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Abstract

We’ve examined the speaker discriminative power of mel-,
antimel- and linear-frequency cepstral coefficients (MFCCs, a-
MFCCs and LFCCs) in the nasal, vowel, and non-nasal con-
sonant speech regions. Our inspiration came from the work of
Lu and Dang in 2007, who showed that filterbank energies at
some frequencies mainly outside the telephone bandwidth pos-
sess more speaker discriminative power due to physiological
characteristics of speakers, and derived a set of cepstral coeffi-
cients that outperformed MFCCs in non-telephone speech. Us-
ing telephone speech, we’ve discovered that LFCCs gave 21.5%
and 15.0% relative EER improvements over MFCCs in nasal
and non-nasal consonant regions, agreeing with our filterbank
energy f-ratio analysis. We’ve also found that using only the
vowel region with MFCCs gives a 9.1% relative improvement
over using all speech. Last, we’ve shown that a-MFCCs are
valuable in combination, contributing to a system with 17.3%
relative improvement over our baseline.
Index Terms: Speaker recognition, MFCCs, LFCCs, a-
MFCCs, filterbank analysis

1. Introduction
Mel-frequency cepstral coefficients (MFCCs) have been widely
used as features for speaker recognition, primarily because
they’ve been empirically determined to work well for speaker
recognition after being developed for speech recognition [1].
The coefficients rely on a mel-frequency spacing of filterbank
energies, which mimics the frequency response of the human
ear. [2] has shown using a set of 35 speakers, however, that fre-
quency regions around 300 Hz, 4,500 Hz, and 7,500 Hz hold
greater speaker discriminative power than other frequencyre-
gions, primarily due to speaker-specific nasal coupling, piriform
fossa, and consonants constrictions. Moreover, filterbankener-
gies, when used as features, have been shown to have higher
f-ratios for filters near frequency regions with greater speaker
discriminative power [2].

Hence, a set of filterbanks different from the mel-spaced
filterbanks used in MFCCs from 0 to 8,000 Hz have been pro-
posed by [2], where the filters are more tightly spaced with nar-
rower bandwidths at frequencies with higher speaker discrimi-
native power, and more widely spaced with wider bandwidths
at other frequencies. The new filterbank arrangement has more
filterbank channels near frequencies of higher speaker discrimi-
native power, and has been found to perform better than MFCCs
and LFCCs in a GMM-based speaker recognition system [2].

Normal telephone speech, however, is band-limited to be-
tween 300 and 3,400 Hz, and the dominant frequency regions
for speaker discrimination are absent. However, we have ob-

served that the f-ratios of a set of linearly-spaced filterbank
energies are still higher near 3,400 Hz as opposed to 300 Hz.
We’ve thus experimented with linear- and antimel-frequency fil-
terbank spacings, where filters are more tightly spaced at higher
frequencies compared to lower frequencies. Denote the cepstral
coefficients using the antimel frequency spacing as a-MFCCs.

In addition to our experimenting with different filterbank
frequency spacings, we’ve also experimented with using only
speech data from broad-phonetic regions of speech, such as
nasals, vowels, and non-nasal consonants. This is because cer-
tain speaker-specific attributes (i.e. nasal coupling) exist only
when certain phones are spoken, and because we’ve observed
differences in the filterbank energy f-ratios for differentbroad-
phonetic regions.

This paper is organized as follows: Section 2 describes the
database, section 3 describes our f-ratio results and a-MFCC
extraction, section 4 describes our speaker recognition system,
section 5 describes the experiments and results, section 6 pro-
vides a brief discussion, and section 7 provides a summary of
our findings.

2. Database
We’ve used the Switchboard II and Fisher corpora for univer-
sal background speaker model training and SRE06 for speaker
model training (w/ 1 conversation side) and testing. All cor-
pora consists of telephone conversations between two unfamil-
iar speakers. A conversation side (roughly 2.5 minutes for
non-Fisher and 5 minutes for Fisher) contains speech from one
speaker only.∼3,200 conversation sides are used in SRE06,
and∼1,550 conversation sides are used for background train-
ing. There are∼23,000 total trials with∼1,800 true speaker
trials.

