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Abstract

We improve upon our measures relating feature vector distri-
butions to speaker recognition (SR) performances for perfor-
mance prediction and potential arbitrary data selection for SR,
as described in [1]. In particular, we examine the means and
variances of 11 features pertaining to nasality (each of which
is denoted as a measure), computing them on feature vectors of
phones to determine which measures give good SR performance
prediction of phones. We’ve found that the combination of
nasality measures give a 0.917 correlation with the Equal Error
Rates (EERs) of phones on SRE08, exceeding the correlation
of our previous best measure (mutual information) by 12.7%.
When implemented in our data-selection scheme (which does
not require a SR system to be run), the nasality measures allow
us to select data with combined EER better than data selected
via running a SR system in certain cases, at a fortieth of the
computational costs. The nasality measures also require a tenth
of the computational costs to compute compared to our previous
best measure.
Index Terms: Text-dependent speaker recognition, data selec-
tion, nasality measures, relevance, redundancy

1. Introduction
Unit-based text-dependent speaker recognition (UTSR) is the
speaker recognition approach where only certain speech units
(i.e. words, phones, syllables) found in speech data are used
to construct entire speaker recognition systems [2]. These
approaches have been successfully applied in conversational
speaker recognition tasks, where the data consists of lengthy
conversations between speakers, and the speech is not lexi-
cally constrained [2][3]. While discarding much of the speech,
the advantages of UTSR for conversational speaker recognition
(SR) are three-fold: to focus speaker modeling power on more
informative regions of speech, to reduce intra-speaker lexical
variability, and to reduce the total amounts of data required for
faster processing.

The units examined in the past include word N-grams, syl-
lables, phones, and Automatic Language Independent Speech
Processing (ALISP) units [4] (which are designed to mimic the
phones) and MLP-based phonetic units [5]. Many of the units,
such as the words and phones, are used only because their tran-
scripts are readily available via Automatic Speech Recognition,
and are incorporated without regard to their actual speakerdis-
criminative abilities. Moreover, there has been no evidence sug-
gesting that words, phones, and/or syllables are ideal setsof
units for UTSR. The eventual aim of this work is to allow one
to step beyond the use of these units, and to examine the speaker
discriminative capabilities of all possible speech segments that

can act as units.
This work involves the development of measures as com-

putationally inexpensive ways of determining which units are
speaker discriminative based solely on feature vectors of the
units. The measures would allow for a quick determination of
SR performances of each unit without having to run the SR sys-
tem, which could take days depending on the units used. For
an arbitrary set of units, one task is to compute the measureson
the feature vectors of each unit separately. Measures computed
in this matter (referred to as relevance measures) would give an
indication of the relevance of the unit with respect to the SR
task. Measures that have high correlation (in magnitude) with
the SR EERs of the units would have good predictive value for
SR, and would eventually be good measures for arbitrary data
selection.

To get a good prediction of the effectiveness of unit combi-
nation, another task is to compute the measures on pooled fea-
tures for sets of units, so that a correlation between the measures
and the EER achieved via the combination of the set of units is
obtained. Measures computed in this manner (referred to as re-
dundancy measures) give an indication of the redundancy of the
units amongst one another, whereby units that combine well are
less redundant, and vice versa.

Finding effective relevance and redundancy measures will
allow for the eventual selection of arbitrary sets of units that
produce the best SR performances. In [1], we showed the
promise of our approach by demonstrating that measures such
as mutual information, kurtosis, and Pearson’s correlation led to
effective data selection. In this work, we improve upon our pre-
vious work by examining measures pertaining to nasality and
their effectiveness in data selection.

This paper is organized as follows: Section 2 describes the
database and our SR system for computing the EERs, section
3 describes the nasality measures, section 4 describes our data-
selection scheme, section 5 describes the units used, section 6
describes the experiments and results and provides a brief dis-
cussion, and section 8 provides a summary of the current work
and describes the applicability of this work to future research in
UTSR.

