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Abstract

We introduce a new type of feature to capture large
patterns associated with individual speakers oh sfieaking
styles. NERFs, or Nonuniform Extraction Region EHesd, are
defined based on regions of speech that are detinity
various automatically extractable events of inter€kere is a
wide unexplored space of potentially useful NER#tg,to use
them successfully, at least two important challsngrist be
addressed: (1) methods for coping with inherentigsing
features, and (2) methods for feature selectiom fiarge sets
of potentially correlated NERFs. We address theigssf
missing features in this paper. We propose threthoals for
modeling NERFs that cope with missing features. 3New
that on the 2003 NIST extended-data speaker retogni
evaluation task, a NERF system yields an EER 06%1.

alone, and improves the MFCC baseline performange b

roughly 15% relative.

1. Introduction

Speaker recognition is the task of recognizingideatity of a
speaker from his or her voice. Conventionally, ttask is
performed using spectral features estimated fromshart
segment of the waveform (about 10-50 ms) [1]. THeatures
capture the speaker's vocal tract characteridtioaiever, they
fail to capture the stylistic aspects of a talkepeech, and are
sensitive to transmission channel characteristics.

Recently, there has been significant research igctiv
representing longer-term characteristics of a talkepeech,
such as his or her choice of words, intonation, daghtion
patterns [2,3,4]. In addition to capturing vitalffdrmation
about a speaker's unique style, the long-term rfestare
expected to be more robust to variation in thestmaasion
channel than frame-based spectral features. Fjnlalhger-
range features are potentially useful not only for
discriminating speakers, but also in characteriziiferent
speakingstyles.

In this paper, we introduce the nonuniform extecti
region features (NERFs) in Section 2. Section 3criless
three different methods of modeling these featusestion 4
describes the modified reestimation algorithm usetivo of
these methods. Section 5 describes the experimsetap,
and Section 6 gives the results. In Section 7, vesent a
summary and conclusions.

2. Nonuniform Extraction Region Features

NERFs are defined both by the region from whichythee
extracted (the NER) and by the type of featurefgdaeted

within that region (the Fs). A region refers t@@ntiguous
stretch of speech bounded by automatically extodetavents
of interest. A region could be bounded, for examgig
pauses, by unstressed syllables, by pitch risésller and so
on. For defining potential NERs, we consider bothatv
might constitute meaningful or characteristic uratssome
level of production (for example, a prosodic phyased what
types of boundary events we can use to automatidalimit
those units. The Fs are the features within the NERey
can be defined to measure, for example, the maxiroum
mean pitch values, duration patterns, energy cost@nd so
forth. These features are similar to those usesdtudies of
other unit types, such as utterances and words.
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Figure 1 Schematic depiction of different NERs. Note
that these regions may not be defined over the entire
waveform and are asynchronous with respect to each
other.

Figure 1 shows a stylized example of the non-unifor
extraction regions (NERs). It shows the same wawefwith
different regions specified on it. For example finst type of
region is defined as the part of a waveform between
pauses of length greater than 1 s. The secondofygion is
similar to the first one except that the lengthtioé pause
threshold is reduced to 500 ms. The third typeegfian is
defined as bounded by schwas, representing a rimagtike
metrical unit. From the figure, it is clear that adgions are
not defined over the entire waveform (e.g., paospause
greater than 500 ms is not defined over pausesyddiition,
they are not synchronous with respect to each other

One set of features is extracted from each instafice
region; these features are calldHRFs. There are two issues
in modeling NERFs. First, a single NERF may coteelaith
other features from the same region, with featuresn
previous or following regions of the same typegwen with
features from other region types. This means thatNERFs
should be modeled in joint region-feature spaceafature the
correlations. However, as mentioned earlier, thesgons
may not be defined over the entire waveform andr tbe
occurrence cannot be modeled based on a simpletsteu



like a hidden Markov model (HMM) or time-frequency
multiresolution tiling. The second issue is thamesoof the
NERFs may not be defined in some instances of egemn.
For example, if a certain region does not contaiy \wiced
frames, then pitch features will be undefined Fattregion.
Both these issues can be addressed using moréldexi
structures like graphical models (GMs). This regsir
significant development, which is being pursuedoarallel.
In this paper, we describe three ways of modelingsée
features by using Gaussian mixture models. Thestelmare
developed for a single NER, pause-to-pause gréiadaer 500
ms.