We are provided with force-aligned phone ASR decodings
for all conversation sides by SRI, obtained via the DECIPHER
recognizer [3], from which we are able to determine what data
to use for the broad-phonetic regions. The DECIPHER recog-
nizer uses 46 phones (not including the starts and stops), with
4 nasals, 14 vowels, and 28 consonants. Using∼1,100 conver-
sations of Fisher background data, we’ve determined that, not
including the non-speech regions,∼10% of the data contains
nasals,∼42% contains vowels, and∼48% contains non-nasal
consonants.

3. F-ratio analysis and feature extraction
Similar to what was done in [2], we’ve extracted a set of 26
uniformly-spaced triangular filterbanks from 300 to 3,400 Hz to
determine which frequency regions within the telephone band-



Figure 1: F-ratio plots of filterbank energies for nasals, non-
nasal consonants, vowels, and all speech on gender-balanced
SRE08.

width are useful for speaker discrimination. The bandwidthof
each filter is 187.5 Hz, with 62.5 Hz of overlap between adja-
cent filters. The F-ratio is defined as follows:
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where the summations are across all distinct speakers,µs is the
average of the filterbank energies within speakers, µ is the av-
erage of filterbank energies across all speakers, andxi is filter-
bank energyi in speakers.

Figure 1 plots the f-ratios of each filterbank energy when
the f-ratio is computed using data from all speech, and only the
nasals, vowels, and non-nasal consonants on∼1,000 gender-
balanced SRE08 telephone conversation sides. The frequencies
of each point correspond to the frequencies of the filterbankcen-
ters.

According to the plots, the highly speaker discriminative
region near 300 Hz results in a sharp f-ratio increase near 300
Hz for the nasal regions, and a small increase for the non-nasal
consonants. The increase in f-ratio near 300 Hz occurs slightly
using all speech, probably due to the nasals within the speech.
In all cases, the f-ratio increases in the higher frequency regions.
The increase suggests that even for telephone speech, wherethe
speaker-dependent regions caused by physiological characteris-
tics are filtered out, using a set of filters more closely spaced in
the higher frequency regions for cepstral feature extraction may
be desirable.

Note that, as was done in [2], it is possible to extract a set
of cepstral coefficients using filterbanks more tightly spaced in
both the high and very low frequency regions (according to the
f-ratios of each region). However, these features would not
be uniformly spaced along any standard frequency axis, and
may involve a significant degree of customization for futureex-

Figure 2: Illustration of the mel-, linear-, and antimel- fre-
quency filterbanks.

traction. The high speaker discriminative regions may alsobe
database-dependent, and may vary depending on the speakers
used. Hence, a set of features customized using one dataset may
not generalize well to other datasets. We’ve thus decided toex-
periment with standard feature sets with filterbanks uniformly
spaced along various frequency scales.

We’ve implemented a-MFCCs via HTK [4], where the mel-
spaced filters from 300 to 3,400 Hz are flipped about the middle
of the frequency region (1,550 Hz) such that filters at high fre-
quencies are shifted to low frequencies, and vice versa. The
a-MFCC filterbank filters can be thought of as being equally
spaced on the “antimel-” frequency scale, as opposed to be-
ing equally spaced on the mel-frequency scale for the case of
MFCCs. LFCCs are also implemented for comparison. Figure
2 illustrates the mel-, linear-, and antimel-frequency filterbanks.

Like the MFCCs and a-MFCCs, the LFCCs also use trian-
gular filterbanks in our experiments. LFCCs may be desirablein
that it places more filterbank emphasis on the higher frequency
regions with higher filterbank energy f-ratios, without sacrific-
ing too many filterbanks in the lower frequency regions, where
the nasals and non-nasal consonants show an increase in filter-
bank energy f-ratio.

4. Speaker recognition system
To test out the effectiveness of a-MFCCs (and LFCCs as a refer-
ence), a 512-mixture GMM-UBM system [5] with factor anal-
ysis is used. The 0th through 12th coefficients of either the
MFCCs, LFCCs, or a-MFCCs (with 25 ms windows and 10 ms
intervals) with deltas and double deltas are used. Mean and
variance feature normalization is applied, and the speakermod-
eling, scoring, and factor analysis are implemented using the
ALIZE toolkit [6]. The simplified factor analysis model with
40 nuisance factors is used to decompose the GMM means into
speaker-independent, speaker-dependent, and nuisance factors
[7].



5. Experiments and results
We implemented our speaker recognition system on all speech
data, and each of the broad phonetic regions. We performed
various score-level combination experiments using an MLP (via
Lnknet [8]) with 2 hidden nodes and 1 hidden layer, and tried to
determine how well a-MFCCs, LFCCs, and MFCCs combine,
as well as how the broad phonetic regions combine.

