
Modeling NERFs for Speaker Recognition

Sachin Kajarekar1, Luciana Ferrer1, Kemal Sönmez1, Jing Zheng1, Elizabeth Shriberg1,2, Andreas
Stolcke1,2

1SRI International, Menlo Park, CA, USA
2 International Computer Science Institute, Berkeley, CA, USA

{sachin,lferrer,kemal,zj,ees,stolcke}@speech.sri.com

Abstract

We introduce a new type of feature to capture long-range
patterns associated with individual speakers or with speaking
styles. NERFs, or Nonuniform Extraction Region Features, are
defined based on regions of speech that are delimited by
various automatically extractable events of interest. There is a
wide unexplored space of potentially useful NERFs, but to use
them successfully, at least two important challenges must be
addressed: (1) methods for coping with inherently missing
features, and (2) methods for feature selection from large sets
of potentially correlated NERFs. We address the issue of
missing features in this paper. We propose three methods for
modeling NERFs that cope with missing features. We show
that on the 2003 NIST extended-data speaker recognition
evaluation task, a NERF system yields an EER of 11.6%
alone, and improves the MFCC baseline performance by
roughly 15% relative.

1. Introduction

Speaker recognition is the task of recognizing the identity of a
speaker from his or her voice. Conventionally, this task is
performed using spectral features estimated from a short
segment of the waveform (about 10-50 ms) [1]. These features
capture the speaker's vocal tract characteristics. However, they
fail to capture the stylistic aspects of a talker's speech, and are
sensitive to transmission channel characteristics.

Recently, there has been significant research activity in
representing longer-term characteristics of a talker's speech,
such as his or her choice of words, intonation, and duration
patterns [2,3,4]. In addition to capturing vital information
about a speaker's unique style, the long-term features are
expected to be more robust to variation in the transmission
channel than frame-based spectral features. Finally, longer-
range features are potentially useful not only for
discriminating speakers, but also in characterizing different
speaking styles.

In this paper, we introduce the nonuniform extraction
region features (NERFs) in Section 2. Section 3 describes
three different methods of modeling these features. Section 4
describes the modified reestimation algorithm used in two of
these methods. Section 5 describes the experimental setup,
and Section 6 gives the results. In Section 7, we present a
summary and conclusions.

2. Nonuniform Extraction Region Features

NERFs are defined both by the region from which they are
extracted (the NER) and by the type of feature(s) extracted

within that region (the Fs). A region refers to a contiguous
stretch of speech bounded by automatically extractable events
of interest. A region could be bounded, for example, by
pauses, by unstressed syllables, by pitch rises or falls, and so
on. For defining potential NERs, we consider both what
might constitute meaningful or characteristic units at some
level of production (for example, a prosodic phrase) and what
types of boundary events we can use to automatically delimit
those units. The Fs are the features within the NERs. They
can be defined to measure, for example, the maximum or
mean pitch values, duration patterns, energy contours, and so
forth. These features are similar to those used in studies of
other unit types, such as utterances and words.

Figure 1 Schematic depiction of different NERs. Note
that these regions may not be defined over the entire
waveform and are asynchronous with respect to each
other.

Figure 1 shows a stylized example of the non-uniform
extraction regions (NERs). It shows the same waveform with
different regions specified on it. For example, the first type of
region is defined as the part of a waveform between two
pauses of length greater than 1 s. The second type of region is
similar to the first one except that the length of the pause
threshold is reduced to 500 ms. The third type of region is
defined as bounded by schwas, representing a rough foot-like
metrical unit. From the figure, it is clear that all regions are
not defined over the entire waveform (e.g., pause-to-pause
greater than 500 ms is not defined over pauses). In addition,
they are not synchronous with respect to each other.

One set of features is extracted from each instance of a
region; these features are called NERFs. There are two issues
in modeling NERFs. First, a single NERF may correlate with
other features from the same region, with features from
previous or following regions of the same type, or even with
features from other region types. This means that the NERFs
should be modeled in joint region-feature space to capture the
correlations. However, as mentioned earlier, these regions
may not be defined over the entire waveform and their co-
occurrence cannot be modeled based on a simple structure

like a hidden Markov model (HMM) or time-frequency
multiresolution tiling. The second issue is that some of the
NERFs may not be defined in some instances of the region.
For example, if a certain region does not contain any voiced
frames, then pitch features will be undefined for that region.

