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Abstract

We've examined the speaker discriminative power of mel-,
antimel- and linear-frequency cepstral coefficients (MBC&
MFCCs and LFCCs) in the nasal, vowel, and non-nasal con-
sonant speech regions. Our inspiration came from the work of
Lu and Dang in 2007, who showed that filterbank energies at
some frequencies mainly outside the telephone bandwidth po
sess more speaker discriminative power due to physiolbgica
characteristics of speakers, and derived a set of cepsieéfi-c
cients that outperformed MFCCs in non-telephone speech. Us
ing telephone speech, we've discovered that LFCCs gavé®1.5
and 15.0% relative EER improvements over MFCCs in nasal
and non-nasal consonant regions, agreeing with our filtdrba
energy f-ratio analysis. We've also found that using only th
vowel region with MFCCs gives a 9.1% relative improvement
over using all speech. Last, we've shown that a-MFCCs are
valuable in combination, contributing to a system with 2.3
relative improvement over our baseline.

Index Terms: Speaker recognition, MFCCs, LFCCs, a-
MFCCs, filterbank analysis

1. Introduction

Mel-frequency cepstral coefficients (MFCCs) have been lyide
used as features for speaker recognition, primarily bexaus
they've been empirically determined to work well for spaake
recognition after being developed for speech recognitin [
The coefficients rely on a mel-frequency spacing of filtekban
energies, which mimics the frequency response of the human
ear. [2] has shown using a set of 35 speakers, however, #hat fr
quency regions around 300 Hz, 4,500 Hz, and 7,500 Hz hold
greater speaker discriminative power than other frequeacy
gions, primarily due to speaker-specific nasal couplingfgsim
fossa, and consonants constrictions. Moreover, filterlesk-
gies, when used as features, have been shown to have higher
f-ratios for filters near frequency regions with greaterad@e
discriminative power [2].

Hence, a set of filterbanks different from the mel-spaced
filterbanks used in MFCCs from 0 to 8,000 Hz have been pro-
posed by [2], where the filters are more tightly spaced with na
rower bandwidths at frequencies with higher speaker digeri
native power, and more widely spaced with wider bandwidths
at other frequencies. The new filterbank arrangement has mor
filterbank channels near frequencies of higher speakeritisc
native power, and has been found to perform better than MFCCs
and LFCCs in a GMM-based speaker recognition system [2].

Normal telephone speech, however, is band-limited to be-
tween 300 and 3,400 Hz, and the dominant frequency regions
for speaker discrimination are absent. However, we have ob-
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served that the f-ratios of a set of linearly-spaced filtekba
energies are still higher near 3,400 Hz as opposed to 300 Hz.
We've thus experimented with linear- and antimel-frequefiie
terbank spacings, where filters are more tightly spacedyaehi
frequencies compared to lower frequencies. Denote théreéps
coefficients using the antimel frequency spacing as a-MECCs

In addition to our experimenting with different filterbank
frequency spacings, we've also experimented with using onl
speech data from broad-phonetic regions of speech, such as
nasals, vowels, and non-nasal consonants. This is because c
tain speaker-specific attributes (i.e. nasal couplingyteomly
when certain phones are spoken, and because we've observed
differences in the filterbank energy f-ratios for differémoad-
phonetic regions.

This paper is organized as follows: Section 2 describes the
database, section 3 describes our f-ratio results and adVIFC
extraction, section 4 describes our speaker recognitistesy,
section 5 describes the experiments and results, sectioo-6 p
vides a brief discussion, and section 7 provides a summary of
our findings.

2. Database

We've used the Switchboard Il and Fisher corpora for univer-
sal background speaker model training and SREOQ6 for speaker
model training (w/ 1 conversation side) and testing. All-cor
pora consists of telephone conversations between two tilrfam
iar speakers. A conversation side (roughly 2.5 minutes for
non-Fisher and 5 minutes for Fisher) contains speech fran on
speaker only.~3,200 conversation sides are used in SRE06,
and~1,550 conversation sides are used for background train-
ing. There are~23,000 total trials with~1,800 true speaker
trials.

We are provided with force-aligned phone ASR decodings
for all conversation sides by SRI, obtained via the DECIPHER
recognizer [3], from which we are able to determine what data
to use for the broad-phonetic regions. The DECIPHER recog-
nizer uses 46 phones (not including the starts and stop#), wi
4 nasals, 14 vowels, and 28 consonants. Usidgl00 conver-
sations of Fisher background data, we've determined thut, n
including the non-speech regions10% of the data contains
nasals,~42% contains vowels, and48% contains non-nasal
consonants.