3. Modeling Approaches

As mentioned before, potentially useful NERFs may b
inherently undefined in some speech intervals. Nio& the
issue of an “undefined” feature is different froninaissing”
feature. A “missing” feature can be estimated frother
features but an “undefined” feature cannot beedids to a
sequence of NERF vectors that do not have all kments
defined at all times, and makes the use of coneeali
models, like GMM, difficult. In this section, we sigribe
some of our efforts to address this issue. Spediific we
propose three methods, all based on the use of GhiMs
treating the problem of the missing features ifedént ways.

Method 1: Independent Modeling of Undefined Feature
Combinations

In this method we independently model each seteafufe
vectors where the same feature components are inadef
For this, we first label feature vectors based tetiver or not
an element is present. For example, the labe farctor [0.9
X 1.7] will be 1-X-1 because the first and thircafieres are
defined but the second one is not. Similarly, theel for a
vector [X X 2.3] will be X-X-1. The data for eachHel is
modeled independently using a GMM. These models are
adapted independently to estimate a speaker mBueing
verification, the models corresponding to the latoel each
feature vector are used to score the test utterarfce final
score for the test utterance is simply the suntefindividual
scores normalized by the number of vectors usece Th
training and evaluation procedures are similarhmsé used
for the cepstral system (see Section 4.2) excegit dh the
GMM parameters are adapted during speaker-modeirtga

This method is the easiest to implement, but dffiective
only under the assumption that the few frequenteliab
represent most of the data. If a large portion afadhas
infrequent labels, then it is not efficient to mbdée
corresponding data independently. Methods destriimxt
overcome this problem by using a single model fbrtte
feature vectors.

Method 2: Bootstrapped GMM with Undefined Features

In this approach, we model all feature vectorgsipective of
their labels, using a single GMM in a framework ttican
handle vectors with undefined features. The prdibabi
computation and reestimation steps of conventional
expectation maximization (EM) training of GMMs are
modified to include this priori probability when a feature is
not defined. The high-level algorithm is descrilasdollows:

1. Bootstrap a GMM using the feature vectors with a
defined elements.

2. Reestimate the GMM parameters using all the, data
including vectors with undefined elements.

3. Adapt target models using all data.

4. Perform verification using all data.

The reestimation (Step 2), using vectors with uimegef
elements, is described in detail in the next sactithis
method assumes that there is sufficient data witdedined
elements to train the boot model. The method desdrnext
addresses this limitation.

Method 3:
Features

GMM Directly Trained with Undefined

This is modification of Method 2, where we elimiaathe
need to obtain a bootstrap GMM. This method does no
require any preprocessing of data to compute labEle
high-level algorithm is described as follows:
1. Estimate single Gaussian model using the whole
data, including vectors with undefined elements.
2. Split the Gaussian to create twice the number of
Gaussians.
3. Reestimate the Gaussians using all data.
4. If the number of Gaussians is less than therefsi
number of Gaussians then go to Step 2.
The estimation (Step 1) and reestimation (Step 3)
processes using vectors with undefined elements are
described in detail in the next section.

4. Estimating GMM Using Undefined
Features

To estimate a GMM using undefined features, we frextli
two steps. First, the step where the probabilityhef vector
with respect to the model is computed. An EM ddiora
using this modified probability equation gave thecand
modification in the reestimation equations. We déscthe
modified probability estimation first, followed ke model
reestimation.

The probability of a feature vector with undefineléments,
modeled using a GMM, is estimated as follows,
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where X is a feature vector at timteandi is the Gaussian

index. Since the data is modeled using diagonahances,
the probability computation is interpreted as adpiad of k
per-element probabilities. If the element is dedirtken the
probability is the likelihood (term in []) multigd by the
prior (P(i,k)) that the feature is defined for the Gaussian.
Otherwise the probability is the prior that the téga is
undefined for the Gaussian (1P{i,k)). The new model has
four parametersw(, y, o, P). If we maximize the probability
of the data computed using the above equation then
modified EM equations are
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Equation (2) calculates the posterior probabilityeach
Gaussian for a given vector. Equation (3) estimates
mixture weight of each Gaussian. Note that thesetsans
are the same as the ones used in standard EM.qlaiens
(4, 5 and 6) that reestimate the model parametersimilar
to the ones in normal EM, with two differences.sEirthe
reestimation is performed independently for eachtuie
element. Second, only the known feature values (aed
Gaussian posteriors) are used in per-element mesgsdin. \We
defined(k,t) as 1 if the R element of't vector is defined and
0 otherwise to specify this modification.

Note that these equations are the same as in thi@ar
EM equations if all features are always definedatTis, if
o(k,t) = 1, for allk andt, then these equations fall back to the
original EM reestimation equations.