Both these issues can be addressed using more flexible
structures like graphical models (GMs). This requires
significant development, which is being pursued in parallel.
In this paper, we describe three ways of modeling these
features by using Gaussian mixture models. These models are
developed for a single NER, pause-to-pause greater than 500
ms.

3. Modeling Approaches

As mentioned before, potentially useful NERFs may be
inherently undefined in some speech intervals. Note that the
issue of an “undefined” feature is different from a “missing”
feature. A “missing” feature can be estimated from other
features but an “undefined” feature cannot be. It leads to a
sequence of NERF vectors that do not have all the elements
defined at all times, and makes the use of conventional
models, like GMM, difficult. In this section, we describe
some of our efforts to address this issue. Specifically, we
propose three methods, all based on the use of GMMs but
treating the problem of the missing features in different ways.

Method 1: Independent Modeling of Undefined Feature
Combinations

In this method we independently model each set of feature
vectors where the same feature components are undefined.
For this, we first label feature vectors based on whether or not
an element is present. For example, the label for a vector [0.9
X 1.7] will be 1-X-1 because the first and third features are
defined but the second one is not. Similarly, the label for a
vector [X X 2.3] will be X-X-1. The data for each label is
modeled independently using a GMM. These models are
adapted independently to estimate a speaker model. During
verification, the models corresponding to the label for each
feature vector are used to score the test utterance. The final
score for the test utterance is simply the sum of the individual
scores normalized by the number of vectors used. The
training and evaluation procedures are similar to those used
for the cepstral system (see Section 4.2) except that all the
GMM parameters are adapted during speaker-model training.

This method is the easiest to implement, but it is effective
only under the assumption that the few frequent labels
represent most of the data. If a large portion of data has
infrequent labels, then it is not efficient to model the
corresponding data independently. Methods described next
overcome this problem by using a single model for all the
feature vectors.

Method 2: Bootstrapped GMM with Undefined Features

In this approach, we model all feature vectors, irrespective of
their labels, using a single GMM in a framework that can
handle vectors with undefined features. The probability
computation and reestimation steps of conventional
expectation maximization (EM) training of GMMs are
modified to include this a priori probability when a feature is
not defined. The high-level algorithm is described as follows:

1. Bootstrap a GMM using the feature vectors with all
defined elements.

2. Reestimate the GMM parameters using all the data,
including vectors with undefined elements.

3. Adapt target models using all data.
4. Perform verification using all data.

The reestimation (Step 2), using vectors with undefined
elements, is described in detail in the next section. This
method assumes that there is sufficient data with all defined
elements to train the boot model. The method described next
addresses this limitation.

Method 3: GMM Directly Trained with Undefined
Features

This is modification of Method 2, where we eliminate the
need to obtain a bootstrap GMM. This method does not
require any preprocessing of data to compute labels. The
high-level algorithm is described as follows:

1. Estimate single Gaussian model using the whole
data, including vectors with undefined elements.

2. Split the Gaussian to create twice the number of
Gaussians.

3. Reestimate the Gaussians using all data.
4. If the number of Gaussians is less than the desired

number of Gaussians then go to Step 2.
The estimation (Step 1) and reestimation (Step 3)

processes using vectors with undefined elements are
described in detail in the next section.