3. F-ratio analysis and feature extraction

Similar to what was done in [2], we've extracted a set of 26
uniformly-spaced triangular filterbanks from 300 to 3,400tbl
determine which frequency regions within the telephonedban



F-ratios of filterbank energies for telephone frequencies
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Figure 1: F-ratio plots of filterbank energies for nasals, non-
nasal consonants, vowels, and all speech on gender-balance
SREO0S.

width are useful for speaker discrimination. The bandwinfth
each filter is 187.5 Hz, with 62.5 Hz of overlap between adja-
cent filters. The F-ratio is defined as follows:

Zspeake'r':s(lu‘s - N’)Q (1)
Zspeaker:s ZiES(xi - N’S)Q
where the summations are across all distinct speakeris, the
average of the filterbank energies within speaker is the av-
erage of filterbank energies across all speakers zamlfilter-
bank energy in speakes.

Figure 1 plots the f-ratios of each filterbank energy when
the f-ratio is computed using data from all speech, and drey t
nasals, vowels, and non-nasal consonants-@r000 gender-
balanced SREO8 telephone conversation sides. The freigsenc
of each point correspond to the frequencies of the filterloenk
ters.

According to the plots, the highly speaker discriminative
region near 300 Hz results in a sharp f-ratio increase ne@r 30
Hz for the nasal regions, and a small increase for the noatnas
consonants. The increase in f-ratio near 300 Hz occursthligh
using all speech, probably due to the nasals within the $peec
In all cases, the f-ratio increases in the higher frequeegions.
The increase suggests that even for telephone speech, thihere
speaker-dependent regions caused by physiological ¢karsac
tics are filtered out, using a set of filters more closely sgace
the higher frequency regions for cepstral feature exwaatiay
be desirable.

Note that, as was done in [2], it is possible to extract a set
of cepstral coefficients using filterbanks more tightly sghn
both the high and very low frequency regions (according o th
f-ratios of each region). However, these features would not
be uniformly spaced along any standard frequency axis, and
may involve a significant degree of customization for futexe
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Figure 2: lllustration of the mel-, linear-, and antimel- fre-
quency filterbanks.

traction. The high speaker discriminative regions may akso
database-dependent, and may vary depending on the speakers
used. Hence, a set of features customized using one dataget m
not generalize well to other datasets. We've thus decidedt-to
periment with standard feature sets with filterbanks unifgr
spaced along various frequency scales.

We've implemented a-MFCCs via HTK [4], where the mel-
spaced filters from 300 to 3,400 Hz are flipped about the middle
of the frequency region (1,550 Hz) such that filters at high fr
quencies are shifted to low frequencies, and vice versa. The
a-MFCC filterbank filters can be thought of as being equally
spaced on the “antimel-” frequency scale, as opposed to be-
ing equally spaced on the mel-frequency scale for the case of
MFCCs. LFCCs are also implemented for comparison. Figure
2 illustrates the mel-, linear-, and antimel-frequencefiianks.

Like the MFCCs and a-MFCCs, the LFCCs also use trian-
gular filterbanks in our experiments. LFCCs may be desirable
that it places more filterbank emphasis on the higher frecyuen
regions with higher filterbank energy f-ratios, without istc-
ing too many filterbanks in the lower frequency regions, wher
the nasals and non-nasal consonants show an increaserin filte
bank energy f-ratio.

4. Speaker recognition system

To test out the effectiveness of a-MFCCs (and LFCCs as arefer
ence), a 512-mixture GMM-UBM system [5] with factor anal-
ysis is used. The 0Oth through 12th coefficients of either the
MFCCs, LFCCs, or a-MFCCs (with 25 ms windows and 10 ms
intervals) with deltas and double deltas are used. Mean and
variance feature normalization is applied, and the speaker
eling, scoring, and factor analysis are implemented udieg t
ALIZE toolkit [6]. The simplified factor analysis model with

40 nuisance factors is used to decompose the GMM means into
speaker-independent, speaker-dependent, and nuisamnoesfa

[71.



5. Experiments and results

We implemented our speaker recognition system on all speech
data, and each of the broad phonetic regions. We performed
various score-level combination experiments using an Miid (
Lnknet [8]) with 2 hidden nodes and 1 hidden layer, and tréed t
determine how well a-MFCCs, LFCCs, and MFCCs combine,
as well as how the broad phonetic regions combine.