In Method 2, the above equations are used to reafsi
the model, which was booted the modeled trainedguall-
defined features. Therefore, EM iterations ardaifited with
the boot model parameters dn@,k) are initialized withP(Kk),
which is the prior for the featurd)(being defined. This prior
is computed over the background model data.

In Method 3, the above equations are used to estitha
single Gaussian model and to reestimate the maidétsned
by splitting this model. A single Gaussian modebioted
using zero mean and unit variance per elementPénk) are
initialized with P(Kk).

5. Experimental Setup

We present results obtained with the proposed rimaylel
approaches on only one region type, the pauseteepa
regions with a pause threshold of 500 ms. A subSBIERFs
is described in Table 1. For the chosen pauseiseeegion
type, we have 32 features, which means that we teanedel
2%2 possible defined/undefined pattern labels when fits¢
modeling method is implemented. Fortunately, threghmost
frequent labels represent 86% of the data. Ouriainit

experiments showed that modeling the data labejethése
labels gave the best performance. Here, the datthédomost
common label (50%) is modeled using 64 Gaussifesdata
for the second most common label (31%) is modeoigu32
Gaussians, and the data for the third most comizlogl (5%)
is modeled using 8 Gaussians.

The scores obtained from different NERF systems are
then combined with a state-of-the-art cepstral-thesestem
(Section 5.2) to show how much independent infoionathe
NERF system provides with respect to the baselseEm.

5.1. Task

The modeling methods described were evaluated @il NI
2003 extended-data speaker recognition task. Thisai
detection task that uses data from Switchboardhsps 2
and 3 databases. The task comprises telephonehspatsc
about 1500 speaker models and 23,000 test trigdsh E
speaker model is trained using approximately 16uteis of
speech (8 conversation sides) and each test isrpexfl using
approximately 2 minutes of speech (1 conversatide).

For the evaluation, the data was divided into 10
nonoverlapping splits. All the splits have simii&mounts of
training and test data. Systems are not alloweds® data
from the split that is being evaluated.

Table 1 Subset of NERFs estimated from pause-to-
pause region

Feature Name Feature description

Log of the mean
stylized fO in the
region

Log of the maximum
stylized fO in the
region

Average of the
normalized (by mean
and variance) phone
duration in the
region

Average of the
normalized (by mean
only) phone duration
in the region
Average of the
normalized (by mean
only) vowel duration
in the region

Log of the region
length

Average of the
normalized (by mean
and variance) vowel
duration in the
region

Number of voiced
NUM_V_FRAMES_NORM_LENG | frames in the region
TH normalized by the
length of the region
Range (log of the
ratio between max
and min values) of
stylized f0 in the

MEAN_STY_FO_LOG

MAX_STY_FO_LOG

AVE_Z_PHONE_DUR

AVE_N_PHONE_DUR

AVE_N_VOWEL_DUR

REGION_LENGTH_LOG

AVE_Z VOWEL_DUR

STY_FO_RANGE




region

Log of the maximum
negative slope of the
stylized fO in the
region

Log of the number of
nodes in the stylized
0

Number of rising
frames in the
stylized fO
normalized by the
number of voiced
frames

Log of the maximum
negative slope of the
stylized energy in
the region

MAX_NEG_SLOPE_FO_LOG

NUM_NODES_F0_LOG

NUM_R_FRAMES_NORM_V

MAX_NEG_SLOPE_ENERGY_LO
G

Performance of a system is measured using false
acceptance and false rejection errors. In this pape
compare different results using equal error rateRE the
point on the detection error tradeoff curve at whihe
number of false acceptances equals the number Isé fa
rejections.

5.2. Cepstral-Based System

Our baseline system uses 13 Mel frequency cepstral
coefficients (MFCCs), which are normalized usingpsteal
mean removal, and which are concatenated with deith
delta-delta features. The distribution of feattisesiodeled in

the Gaussian mixture model (GMM) and universal
background model (UBM) framework. We use a 2048-
component GMM as the background model. It is tmhine
using gender- and handset-balanced data from Syaigzd-11
phase 1 corpus. Speaker models are created from the
background model using maximum a-posteriori adaptat
(MAP), in which only the means of Gaussians areptath
Verification is performed using the log-likelihoodatio
between the corresponding speaker model and
background model. During adaptation and verifigatio
features are normalized for variation due to oéfer
handsets[7]. This system results in an EER of 2.30%

the

5.3. Combination Method

The baseline and the NERF systems are combinedoat s
level by using a neural network combiner (LNKne}) [The
combiner is trained using 10-fold cross-validatidm.each
fold, the combiner is trained using nine splits aested on
the remaining split. The combiner is trained usitvgp
classes: true speaker and impostor. In the combmat
experiments, the class priors are adjusted to 1@ &n
respectively.

