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Abstract 

We introduce a new type of feature to capture long-range 
patterns associated with individual speakers or with speaking 
styles. NERFs, or Nonuniform Extraction Region Features, are 
defined based on regions of speech that are delimited by 
various automatically extractable events of interest. There is a 
wide unexplored space of potentially useful NERFs, but to use 
them successfully, at least two important challenges must be 
addressed: (1) methods for coping with inherently missing 
features, and (2) methods for feature selection from large sets 
of potentially correlated NERFs. We address the issue of 
missing features in this paper.  We propose three methods for 
modeling NERFs that cope with missing features. We show 
that on the 2003 NIST extended-data speaker recognition 
evaluation task, a NERF system yields an EER of 11.6% 
alone, and improves the MFCC baseline performance by 
roughly 15% relative. 
 

1. Introduction 

Speaker recognition is the task of recognizing the identity of a 
speaker from his or her voice. Conventionally, this task is 
performed using spectral features estimated from a short 
segment of the waveform (about 10-50 ms) [1]. These features 
capture the speaker's vocal tract characteristics. However, they 
fail to capture the stylistic aspects of a talker's speech, and are 
sensitive to transmission channel characteristics.  

Recently, there has been significant research activity in 
representing longer-term characteristics of a talker's speech, 
such as his or her choice of words, intonation, and duration 
patterns [2,3,4]. In addition to capturing vital information 
about a speaker's unique style, the long-term features are 
expected to be more robust to variation in the transmission 
channel than frame-based spectral features. Finally, longer-
range features are potentially useful not only for 
discriminating speakers, but also in characterizing different 
speaking styles.   

In this paper, we introduce the nonuniform extraction 
region features (NERFs) in Section 2. Section 3 describes 
three different methods of modeling these features. Section 4 
describes the modified reestimation algorithm used in two of 
these methods. Section 5 describes the experimental setup, 
and Section 6 gives the results. In Section 7, we present a 
summary and conclusions. 
 

2. Nonuniform Extraction Region Features 

NERFs are defined both by the region from which they are 
extracted (the NER) and by the type of feature(s) extracted 

within that region (the Fs).  A region refers to a contiguous 
stretch of speech bounded by automatically extractable events 
of interest. A region could be bounded, for example, by 
pauses, by unstressed syllables, by pitch rises or falls, and so 
on. For defining potential NERs, we consider both what 
might constitute meaningful or characteristic units at some 
level of production (for example, a prosodic phrase) and what 
types of boundary events we can use to automatically delimit 
those units. The Fs are the features within the NERs. They 
can be defined to measure, for example, the maximum or 
mean pitch values, duration patterns, energy contours, and so 
forth. These features are similar to those used in studies of 
other unit types, such as utterances and words.  

 

Figure 1 Schematic depiction of different NERs.  Note 
that these regions may not be defined over the entire 
waveform and are asynchronous with respect to each 
other. 

Figure 1 shows a stylized example of the non-uniform 
extraction regions (NERs). It shows the same waveform with 
different regions specified on it.  For example, the first type of 
region is defined as the part of a waveform between two 
pauses of length greater than 1 s. The second type of region is 
similar to the first one except that the length of the pause 
threshold is reduced to 500 ms. The third type of region is 
defined as bounded by schwas, representing a rough foot-like 
metrical unit. From the figure, it is clear that all regions are  
not defined over the entire waveform (e.g., pause-to-pause 
greater than 500 ms is not defined over pauses). In addition, 
they are not synchronous with respect to each other.  

One set of features is extracted from each instance of a 
region; these features are called NERFs. There are two issues 
in modeling NERFs. First, a single NERF may correlate with 
other features from the same region, with features from 
previous or following regions of the same type, or even with 
features from other region types. This means that the NERFs 
should be modeled in joint region-feature space to capture the 
correlations. However, as mentioned earlier, these regions 
may not be defined over the entire waveform and their co-
occurrence cannot be modeled based on a simple structure 



like a hidden Markov model (HMM) or time-frequency 
multiresolution tiling. The second issue is that some of the 
NERFs may not be defined in some instances of the region. 
For example, if a certain region does not contain any voiced 
frames, then pitch features will be undefined for that region.  

Both these issues can be addressed using more flexible 
structures like graphical models (GMs). This requires 
significant development, which is being pursued in parallel.  
In this paper, we describe three ways of modeling these 
features by using Gaussian mixture models. These models are 
developed for a single NER, pause-to-pause greater than 500 
ms.  