4. Estimating GMM Using Undefined
Features

To estimate a GMM using undefined features, we modified
two steps. First, the step where the probability of the vector
with respect to the model is computed. An EM derivation
using this modified probability equation gave the second
modification in the reestimation equations. We describe the
modified probability estimation first, followed by the model
reestimation.
The probability of a feature vector with undefined elements,
modeled using a GMM, is estimated as follows,

()
()

)1(

otherwise,,,1

defined is),,(
2

1

1

2

1
2

∏
=













 −−










−

















=
N

k

k
t

mx

k
iti

kiP

xkiPe
xp

k
i

k
i

k
t

σ

πσ

where tx is a feature vector at time t and i is the Gaussian

index. Since the data is modeled using diagonal covariances,
the probability computation is interpreted as a product of k
per-element probabilities. If the element is defined then the
probability is the likelihood (term in []) multiplied by the
prior (P(i,k)) that the feature is defined for the Gaussian.
Otherwise the probability is the prior that the feature is
undefined for the Gaussian (1 - P(i,k)). The new model has
four parameters (w, µ, σ, P). If we maximize the probability
of the data computed using the above equation then the
modified EM equations are

() ()
()

()

()
() ()

() ()

()[] ()() ()

() ()

()
() ()

()
)6(

/Pr

/Pr,
,

)5(
Pr,

Pr,

)4(
Pr,

Pr,

)3(
Pr

)2(Pr

1

1

1

1

2

2

1

1

1

1

∑

∑

∑

∑

∑

∑

∑

∑

=

=

=

=

=

=

=

=

=

=

=

=

=

T

t
t

T

t
t

T

t
t

T

t
t

k
t

k
i

T

t
t

T

t
t

k
t

k
i

T

t
t

i

M

j
tii

tii
t

xi

xitk
ikP

xitk

xixtk
xE

xitk

xixtk
xE

T

xi
w

xpw

xpw
xi

δ

δ

δ

δ

δ

Equation (2) calculates the posterior probability of each
Gaussian for a given vector. Equation (3) estimates the
mixture weight of each Gaussian. Note that these equations
are the same as the ones used in standard EM. The equations
(4, 5 and 6) that reestimate the model parameters are similar
to the ones in normal EM, with two differences. First, the
reestimation is performed independently for each feature
element. Second, only the known feature values (and their
Gaussian posteriors) are used in per-element reestimation. We
define δ(k,t) as 1 if the kth element of tth vector is defined and
0 otherwise to specify this modification.

Note that these equations are the same as in the original
EM equations if all features are always defined. That is, if
δ(k,t) = 1, for all k and t, then these equations fall back to the
original EM reestimation equations.

In Method 2, the above equations are used to reestimate
the model, which was booted the modeled trained using all-
defined features. Therefore, EM iterations are initialized with
the boot model parameters and P(i,k) are initialized with P(k),
which is the prior for the feature (k) being defined. This prior
is computed over the background model data.

In Method 3, the above equations are used to estimate the
single Gaussian model and to reestimate the models obtained
by splitting this model. A single Gaussian model is booted
using zero mean and unit variance per element and P(i,k) are
initialized with P(k).

5. Experimental Setup

We present results obtained with the proposed modeling
approaches on only one region type, the pause-to-pause
regions with a pause threshold of 500 ms. A subset of NERFs
is described in Table 1. For the chosen pause-to-pause region
type, we have 32 features, which means that we have to model
232 possible defined/undefined pattern labels when the first
modeling method is implemented. Fortunately, the three most
frequent labels represent 86% of the data. Our initial

experiments showed that modeling the data labeled by these
labels gave the best performance. Here, the data for the most
common label (50%) is modeled using 64 Gaussians, the data
for the second most common label (31%) is modeled using 32
Gaussians, and the data for the third most common label (5%)
is modeled using 8 Gaussians.

The scores obtained from different NERF systems are
then combined with a state-of-the-art cepstral-based system
(Section 5.2) to show how much independent information the
NERF system provides with respect to the baseline system.

5.1. Task

The modeling methods described were evaluated on NIST
2003 extended-data speaker recognition task. This is a
detection task that uses data from Switchboard-II phases 2
and 3 databases. The task comprises telephone speech with
about 1500 speaker models and 23,000 test trials. Each
speaker model is trained using approximately 16 minutes of
speech (8 conversation sides) and each test is performed using
approximately 2 minutes of speech (1 conversation side).

For the evaluation, the data was divided into 10
nonoverlapping splits. All the splits have similar amounts of
training and test data. Systems are not allowed to use data
from the split that is being evaluated.