Denote each system using two characters – one for the fea-
ture used and one for the broad phonetic region used.a, l and
m denote a-MFCCs, LFCCs, and MFCCs respectively, andc, n,
v denote non-nasal consonants, vowels, and nasals respectively.
In addition, sysa, sysl, andsysmdenote the systems using a-
MFCCs, LFCCs, and MFCCs respectively on all speech data
(excluding the non-speech regions for each conversation side),
andsysmis taken to be our baseline. Systems using all speech
data are regarded as full-systems; others as sub-systems.

All results are obtained on SRE06, and all score-level com-
binations are performed by randomly creating 40 pairs of train-
ing and testing splits of the data (where the number of models
and test utterances for each training split is roughly equalto the
numbers for the corresponding testing split), and averaging the
EERs across all pairs. Table 1 displays the results, along with
the portion of data used to implement the system (according to
the percentage of nasals, vowels, and non-nasal consonantsin
our Fisher background data).

Table 1:Speaker recognition results for systems standalone and
in combination using a-MFCCs, LFCCs, and MFCCS as fea-
tures, and nasals, vowels, non-nasal consonants, and all speech
as data. Results obtained on SRE06.

Category System EER (%) Percent
combination data used

1: sysm 5.26 100
All speech sysl 5.35 100

sysa 5.51 100
sysm+sysl+sysa 4.96 100

2: nm 9.37 ∼10
nasals only nl 7.36 ∼10

na 10.24 ∼10
3: vm 4.78 ∼42
vowels only vl 5.43 ∼42

va 6.05 ∼42
4: cm 8.68 ∼48
non-nasal cl 7.38 ∼48
cons. only ca 9.14 ∼48
5: ca+cl+cm 6.77 ∼48
feature na+nl+nm 6.40 ∼10
combination va+vl+vm 5.10 ∼42
6: cm+nm+vm 4.54 100
region cl+nl+vl 5.39 100
combination ca+na+va 5.61 100
7: ca+cl+cm+ 4.66 100
overall na+nl+nm+
combination va+vl+vm
8: vm+vl+nm 4.41 ∼52
best EER vm+vl+nm+ 4.35 100
results sysa

Results in table 1 are subdivided into various categories,
where category 1 contains results for a-MFCCs, LFCCs, and
MFCCs using all speech data, categories 2, 3, and 4 contain

standalone results for each of the broad phonetic regions using
each of the feature types, category 5 contains results for each
of the broad phonetic regions but combining the three types of
features for each region, category 6 contains results for each of
the features but combining the three types of broad phoneticre-
gions, category 7 contains a combination of all regions and all
features, and category 8 contains our best overall result. Note
that categories 1, 2, 3, 4, and 6 discriminate between perfor-
mances of the three features.

MFCCs and LFCCs have produced the best overall results,
contrary to the f-ratio plots which suggest that a-MFCCs would
be better. In category 1,sysm(our baseline system with 5.26%
EER) slightly outperformssysaandsysl. MFCCs significantly
outperformed LFCCs in categories 3, and 6, whereas LFCCs are
significantly better in categories 2 and 4. In category 2 (nasal
sub-systems) LFCCs show 21.5% and 28.1% relative improve-
ments over MFCCs and a-MFCCs respectively. In category 4
(non-nasal consonants only), LFCCs show 15.0% and 19.3%
relative improvements over MFCCs and a-MFCCs respectively.

Also note that vowels are significantly better than other re-
gions of speech, where the average EER of category 3 (vow-
els standalone) is 5.43%, a 39.7% relative improvement over
the nasal average in category 2 (8.99% EER) and a 35.5% rela-
tive improvement over the non-nasal consonants average in cat-
egory 4 (8.40% EER). The better performance of vowels over
the nasals may be due to the significant increase (420%) in the
amount of vowel data over nasal data in speech.

Interestingly, the sub-system using only the vowel region
and MFCCs (4.78% EER) outperforms the three systems in cat-
egory 1 that use all speech data. We’ve also discovered that
the combination of the 9 sub-systems in category 7 produces a
11.41% relative improvement over our baseline system. We’ve
found the best overall system to be a combination of thevm, vl,
andnmsub-systems, along with thesysafull-system, producing
a 17.3% relative improvement over our baseline system.