6. Results

Table 2 shows the performance of NERF systems using
different modeling approaches. First, the tablewsh@ur
NERF baseline, which is a GMM trained using onlg Hil-
defined feature vectors. This gives EER=15.0%. Weature
vectors with unknowns are added to the system @a)the
performance improves to 11.57%. In this system,thiree

most frequent unknown combinations (around 86% hef t
data) are modeled separately (Method 1). Thisopmdince
degrades when all the combinations for 99% of thi dre
used in the system (Row 2b). The degradation odmerause
additional unknown combinations do not have sudfitidata
to model them independently.

This hypothesis can be supported by results oesyst
trained using Method 2 (Rows 3a and 3b). Judgiog fthe
comparison of Rows 2a and 3a, where the same anwunt
data was used, modeling the three most frequenbications
separately give similar performance. This perforoean
improves slightly (Row 3b) with the addition of feees for
less-frequent unknown combinations. Thus the second
method of training NERFs overcomes the shortcomaidbe
first method by modeling the combinations togetirera
single model.

Finally, results show that Method 3 (single GMMirted
using all the data without booting) performs bettean the
NERF baseline, but worse than systems trained Wdetgods
1 and 2. This shows that booting is important fi@ining
single GMM. However, note that this method can seduas a
first system when training on a novel dataset bseatudoes
not require any preprocessing of the data.

Table 2 Performance of pause-to-pause region
features

NERF System Amount %EE
of data R
1 | Single GMM, 32% 15.0
all known elements

2a | Separate GMMs 86% 11.5]
2 | Separate GMMs 99% 12.40
b
3a | Single GMM, retrained EM 86% 11.87
3 | Single GMM, retrained EM 100% 11.57
b
4 | Single GMM, complete EM 100% 13.57

Table 3 shows performance of the combination oélirzes
and different NERF systems. Results show that NEREems
trained using all the three methods give 14-17%awpment
(significant at 95% confidence level) in EER after
combination. Their performance is also better thhe
combination of the GMM baseline with the NERF bamel

Table 3 Performance of the combination of NERF
systems with Baseline, Basdline + n, where n refersto
the systemin row n from Table 2.

System Combination Y%EER
Baseline 2.30
Baseline + 1 2.07
Baseline + 2a 1.94
Baseline + 3a 1.90
Baseline + 3b 1.94
Baseline + 4 2.00

7. Summary and Conclusions



We have presented nonuniform extraction regionufeat
(NERFs), which model long-term patterns associatitid the
speaking style of individual speakers. We descrillleel
modeling issues and proposed three methods to ntoelsd
features in the existing framework of GMM.

The first method assumes that features with differe
combinations of unknowns must be modeled separately
Therefore, features for different unknown combioiasi are
collected and modeled using different GMMs. This
assumption is based on the hypothesis that cdmeat
among features might be different when some featare
missing, for example, NERFs from voiced and unwbice
regions where the pitch features will be definediodefined
respectively. This method requires preprocessinthefdata
to create labels for feature vectors, but the nindekequires
no changes to the GMM framework.

The drawback of the first method is that if a dsgtthad a
lot of unknown combinations with few feature vestgrer
combination, then the modeling would not be effitieTo
overcome this problem, we propose a second mether, a
single GMM is trained using all data. This modebisoted
from data with all defined feature elements. Thisthmd
models averaged correlations among features whem sg
them are missing. However, it is more efficientniodeling
infrequent unknown combinations.

A minor drawback of the second method is thatsuases
that there is sufficient data with all-known vestdo boot the
model. We investigate a third method where a singdeel is
trained using all data without booting. First, aghe Gaussian
model is estimated from the data. Then, split-atchn
iterations are used to derive the GMM. This apphnodoes
not require any preprocessing of the data, bubéschot give
any improvement over the second method.

Results show that systems based on these metheels gi
significant improvements over a NERF baseline, Whises
only all-known feature vectors. They also give gngicant
reduction in EER when combined with a state-ofdite-
baseline system.

This paper lays the groundwork for modeling NERNg.
consider the performance of NERFs independently iand
combination with the baseline as very promising.future
work, we will add more NERFs and model joint region
feature correlations, and we will also explore otfssues,
such as feature selection of NERFs.
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