variances (22 relevance measures total), and.1 EER
For the 30 units, we've computed the correlations between th
EERs and each relevance measure, obtaining a total of 22 cor-
relations. A greater correlation in magnitude indicateseatgr
ability of the relevance measure in predicting the EER. &aBl
shows the correlations of each relevance measure on SRE08.

The correlation of our mutual information measure (our
previous best in terms of correlation with phone EERS) de-
scribed in [1], is also shown. For each phone, the mutual in-
formation is computed between the feature vectors (MFCC CO-
C19 + delta) and speakers. It represents the total entrogheof
feature vectors minus the entropy of the feature vectorerngiv
the speaker.

According to table 1, thalhlmax800 mean (0.807 corre-
lation) andtefl variance (-0.757 correlation) are nasality mea-
sures able to most strongly predict the EER (these coroekti
are significant at the 1% level). However, the individual mea
sures themselves do not outperform mutual informatior8{-0.
correlation).

The measures are combined via linear regression and
stronger correlations between the EER and combined measure
are obtained. Leave-one-out (LOO) selection is used tatele
the most useful set of measures. LOO selection selects #te be
set of measures with respect to their correlations on SREQ6s
with regression weights trained on SRE06s1. Table 2 shosvs th
correlation on SRE06s2 for 10 iterations of LOO selection.

Interestingly, the measures that perform the best individu
ally (alh1max800 Mean andefl variance) are amongst the first
to be dropped via LOO selection. Also, the top 17 measures
produce the best correlation (0.947 at iteration 5). We kept
the top 17 measures, and trained a linear regression model on
SREOQ6. Applying the model on SRE08, we obtain a correlation
of 0.917 between the combination of the 17 nasality measures
and EER. This is a 12.7% improvement over mutual informa-

[ Measure | Mean or Var| Correlation |
almax800 Mean -0.316
almax800 Var -0.465
alhlmax800 Mean 0.807
alhlmax800 Var 0.699
c0 Mean 0.252
c0 Var 0.640
ctmO1k Mean 0.471
ctmO1k Var -0.502
frat Mean 0.394
frat Var 0.340
std01k Mean -0.041
std01k Var -0.510
tefl Mean 0.197
tefl Var -0.757
al-po Mean 0.373
al-po Var 0.486
al-pl Mean 0.086
al-pl Var -0.182
f1-fp0 Mean 0.067
f1-fp0 Var 0.055
fpl-f1 Mean -0.238
fpl-f1 Var 0.344
Mutual Information | — -0.814

Table 1: Correlations of the means and variances of eaclrnasa
ity feature with the EERs of each phone. Results obtained on
SREOQS8.

tion on SRE08. Repeating the above procedure while incorpo-
rating the mutual information measure, we obtain a 0.912 cor
relation on SRE08. Table 3 summarizes these results.

Note that the correlation with nasality and mutual infor-
mation measures is roughly equivalent to the correlatiain wi
nasality measures alone, indicating that mutual inforomati
does not contribute to correlation improvements.

7. Data selection with nasality measures

We've applied the combined 17 nasality measures (NAS), the
mutual information measure (Ml), and Pearson’s correfatio
dundancy measure to the data selection scheme described in
section 4. Computing the nasality measures requires a tenth
of the computational costs of computing the mutual informa-
tion measure on all phones. Also, computing the nasality- mea
sures and Pearson’s correlation measures requires roafry

tieth of the computational costs of running the SR systeralfor
phones.

The standalone EERs of the individual phones are used as
the baseline relevance measure. Two splits of SRE06 aragaised
train thea: parameter from equation 1, using measures obtained
on SREO6. The data selection scheme in section 4 is used to se-
lect the top 5 and 10 phones for MLP-based score-level combi-
nation on SREO8 (with MLP weights trained on SRE06). Table
4 shows the EER results on SREO8 ferequal to its optimal
value for the measure and number of phones used, along with
the phones selected. Note that nasality measure combinatio
is performed on SRE08 with weights trained on SRE06, and
the standalone EERs and mutual information are obtained on
SREO08.

According to table 4, selecting the top 10 phones in combi-
nation using our data selection approach with the comhinati



Iteration | Nasality feature Correlation Relevance| Num Phones EER (%)
eliminated measure | phones selected

1 c0 Mean 0.918 MI 5 fa/, [dl, Inl, IKI, V] 14.8

2 alhimax800 Mean | 0.924 NAS 5 /bl, 18/, PUH, Is/, Iz] 14.5

3 tefl Var 0.938 EER 5 Ibl, Ikl, Inl, Itl, Iz] 13.5

4 alh1max800 Var 0.945 Mi 10 fal, [dl, Ihl, I, IKI, 11.7

5 al-p0 Mean 0.947 /m/, PUH, /s, I, Iw/

6 f1-fp0 Mean 0.947 NAS 10 fal, la¥], Ibl, [d/, /8], 115

7 fpl-f1 Var 0.946 Im/, Ip/, PUH, Isl, Iz/

8 almax800 Mean 0.946 EER 10 lal, lal, b¥1, Ibl, [dl, 12.1

9 frat Mean 0.946 1o/, Ikl, Inl, Itl, Iz|

10 al-p0 Var 0.945

Table 4: MLP score-level combination of top 5 and 10 phones
Table 2: 10 iterations of leave-one-out selection for SR204 selected according to relevance and redundancy meastttes wi

with linear regression weights trained on SRE04. optimal a. Results obtained on SREOS.
[ Measure(s) | Correlation] 9. Acknowledgements
Nasality onl 0.917 . .
Mutue:I)i/nfori/nation only 0.814 The author wishes to thank Andreas Stolcke of SRI for provid-

Nasality + mutual information 0.912

Table 3: Results on SREO08 with and without mutual informa-
tion measure.

(1]

of nasality measures as the relevance measure gives a 11.5%
EER on SREO8, which is a 4.96% improvement over using the [2]
EERs (12.1% EER) and 1.71% improvement over using mu-
tual information (11.7%) as relevance measures. Note et e

though the 1.71% improvement is not significant, is it oledin [3]
at a tenth of the computational cost. In addition, we've show
that using the nasality measures, it is possible to seleet afs [4]

units that perform better than the units selected via rupttie
SR system, at a fortieth of the computational cost.

Even though the standalone EERs (13.5% EER) perform [5]
better than the nasality measures (14.5% EER) and mutual in-
formation (14.8%) if only 5 phones are to be selected, the-com
putational cost savings imply that using the measures nilhy st [6]
be preferred. Nevertheless, we've demonstrated that dssip
ble to select effective units for SR without running the atBR
system at a very small fraction of the computational cosd, an
the units selected can perform better in combination thas un

selected via running the SR system. 7]
8. Conclusion and future Work (8]

In this work, we've investigated the feasibility of usingsadity

measures for data selection and performance predictiamitr 9]

based text-dependent speaker recognition. Using a set of 30 [10]
phones as units, we showed that means and variances of nasal-

ity features in combination have significant correlatiornishw

phone EERs. We've shown that units selected using the hasali  [11]
measures as relevance measure can give better speakerirecog

tion results in combination than the combination of unitshwi [12]
standalone EERs as relevance measure, and does not require a
speaker recognition system to be run.

In the future, we will attempt to develop more effective  [13]
measures and investigate data selection using other tyfpes o
units. We will use the measures to select an arbitrary set of
units which would have the globally optimal speaker recogni  [14]
tion result in combination for particular types of systeriifie
arbitrary selection of units would be computationally febes
via the use of our measures.

ing speech recognition decodings. This research is fungied b
NSF grant number 0329258.
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