3. Modeling Approaches 

As mentioned before, potentially useful NERFs may be 
inherently undefined in some speech intervals. Note that the 
issue of an “undefined” feature is different from a “missing” 
feature. A “missing” feature can be estimated from other 
features but an “undefined” feature cannot be. It leads to a 
sequence of NERF vectors that do not have all the elements 
defined at all times, and makes the use of conventional 
models, like GMM, difficult. In this section, we describe 
some of our efforts to address this issue. Specifically, we 
propose three methods, all based on the use of GMMs but 
treating the problem of the missing features in different ways. 

Method 1: Independent Modeling of Undefined Feature 
Combinations 

In this method we independently model each set of feature 
vectors where the same feature components are undefined. 
For this, we first label feature vectors based on whether or not 
an element is present.  For example, the label for a vector [0.9 
X 1.7] will be 1-X-1 because the first and third features are 
defined but the second one is not. Similarly, the label for a 
vector [X X 2.3] will be X-X-1. The data for each label is 
modeled independently using a GMM. These models are 
adapted independently to estimate a speaker model. During 
verification, the models corresponding to the label for each 
feature vector are used to score the test utterance. The final 
score for the test utterance is simply the sum of the individual 
scores normalized by the number of vectors used. The 
training and evaluation procedures are similar to those used 
for the cepstral system (see Section 4.2) except that all the 
GMM parameters are adapted during speaker-model training. 

This method is the easiest to implement, but it is effective 
only under the assumption that the few frequent labels 
represent most of the data. If a large portion of data has 
infrequent labels, then it is not efficient to model the 
corresponding data independently.  Methods described next 
overcome this problem by using a single model for all the 
feature vectors. 

Method 2: Bootstrapped GMM with Undefined Features 

In this approach, we model all feature vectors, irrespective of 
their labels, using a single GMM in a framework that can 
handle vectors with undefined features. The probability 
computation and reestimation steps of conventional 
expectation maximization (EM) training of GMMs are 
modified to include this a priori probability when a feature is 
not defined. The high-level algorithm is described as follows: 

1. Bootstrap a GMM using the feature vectors with all 
defined elements. 

2. Reestimate the GMM parameters using all the data, 
including vectors with undefined elements. 

3. Adapt target models using all data. 
4. Perform verification using all data.  

The reestimation (Step 2), using vectors with undefined 
elements, is described in detail in the next section. This 
method assumes that there is sufficient data with all defined 
elements to train the boot model. The method described next 
addresses this limitation. 

Method 3:  GMM Directly Trained with Undefined 
Features 

This is modification of Method 2, where we eliminate the 
need to obtain a bootstrap GMM. This method does not 
require any preprocessing of data to compute labels. The 
high-level algorithm is described as follows: 

1. Estimate single Gaussian model using the whole 
data, including vectors with undefined elements. 

2. Split the Gaussian to create twice the number of 
Gaussians. 

3. Reestimate the Gaussians using all data. 
4. If the number of Gaussians is less than the desired 

number of Gaussians then go to Step 2. 
The estimation (Step 1) and reestimation (Step 3) 

processes using vectors with undefined elements are 
described in detail in the next section. 

 

4. Estimating GMM Using Undefined 
Features 

To estimate a GMM using undefined features, we modified 
two steps. First, the step where the probability of the vector 
with respect to the model is computed. An EM derivation 
using this modified probability equation gave the second 
modification in the reestimation equations. We describe the 
modified probability estimation first, followed by the model 
reestimation. 
The probability of a feature vector with undefined elements, 
modeled using a GMM, is estimated as follows, 
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where tx  is a feature vector at time t and i is the Gaussian 

index. Since the data is modeled using diagonal covariances, 
the probability computation is interpreted as a product of k 
per-element probabilities. If the element is defined then the 
probability is the likelihood (term in []) multiplied by the 
prior (P(i,k)) that the feature is defined for the Gaussian. 
Otherwise the probability is the prior that the feature is 
undefined for the Gaussian (1 - P(i,k)). The new model has 
four parameters (w, µ, σ, P). If we maximize the probability 
of the data computed using the above equation then the 
modified EM equations are 
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Equation (2) calculates the posterior probability of each 
Gaussian for a given vector. Equation (3) estimates the 
mixture weight of each Gaussian. Note that these equations 
are the same as the ones used in standard EM. The equations 
(4, 5 and 6) that reestimate the model parameters are similar 
to the ones in normal EM, with two differences. First, the 
reestimation is performed independently for each feature 
element. Second, only the known feature values (and their 
Gaussian posteriors) are used in per-element reestimation. We 
define δ(k,t)  as 1 if the kth element of tth vector is defined and 
0 otherwise to specify this modification. 

Note that these equations are the same as in the original 
EM equations if all features are always defined. That is, if 
δ(k,t) = 1, for all k and t, then these equations fall back to the 
original EM reestimation equations. 