2. Data, preprocessing, and speaker
recognition

We used the Switchboard II and Fisher corpora for universal
background speaker model training, SRE06 for development,
and SRE08 for testing. All corpora consists of telephone con-
versations between two unfamiliar speakers. A conversation
side (roughly 2.5 minutes for non-Fisher and 5 minutes for
Fisher) contains speech from one speaker only. 1,060, and



1,180 conversation sides with 128, and 160 speakers are used
for SRE06, and SRE08 respectively. 1,553 background con-
versation sides are used from Switchboard II and Fisher. One
conversation side is used to train each target speaker model,
and only female English telephone conversation sides are used
for this work. There are∼55,000 total trials for SRE06 with
∼7,000 true speaker trials, and∼47,000 trials for SRE08 with
∼6,500 true speaker trials. In addition, we created two splits
of SRE06 (SRE06s1 and SRE06s2) for development purposes.
There are∼65 speakers,∼530 conversation sides,∼15,000 tri-
als, and∼3,400 true speaker trials in each split. We are pro-
vided with force-aligned phone ASR decodings for all conver-
sation sides by SRI, obtained via the DECIPHER recognizer
[6].

A 512-mixture GMM-UBM system [7] with MAP adap-
tation and MFCC features C0-C19 (with 25 ms windows and
10 ms intervals) with deltas is used for computing the EERs of
units. The ALIZE implementation is used [8], and the MFCC
features are obtained via HTK [9].

3. Nasality features as relevance measures
Previous work suggests that nasal regions of speech are an ef-
fective speaker cue, because the nasal cavity is both speaker
specific, and fixed in the sense that one cannot change its vol-
ume or shape [10]. Various acoustic features have been pro-
posed for detecting nasality. Glass used six features for detect-
ing nasalized vowels in American English [11]. Pruthi extended
Glass’s work and selected a set of nine knowledge-based fea-
tures for classifying vowel segments into oral and nasal cate-
gories automatically [12].

Our goal, however, is to determine if the nasality fea-
tures would allow us to identify which speech units have good
speaker discriminative power. The fact that the features have
been used to detect nasalization in vowels would possibly al-
low the features to better determine which speech units hold
greater speaker discriminative power, since nasals themselves
hold great speaker discriminative power [10]. The means and
variances of each nasality feature, computed over all data con-
strained by a speech unit, are used as relevance measures for
that unit.

3.1. Description of nasality features

All nasality features described below are computed using 25ms
windows with 10 ms shifts. A total of 11 nasality features are
implemented.

std01k: The standard deviation of frequency around the center
of mass of the frequency region below 1000Hz. Standard devi-
ation is calculated using the spectral amplitudes 500 Hz on each
side of the center of mass, but constrained to within 0 and 1000
Hz [11].

ctm01k: The center of mass of the short-term log magnitude
squared (dB) spectrum amplitude in the frequency band be-
tween 0 and 1000 Hz. It is computed using a trapezoidal win-
dow with flatness between 100-900Hz.

a1h1max800: The difference, measured in the log magnitude
squared spectrum, between the amplitude of the first formant
(A1) and the first harmonic (H1) [12]. A1 is estimated using
the amplitude of the maximum value in the band between 0 and
800 Hz. H1 is obtained using the amplitude of the peak closest
to 0Hz which had a height greater than 10dB and a width greater

than 80Hz.

a1max800: The amplitude of the first formant (A1) relative to
the total spectral energy between 400 Hz and 800 Hz.

tef1: The teager energy operator for detection of hypernasality
[13]. It finds the correlation between the teager energy profiles
of narrow bandpass-filtered speech and wide bandpass-filtered
speech centered around the first formant.

c0: The 0th cepstral coefficient representing the energy of the
spectrum. Our intuition is that this feature would be smaller on
average for nasals because nasals appear to be softer in ampli-
tude in general.

frat: The ratio of the spectral energies between 300 to 700 Hz
and between 2,500 to 3,400 Hz. We observed the ratio to be
higher on average for nasals.

Four additional features are extracted based on the detection of
possible poles below and above the first formant. These poles
are computed using a smoothed version of the FFT spectra. De-
notep0 andfp0 as the amplitude and frequency of the pole be-
low the first formant,p1 andfp1 as the amplitude and frequency
of the pole above the first formant, anda1 andf1 as the ampli-
tude and frequency of the first format. The features area1-p0,
a1-p1, f1-fp0 andfp1-f1.

3.2. Pearson’s correlation as redundancy measure

We’ve used the same redundancy measure described in our pre-
vious work [1]. For a pair of units, Pearson’s correlation iscom-
puted using the average MFCC feature values of each unit for
each conversation side. For each conversation side, the average
values of the MFCC feature vectors for each unit are computed.
A correlation across all conversation sides is then computed be-
tween the averaged MFCC feature values of unit 1 and unit2.
Note that the correlation is computed separately for each dimen-
sion of the feature vectors, and an overall correlation is obtained
by averaging the correlations of each dimension.