Denote each system using two characters — one for the fea-
ture used and one for the broad phonetic region uaed.and
m denote a-MFCCs, LFCCs, and MFCCs respectively,and
v denote non-nasal consonants, vowels, and nasals regigctiv
In addition, sysa sys| andsysmdenote the systems using a-
MFCCs, LFCCs, and MFCCs respectively on all speech data
(excluding the non-speech regions for each conversati®),si
andsysmis taken to be our baseline. Systems using all speech
data are regarded as full-systems; others as sub-systems.

All results are obtained on SREO06, and all score-level com-
binations are performed by randomly creating 40 pairs dfitra
ing and testing splits of the data (where the number of models
and test utterances for each training split is roughly etputide
numbers for the corresponding testing split), and averatiia
EERs across all pairs. Table 1 displays the results, alotiy wi
the portion of data used to implement the system (according t
the percentage of nasals, vowels, and non-nasal consanants
our Fisher background data).

Table 1:Speaker recognition results for systems standalone and
in combination using a-MFCCs, LFCCs, and MFCCS as fea-
tures, and nasals, vowels, non-nasal consonants, andedictp

as data. Results obtained on SREO06.

Category System EER (%) | Percent
combination data used
1 sysm 5.26 100
All speech | sysl 5.35 100
sysa 5.51 100
sysmsyshsysa| 4.96 100
2: nm 9.37 ~10
nasals only | nl 7.36 ~10
na 10.24 ~10
3: vm 4.78 ~42
vowels only | vl 5.43 ~42
va 6.05 ~42
4: cm 8.68 ~48
non-nasal cl 7.38 ~48
cons. only | ca 9.14 ~48
5: catcl+cm 6.77 ~48
feature na+nl+nm 6.40 ~10
combination| vatvl+vm 5.10 ~42
6: cm+-nmHvm 4.54 100
region cl+nl+vl 5.39 100
combination| cat+natva 5.61 100
7 catcl+cmt 4.66 100
overall na+nl+nm+
combination| vatvl+vm
8: vmvi+nm 441 ~52
best EER vm+vi+nm+ 4.35 100
results sysa

Results in table 1 are subdivided into various categories,
where category 1 contains results for a-MFCCs, LFCCs, and
MFCCs using all speech data, categories 2, 3, and 4 contain

standalone results for each of the broad phonetic regiang us
each of the feature types, category 5 contains results fdr ea
of the broad phonetic regions but combining the three types o
features for each region, category 6 contains results dr e
the features but combining the three types of broad phoretic
gions, category 7 contains a combination of all regions dnd a
features, and category 8 contains our best overall resute N
that categories 1, 2, 3, 4, and 6 discriminate between perfor
mances of the three features.

MFCCs and LFCCs have produced the best overall results,
contrary to the f-ratio plots which suggest that a-MFCCs ilou
be better. In category Bysm(our baseline system with 5.26%
EER) slightly outperformsysaandsysl MFCCs significantly
outperformed LFCCs in categories 3, and 6, whereas LFCCs are
significantly better in categories 2 and 4. In category 2dhas
sub-systems) LFCCs show 21.5% and 28.1% relative improve-
ments over MFCCs and a-MFCCs respectively. In category 4
(non-nasal consonants only), LFCCs show 15.0% and 19.3%
relative improvements over MFCCs and a-MFCCs respectively

Also note that vowels are significantly better than other re-
gions of speech, where the average EER of category 3 (vow-
els standalone) is 5.43%, a 39.7% relative improvement over
the nasal average in category 2 (8.99% EER) and a 35.5% rela-
tive improvement over the non-nasal consonants averags-n c
egory 4 (8.40% EER). The better performance of vowels over
the nasals may be due to the significant increase (420%) in the
amount of vowel data over nasal data in speech.

Interestingly, the sub-system using only the vowel region
and MFCCs (4.78% EER) outperforms the three systems in cat-
egory 1 that use all speech data. We've also discovered that
the combination of the 9 sub-systems in category 7 produces a
11.41% relative improvement over our baseline system. &/e'v
found the best overall system to be a combination of/hevl,
andnmsub-systems, along with tlsgsafull-system, producing
a 17.3% relative improvement over our baseline system.