In Method 2, the above equations are used to reestimate 
the model, which was booted the modeled trained using all-
defined features. Therefore, EM iterations are initialized with 
the boot model parameters and P(i,k) are initialized with P(k), 
which is the prior for the feature (k) being defined. This prior 
is computed over the background model data. 

In Method 3, the above equations are used to estimate the 
single Gaussian model and to reestimate the models obtained 
by splitting this model. A single Gaussian model is booted 
using zero mean and unit variance per element and P(i,k) are 
initialized with P(k). 

 

5. Experimental Setup 

We present results obtained with the proposed modeling 
approaches on only one region type, the pause-to-pause 
regions with a pause threshold of 500 ms. A subset of NERFs 
is described in Table 1. For the chosen pause-to-pause region 
type, we have 32 features, which means that we have to model 
232 possible defined/undefined pattern labels when the first 
modeling method is implemented. Fortunately, the three most 
frequent labels represent 86% of the data. Our initial 

experiments showed that modeling the data labeled by these 
labels gave the best performance. Here, the data for the most 
common label (50%) is modeled using 64 Gaussians, the data 
for the second most common label (31%) is modeled using 32 
Gaussians, and the data for the third most common label (5%) 
is modeled using 8 Gaussians.  

The scores obtained from different NERF systems are 
then combined with a state-of-the-art cepstral-based system 
(Section 5.2) to show how much independent information the 
NERF system provides with respect to the baseline system. 
 

5.1. Task  

The modeling methods described were evaluated on NIST 
2003 extended-data speaker recognition task. This is a 
detection task that uses data from Switchboard-II phases 2 
and 3 databases. The task comprises telephone speech with 
about 1500 speaker models and 23,000 test trials. Each 
speaker model is trained using approximately 16 minutes of 
speech (8 conversation sides) and each test is performed using 
approximately 2 minutes of speech  (1 conversation side). 

For the evaluation, the data was divided into 10 
nonoverlapping splits. All the splits have similar amounts of 
training and test data. Systems are not allowed to use data 
from the split that is being evaluated. 

Table 1 Subset of NERFs estimated from pause-to-
pause region 

Feature Name Feature description 

MEAN_STY_F0_LOG 
Log of the mean 
stylized f0 in the 
region 

MAX_STY_F0_LOG 
Log of the maximum 
stylized f0 in the 
region 

AVE_Z_PHONE_DUR 

Average of the 
normalized (by mean 
and variance) phone 
duration in the 
region 

AVE_N_PHONE_DUR 

Average of the 
normalized (by mean 
only) phone duration 
in the region 

AVE_N_VOWEL_DUR 

Average of the 
normalized (by mean 
only) vowel duration 
in the region 

REGION_LENGTH_LOG Log of the region 
length 

AVE_Z_VOWEL_DUR 

Average of the 
normalized (by mean 
and variance) vowel 
duration in the 
region 

NUM_V_FRAMES_NORM_LENG
TH 

Number of voiced 
frames in the region 
normalized by the 
length of the region 

STY_F0_RANGE 

Range (log of the 
ratio between max 
and min values) of 
stylized f0 in the 



region 

MAX_NEG_SLOPE_F0_LOG 

Log of the maximum 
negative slope of the 
stylized f0 in the 
region 

NUM_NODES_F0_LOG 
Log of the number of 
nodes in the stylized 
f0 

NUM_R_FRAMES_NORM_V 

Number of rising 
frames in the 
stylized f0 
normalized by the 
number of voiced 
frames  

MAX_NEG_SLOPE_ENERGY_LO
G 

Log of the maximum 
negative slope of the 
stylized energy in 
the region 

 
Performance of a system is measured using false 

acceptance and false rejection errors. In this paper, we 
compare different results using equal error rate (EER), the 
point on the detection error tradeoff curve at which the 
number of false acceptances equals the number of false 
rejections. 

5.2. Cepstral-Based System 

Our baseline system uses 13 Mel frequency cepstral 
coefficients (MFCCs), which are normalized using cepstral 
mean removal, and which are concatenated with delta and 
delta-delta features. The distribution of features is modeled in 
the Gaussian mixture model (GMM) and universal 
background model (UBM) framework. We use a 2048-
component GMM as the background model. It is trained 
using gender- and handset-balanced data from Switchboard-II 
phase 1 corpus. Speaker models are created from the 
background model using maximum a-posteriori adaptation 
(MAP), in which only the means of Gaussians are adapted. 
Verification is performed using the log-likelihood ratio 
between the corresponding speaker model and the 
background model. During adaptation and verification, 
features are normalized for variation due to different 
handsets[7]. This system results in an EER of 2.30%. 