Each pair of units is thus associated with a correlation (de-
note bycorrA). We have shown in [1] that there is a -0.486 cor-
relation between the unit pair’s relative improvement in score-
level combination, and itscorrA value, indicating thatcorrA is
a valid indicator of the unit pair’s redundancy.

4. Data selection scheme involving the
measures

Our data selection scheme is based off of the feature selection
approach in [14]. Specifically, given a set of units, the taskis
to select N units that produce the best SR result in combina-
tion. Given the relevance measures for each unit and redun-
dancy measures for unit pairs, our data selection approach is
the following: for a given set of pre-selected unitsP , determine
if an additional unitQ should be selected by maximizing the
following objectiveOBJ :

OBJ(Q) = Rel(Q) − α
X

p∈P

Red(Q,p). (1)

whereRel(Q) is the value of the relevance measure for unitQ,
Red(Q,p) is the value of the redundancy measure betweenQ

andp, andα is a weight between the relevance and redundancy
factors. This objective allows one to select units that havegood
standalone speaker discriminative power (according toRel(Q))
and are not redundant in their speaker discriminative character-



istics with pre-selected units.

5. The units
The following set of 30 phones represent the units used for this
work: /A/, /æ/, /2/, /O/, /�/, /Ay /, /b/, /d/, /ð/, /E/, /Ç/, /e/, /f/, /h/,
/I/, /i/, /k/, /l/, /m/, /n/, /o/, /p/, PUH, /r/, /s/, /t/, /u/, /v/, /w/, /j/,
/z/, where PUH is the vowel in a filled pause, and the remain-
ing phones are denoted by their IPA symbols. These phones
are selected from the set of all phones because they occur most
frequently in the SRE06 conversation sides.

Phones intuitively represent a good starting point for the
evaluation of measures because they span the vast majority of
the acoustic space of speech. Hence, the use of phones allows
the measures to be computed on many different segments of the
acoustic space, and the value obtained for a measure using a par-
ticular phone would be largely specific to the section of acoustic
space represented by the phone. Note that for each conversation
side, some phone instances are removed to ensure roughly equal
numbers of frames for all phones in the conversation side.

6. Experiments and results
6.1. Nasality features as relevance measure

As discussed in 3, the mean and variance of each of the 11 nasal-
ity features constrained by a unit are used as relevance mea-
sures for that unit. We also computed the EER of each unit by
running our speaker recognition system using data constrained
by that unit, such that each unit is associated with 11 nasality
means and variances (22 relevance measures total), and 1 EER.
For the 30 units, we’ve computed the correlations between the
EERs and each relevance measure, obtaining a total of 22 cor-
relations. A greater correlation in magnitude indicates a greater
ability of the relevance measure in predicting the EER. Table??
shows the correlations of each relevance measure on SRE08.

The correlation of our mutual information measure (our
previous best in terms of correlation with phone EERs) de-
scribed in [1], is also shown. For each phone, the mutual in-
formation is computed between the feature vectors (MFCC C0-
C19 + delta) and speakers. It represents the total entropy ofthe
feature vectors minus the entropy of the feature vectors given
the speaker.

According to table 1, thea1h1max800 mean (0.807 corre-
lation) andtef1 variance (-0.757 correlation) are nasality mea-
sures able to most strongly predict the EER (these correlations
are significant at the 1% level). However, the individual mea-
sures themselves do not outperform mutual information (-0.814
correlation).

The measures are combined via linear regression and
stronger correlations between the EER and combined measures
are obtained. Leave-one-out (LOO) selection is used to select
the most useful set of measures. LOO selection selects the best
set of measures with respect to their correlations on SRE06s2,
with regression weights trained on SRE06s1. Table 2 shows the
correlation on SRE06s2 for 10 iterations of LOO selection.