Hence, while the a-MFCCs pale in comparison with
MFCCs and LFCCs standalone, it is valuable as a feature in
combination with the other features, as it emphasizesrdifite
parts of the frequency spectrum compared to the other fesatur
Note that the combination afm, vl, andnm sub-systems per-
forms better than all other systems and their combinatioos (
all of which are shown) while using roughly half the total eple
data.

The standalone nasal sub-systems also use significargly les
data than the vowel and consonant sub-systems, which likely
contributed to its poorer performance relative to the vewel
and consonants. However, the combination of the 3 nasal sub-
systems in category 5 slightly outperforms the combinatibn
the 3 non-nasal consonant sub-systems while usi2jpercent
of the data. Table 2 shows the results for the nasals, vowels,
and non-nasal consonants for MFCCs when the vowel and non-
nasal consonant phone instances are removed such thatghere
roughly equal portions of data for the three regions. No&t th
these results are not computing using EER-averaging of@he 4
splits, but on the entire set of scores (hence the slighemiffce
in the results for themsub-system).

According to table 2, the nasal sub-system (9.46% EER)
performs 43.0% better than the vowel sub-system, and 53.2%
better than the non-nasal consonant sub-system. Thissagree
with the preliminary subjective study using 10 speakers énd
consonants (nasals included) by [9], which suggests tistina
are more effective (but without significance) than othersoen
nants in speaker discrimination [9].

We have shown here, however, that using our GMM-



Table 2: Speaker recognition results for sub-systems using
MFCCS as features with roughly equal portions of data for the
three broad-phonetic regions. Results obtained on SREO6.

[ Sub-system] EER (%) |

nm 9.46
vm 16.61
cm 20.21

UBM system with factor analysis, nasals significantly outpe
form vowels as well as non-nasal consonants using MFCCs on
roughly the entire SRE06 1-conversation side task. Oneeof th
reasons suggested is that the resonators in the nasal teact a
highly speaker-dependent, and can not be altered at will [9]
Hence, should constraints on the overall amount of speeteh da
be made, nasals should be amongst the first phones to be in-
cluded.

6. Discussion

We have shown the value of implementing a separate speaker
recognition system on the vowel, nasal, and non-nasal eonso
nant regions, which combined to produce a better result that
implementing a single system using all speech data. We have
also demonstrated the value of LFCCs using the broad pho-
netic regions, as the LFCCs performed significantly bettent
a-MFCCs and MFCCs for the nasal and non-nasal consonant
regions.

As suggested in section 3, the desirability of LFCCs is
likely due to the fact that LFCCs use more filterbanks comgare
to MFCCs in the higher frequency regions with the higherfilte
bank energy f-ratios, without sacrificing too many filterkaim
the low-frequency region, where the non-nasal consonants a
especially the nasals show an increase in filterbank energy f
ratios.

The a-MFCCs did not work as well as we expected stan-
dalone. While [2] has shown that there is up to a 9-fold inseea
in filterbank energy f-ratio from the least speaker discniani
tive to most speaker discriminative frequency regions ffdm
to 8,000 Hz, our f-ratio plots show less than a 2-fold inceeas
within the telephone bandwidth. Hence, it is possible thata-
MFCCs sacrifice too many filterbanks at the low-frequency re-
gions where nasals and non-nasal consonants show an iecreas
in filterbank energy f-ratio. However, we have shown thatathe
MFCCs improve results in combination with sub-systemsgaisin
other types of features, contributing to our best overallite

Future work can perhaps investigate the effectiveness of
cepstral coefficients derived from a filterbank spacing witire
filters at both the low and the high frequency regions (as done
in [2]) in the telephone bandwidth, where increases in ibgat
occur. However, as suggested in section 3, the sets of &satur
we've investigated are standardized and do not requirefisign
cant customization for future extraction. They are alselliko
generalize well to other databases.

7. Conclusions

In this work, we've investigated different broad phonetie r
gions and standard filterbank spacings for cepstral feaxwe
traction on telephone speech, where highly speaker discrim
inative frequency regions are filtererd out. We've demon-
strated that LFCCs perform significantly better than MFG&s f

speaker recognition systems using the nasal and non-rasal ¢
sonant broad phonetic regions, agreeing with our plots of fil
terbank energy f-ratios within the telephone bandwidth:Vé/e
also shown that a-MFCCs are useful in overall system combi-
nation, contributing to a combined system with 17.3% retati
EER improvement over our baseline system.
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