5.3. Combination Method 

The baseline and the NERF systems are combined at score 
level by using a neural network combiner (LNKnet [5]). The 
combiner is trained using 10-fold cross-validation. In each 
fold, the combiner is trained using nine splits and tested on 
the remaining split. The combiner is trained using two 
classes: true speaker and impostor. In the combination 
experiments, the class priors are adjusted to 10 and 1, 
respectively. 
 

6. Results  

Table 2 shows the performance of NERF systems using 
different modeling approaches. First, the table shows our 
NERF baseline, which is a GMM trained using only the all-
defined feature vectors. This gives EER=15.0%. When feature 
vectors with unknowns are added to the system (row 2a), the 
performance improves to 11.57%. In this system, the three 

most frequent unknown combinations (around 86% of the 
data) are modeled separately (Method 1).  This performance 
degrades when all the combinations for 99% of the data are 
used in the system (Row 2b). The degradation occurs because 
additional unknown combinations do not have sufficient data 
to model them independently.  

This hypothesis can be supported by results of systems 
trained using Method 2 (Rows 3a and 3b). Judging from the 
comparison of Rows 2a and 3a, where the same amount of 
data was used, modeling the three most frequent combinations 
separately give similar performance. This performance 
improves slightly (Row 3b) with the addition of features for 
less-frequent unknown combinations. Thus the second 
method of training NERFs overcomes the shortcomings of the 
first method by modeling the combinations together in a 
single model. 

Finally, results show that Method 3 (single GMM trained 
using all the data without booting) performs better than the 
NERF baseline, but worse than systems trained using Methods 
1 and 2. This shows that booting is important for training 
single GMM. However, note that this method can be used as a 
first system when training on a novel dataset because it does 
not require any preprocessing of the data. 

Table 2 Performance of pause-to-pause region 
features 

NERF System Amount 
of  data 

%EE
R 

1 Single GMM,  
all known elements 

32% 15.0 

2a Separate GMMs 86% 11.57 

2
b 

Separate GMMs 99% 12.40 

3a Single GMM, retrained EM 86% 11.87 

3
b 

Single GMM, retrained EM 100% 11.57 

4 Single GMM, complete EM 100% 13.57 

 
Table 3 shows performance of the combination of baseline 

and different NERF systems. Results show that NERF systems 
trained using all the three methods give 14-17% improvement 
(significant at 95% confidence level) in EER after 
combination. Their performance is also better than the 
combination of the GMM baseline with the NERF baseline.  

Table 3 Performance of the combination of NERF 
systems with Baseline, Baseline + n, where n refers to 
the system in row n from Table 2. 

System Combination %EER 
Baseline 2.30 
Baseline + 1 2.07 
Baseline + 2a 1.94 
Baseline + 3a 1.90 
Baseline + 3b 1.94 
Baseline + 4 2.00 

 

7. Summary and Conclusions 



We have presented nonuniform extraction region features 
(NERFs), which model long-term patterns associated with the 
speaking style of individual speakers. We described the 
modeling issues and proposed three methods to model these 
features in the existing framework of GMM.  

The first method assumes that features with different 
combinations of unknowns must be modeled separately. 
Therefore, features for different unknown combinations are 
collected and modeled using different GMMs. This 
assumption is based on the hypothesis that correlations 
among features might be different when some features are 
missing, for example, NERFs from voiced and unvoiced 
regions where the pitch features will be defined or undefined 
respectively. This method requires preprocessing of the data 
to create labels for feature vectors, but the modeling requires 
no changes to the GMM framework. 

The drawback of the first method is that if a data set had a 
lot of unknown combinations with few feature vectors per 
combination, then the modeling would not be efficient. To 
overcome this problem, we propose a second method. Here, a 
single GMM is trained using all data. This model is booted 
from data with all defined feature elements. This method 
models averaged correlations among features when some of 
them are missing. However, it is more efficient in modeling 
infrequent unknown combinations. 

A minor drawback of the second method is that it assumes 
that there is sufficient data with all-known vectors to boot the 
model. We investigate a third method where a single model is 
trained using all data without booting. First, a single Gaussian 
model is estimated from the data. Then, split-and-retrain 
iterations are used to derive the GMM. This approach does 
not require any preprocessing of the data, but it does not give 
any improvement over the second method.  

Results show that systems based on these methods give 
significant improvements over a NERF baseline, which uses 
only all-known feature vectors. They also give a significant 
reduction in EER when combined with a state-of-the-art 
baseline system.  

This paper lays the groundwork for modeling NERFs. We 
consider the performance of NERFs independently and in 
combination with the baseline as very promising. In future 
work, we will add more NERFs and model joint region-
feature correlations, and we will also explore other issues, 
such as feature selection of NERFs.  
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