Interestingly, the measures that perform the best individu-
ally (a1h1max800 Mean andtef1 variance) are amongst the first
to be dropped via LOO selection. Also, the top 17 measures
produce the best correlation (0.947 at iteration 5). We kept
the top 17 measures, and trained a linear regression model on
SRE06. Applying the model on SRE08, we obtain a correlation
of 0.917 between the combination of the 17 nasality measures
and EER. This is a 12.7% improvement over mutual informa-

Measure Mean or Var Correlation

a1max800 Mean -0.316
a1max800 Var -0.465
a1h1max800 Mean 0.807
a1h1max800 Var 0.699
c0 Mean 0.252
c0 Var 0.640
ctm01k Mean 0.471
ctm01k Var -0.502
frat Mean 0.394
frat Var 0.340
std01k Mean -0.041
std01k Var -0.510
tef1 Mean 0.197
tef1 Var -0.757
a1-p0 Mean 0.373
a1-p0 Var 0.486
a1-p1 Mean 0.086
a1-p1 Var -0.182
f1-fp0 Mean 0.067
f1-fp0 Var 0.055
fp1-f1 Mean -0.238
fp1-f1 Var 0.344
Mutual Information – -0.814

Table 1: Correlations of the means and variances of each nasal-
ity feature with the EERs of each phone. Results obtained on
SRE08.

tion on SRE08. Repeating the above procedure while incorpo-
rating the mutual information measure, we obtain a 0.912 cor-
relation on SRE08. Table 3 summarizes these results.

Note that the correlation with nasality and mutual infor-
mation measures is roughly equivalent to the correlation with
nasality measures alone, indicating that mutual information
does not contribute to correlation improvements.

7. Data selection with nasality measures
We’ve applied the combined 17 nasality measures (NAS), the
mutual information measure (MI), and Pearson’s correlation re-
dundancy measure to the data selection scheme described in
section 4. Computing the nasality measures requires a tenth
of the computational costs of computing the mutual informa-
tion measure on all phones. Also, computing the nasality mea-
sures and Pearson’s correlation measures requires roughlya for-
tieth of the computational costs of running the SR system forall
phones.

The standalone EERs of the individual phones are used as
the baseline relevance measure. Two splits of SRE06 are usedto
train theα parameter from equation 1, using measures obtained
on SRE06. The data selection scheme in section 4 is used to se-
lect the top 5 and 10 phones for MLP-based score-level combi-
nation on SRE08 (with MLP weights trained on SRE06). Table
4 shows the EER results on SRE08 forα equal to its optimal
value for the measure and number of phones used, along with
the phones selected. Note that nasality measure combination
is performed on SRE08 with weights trained on SRE06, and
the standalone EERs and mutual information are obtained on
SRE08.

According to table 4, selecting the top 10 phones in combi-
nation using our data selection approach with the combination



Iteration Nasality feature Correlation
eliminated

1 c0 Mean 0.918
2 a1h1max800 Mean 0.924
3 tef1 Var 0.938
4 a1h1max800 Var 0.945
5 a1-p0 Mean 0.947
6 f1-fp0 Mean 0.947
7 fp1-f1 Var 0.946
8 a1max800 Mean 0.946
9 frat Mean 0.946
10 a1-p0 Var 0.945

Table 2: 10 iterations of leave-one-out selection for SRE04s2,
with linear regression weights trained on SRE04.

Measure(s) Correlation

Nasality only 0.917
Mutual information only -0.814
Nasality + mutual information 0.912

Table 3: Results on SRE08 with and without mutual informa-
tion measure.

of nasality measures as the relevance measure gives a 11.5%
EER on SRE08, which is a 4.96% improvement over using the
EERs (12.1% EER) and 1.71% improvement over using mu-
tual information (11.7%) as relevance measures. Note that even
though the 1.71% improvement is not significant, is it obtained
at a tenth of the computational cost. In addition, we’ve shown
that using the nasality measures, it is possible to select a set of
units that perform better than the units selected via running the
SR system, at a fortieth of the computational cost.

Even though the standalone EERs (13.5% EER) perform
better than the nasality measures (14.5% EER) and mutual in-
formation (14.8%) if only 5 phones are to be selected, the com-
putational cost savings imply that using the measures may still
be preferred. Nevertheless, we’ve demonstrated that it is possi-
ble to select effective units for SR without running the actual SR
system at a very small fraction of the computational cost, and
the units selected can perform better in combination that units
selected via running the SR system.

8. Conclusion and future Work
In this work, we’ve investigated the feasibility of using nasality
measures for data selection and performance prediction forunit-
based text-dependent speaker recognition. Using a set of 30
phones as units, we showed that means and variances of nasal-
ity features in combination have significant correlations with
phone EERs. We’ve shown that units selected using the nasality
measures as relevance measure can give better speaker recogni-
tion results in combination than the combination of units with
standalone EERs as relevance measure, and does not require a
speaker recognition system to be run.