Hence, while the a-MFCCs pale in comparison with
MFCCs and LFCCs standalone, it is valuable as a feature in
combination with the other features, as it emphasizes different
parts of the frequency spectrum compared to the other features.
Note that the combination ofvm, vl, andnm sub-systems per-
forms better than all other systems and their combinations (not
all of which are shown) while using roughly half the total speech
data.

The standalone nasal sub-systems also use significantly less
data than the vowel and consonant sub-systems, which likely
contributed to its poorer performance relative to the vowels
and consonants. However, the combination of the 3 nasal sub-
systems in category 5 slightly outperforms the combinationof
the 3 non-nasal consonant sub-systems while using∼21 percent
of the data. Table 2 shows the results for the nasals, vowels,
and non-nasal consonants for MFCCs when the vowel and non-
nasal consonant phone instances are removed such that there’re
roughly equal portions of data for the three regions. Note that
these results are not computing using EER-averaging of the 40
splits, but on the entire set of scores (hence the slight difference
in the results for thevmsub-system).

According to table 2, the nasal sub-system (9.46% EER)
performs 43.0% better than the vowel sub-system, and 53.2%
better than the non-nasal consonant sub-system. This agrees
with the preliminary subjective study using 10 speakers and6
consonants (nasals included) by [9], which suggests that nasals
are more effective (but without significance) than other conso-
nants in speaker discrimination [9].

We have shown here, however, that using our GMM-



Table 2: Speaker recognition results for sub-systems using
MFCCS as features with roughly equal portions of data for the
three broad-phonetic regions. Results obtained on SRE06.

Sub-system EER (%)

nm 9.46
vm 16.61
cm 20.21

UBM system with factor analysis, nasals significantly outper-
form vowels as well as non-nasal consonants using MFCCs on
roughly the entire SRE06 1-conversation side task. One of the
reasons suggested is that the resonators in the nasal tract are
highly speaker-dependent, and can not be altered at will [9].
Hence, should constraints on the overall amount of speech data
be made, nasals should be amongst the first phones to be in-
cluded.

6. Discussion
We have shown the value of implementing a separate speaker
recognition system on the vowel, nasal, and non-nasal conso-
nant regions, which combined to produce a better result that
implementing a single system using all speech data. We have
also demonstrated the value of LFCCs using the broad pho-
netic regions, as the LFCCs performed significantly better than
a-MFCCs and MFCCs for the nasal and non-nasal consonant
regions.

As suggested in section 3, the desirability of LFCCs is
likely due to the fact that LFCCs use more filterbanks compared
to MFCCs in the higher frequency regions with the higher filter-
bank energy f-ratios, without sacrificing too many filterbanks in
the low-frequency region, where the non-nasal consonants and
especially the nasals show an increase in filterbank energy f-
ratios.

The a-MFCCs did not work as well as we expected stan-
dalone. While [2] has shown that there is up to a 9-fold increase
in filterbank energy f-ratio from the least speaker discrimina-
tive to most speaker discriminative frequency regions from0
to 8,000 Hz, our f-ratio plots show less than a 2-fold increase
within the telephone bandwidth. Hence, it is possible that the a-
MFCCs sacrifice too many filterbanks at the low-frequency re-
gions where nasals and non-nasal consonants show an increase
in filterbank energy f-ratio. However, we have shown that thea-
MFCCs improve results in combination with sub-systems using
other types of features, contributing to our best overall result.

Future work can perhaps investigate the effectiveness of
cepstral coefficients derived from a filterbank spacing withmore
filters at both the low and the high frequency regions (as done
in [2]) in the telephone bandwidth, where increases in f-ratios
occur. However, as suggested in section 3, the sets of features
we’ve investigated are standardized and do not require signifi-
cant customization for future extraction. They are also likely to
generalize well to other databases.

7. Conclusions
In this work, we’ve investigated different broad phonetic re-
gions and standard filterbank spacings for cepstral featureex-
traction on telephone speech, where highly speaker discrim-
inative frequency regions are filtererd out. We’ve demon-
strated that LFCCs perform significantly better than MFCCs for

speaker recognition systems using the nasal and non-nasal con-
sonant broad phonetic regions, agreeing with our plots of fil-
terbank energy f-ratios within the telephone bandwidth. We’ve
also shown that a-MFCCs are useful in overall system combi-
nation, contributing to a combined system with 17.3% relative
EER improvement over our baseline system.
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