In the future, we will attempt to develop more effective
measures and investigate data selection using other types of
units. We will use the measures to select an arbitrary set of
units which would have the globally optimal speaker recogni-
tion result in combination for particular types of systems.The
arbitrary selection of units would be computationally feasible
via the use of our measures.

Relevance Num Phones EER (%)
measure phones selected

MI 5 /A/, /d/, /h/, /k/, /v/ 14.8
NAS 5 /b/, /ð/, PUH, /s/, /z/ 14.5
EER 5 /b/, /k/, /n/, /t/, /z/ 13.5
MI 10 /A/, /d/, /h/, /I/, /k/, 11.7

/m/, PUH, /s/, /v/, /w/
NAS 10 /A/, /Ay/, /b/, /d/, /ð/, 11.5

/m/, /p/, PUH, /s/, /z/
EER 10 /A/, /æ/, /Ay /, /b/, /d/, 12.1

/ð/, /k/, /n/, /t/, /z/

Table 4: MLP score-level combination of top 5 and 10 phones
selected according to relevance and redundancy measures with
optimalα. Results obtained on SRE08.

9. Acknowledgements
The author wishes to thank Andreas Stolcke of SRI for provid-
ing speech recognition decodings. This research is funded by
NSF grant number 0329258.

10. References
[1] Lei, H.,“Towards Structured Approaches to Arbitrary Data Selec-

tion and Performance Prediction for Speaker Recognition”,ac-
cepted to 3rd International Biometrics Conference, 2009.

[2] Sturim, D., Reynolds, D., Dunn, R. and Quatieri, T.,“Speaker Ver-
ification using Text-Constrained Gaussian Mixture Models”, in
Proc. of ICASSP, 2002.

[3] Lei, H. and Mirghafori, N.,“Word-Conditioned Phone N-grams
for Speaker Recognition”, in Proc. of ICASSP, 2007.

[4] Hannani, A., Toledano, D., Petrovska-Delacrétaz, D., Montero-
Asenjo, A. and Hennebert, J.,“Using Data-driven and Phonetic
Units for Speaker Verification”, in Proc. of IEEE Odyssey, 2006.

[5] Gerber, M., Beutler, R. and Pfisher, B.,“Quasi Text-Independent
Speaker-Verification based on Pattern Matching”, in Proc. of In-
terspeech, 2007.

[6] Stolcke, A., Bratth, H., Butzberger, J., Franco, H., RaoGadde, V.,
Plauche, M., Richey, C., Shriberg, E., Sonmez, K., Weng, F. and
Zheng, J.,“The SRI March 2000 Hub-5 Conversational Speech
Transcription System”, in NIST Speech Transcription Workshop,
2000.

[7] Reynolds, D.A., Quatieri, T.F. and Dunn, R.,“Speaker Verifica-
tion using Adapted Gaussian Mixture Models”, in Digital Signal
Processing, pp 19–41, 2000.

[8] Bonastre, J.F., Wils, F., Meignier, S.,“ALIZE, a free Toolkit for
Speaker Recognition”, in Proc. of ICASSP, 2005.

[9] HMM Toolkit (HTK), http://htk.eng.cam.ac.uk

[10] Amino, K., Sugawara, T. and Arai, T.,“Idiosyncrasy of nasal
sounds in human speaker identification and their acoustic prop-
erties”, in Acoustic Science and Technology, 27(4), 2006.

[11] Glass, J.R., Zue, V.W.,“Detection of nasalized vowelsin Ameri-
can English”, in Proc. of ICASSP, 1985.

[12] Pruthi, T and Espy-Wilson, C. Y.,“Acoustic parametersfor the au-
tomatic detection of vowel nasalization”, in Proc. of Interspeech,
2007.

[13] Cairns, D.A., Hansen, J.H. and Kaiser, J.F.,“Recent advances in
hypernasal speech detection using the nonlinear teager energy op-
erator”, in Proc. of ICSLP, pp. 780–783, 1996.

[14] Peng, H., Long, F. and Ding, C.,“Feature Selection Based on Mu-
tual Information: Criteria of Max-Dependency, Max-Relevance,
and Min-Redundancy”, in IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2005.