Table 1 Subset of NERFs estimated from pause-to-
pause region

Feature Name Feature description

MEAN_STY_F0_LOG
Log of the mean
stylized f0 in the
region

MAX_STY_F0_LOG
Log of the maximum
stylized f0 in the
region

AVE_Z_PHONE_DUR

Average of the
normalized (by mean
and variance) phone
duration in the
region

AVE_N_PHONE_DUR

Average of the
normalized (by mean
only) phone duration
in the region

AVE_N_VOWEL_DUR

Average of the
normalized (by mean
only) vowel duration
in the region

REGION_LENGTH_LOG Log of the region
length

AVE_Z_VOWEL_DUR

Average of the
normalized (by mean
and variance) vowel
duration in the
region

NUM_V_FRAMES_NORM_LENG
TH

Number of voiced
frames in the region
normalized by the
length of the region

STY_F0_RANGE

Range (log of the
ratio between max
and min values) of
stylized f0 in the

region

MAX_NEG_SLOPE_F0_LOG

Log of the maximum
negative slope of the
stylized f0 in the
region

NUM_NODES_F0_LOG
Log of the number of
nodes in the stylized
f0

NUM_R_FRAMES_NORM_V

Number of rising
frames in the
stylized f0
normalized by the
number of voiced
frames

MAX_NEG_SLOPE_ENERGY_LO
G

Log of the maximum
negative slope of the
stylized energy in
the region

Performance of a system is measured using false

acceptance and false rejection errors. In this paper, we
compare different results using equal error rate (EER), the
point on the detection error tradeoff curve at which the
number of false acceptances equals the number of false
rejections.

5.2. Cepstral-Based System

Our baseline system uses 13 Mel frequency cepstral
coefficients (MFCCs), which are normalized using cepstral
mean removal, and which are concatenated with delta and
delta-delta features. The distribution of features is modeled in
the Gaussian mixture model (GMM) and universal
background model (UBM) framework. We use a 2048-
component GMM as the background model. It is trained
using gender- and handset-balanced data from Switchboard-II
phase 1 corpus. Speaker models are created from the
background model using maximum a-posteriori adaptation
(MAP), in which only the means of Gaussians are adapted.
Verification is performed using the log-likelihood ratio
between the corresponding speaker model and the
background model. During adaptation and verification,
features are normalized for variation due to different
handsets[7]. This system results in an EER of 2.30%.

5.3. Combination Method

The baseline and the NERF systems are combined at score
level by using a neural network combiner (LNKnet [5]). The
combiner is trained using 10-fold cross-validation. In each
fold, the combiner is trained using nine splits and tested on
the remaining split. The combiner is trained using two
classes: true speaker and impostor. In the combination
experiments, the class priors are adjusted to 10 and 1,
respectively.

6. Results

Table 2 shows the performance of NERF systems using
different modeling approaches. First, the table shows our
NERF baseline, which is a GMM trained using only the all-
defined feature vectors. This gives EER=15.0%. When feature
vectors with unknowns are added to the system (row 2a), the
performance improves to 11.57%. In this system, the three

most frequent unknown combinations (around 86% of the
data) are modeled separately (Method 1). This performance
degrades when all the combinations for 99% of the data are
used in the system (Row 2b). The degradation occurs because
additional unknown combinations do not have sufficient data
to model them independently.

This hypothesis can be supported by results of systems
trained using Method 2 (Rows 3a and 3b). Judging from the
comparison of Rows 2a and 3a, where the same amount of
data was used, modeling the three most frequent combinations
separately give similar performance. This performance
improves slightly (Row 3b) with the addition of features for
less-frequent unknown combinations. Thus the second
method of training NERFs overcomes the shortcomings of the
first method by modeling the combinations together in a
single model.

Finally, results show that Method 3 (single GMM trained
using all the data without booting) performs better than the
NERF baseline, but worse than systems trained using Methods
1 and 2. This shows that booting is important for training
single GMM. However, note that this method can be used as a
first system when training on a novel dataset because it does
not require any preprocessing of the data.

Table 2 Performance of pause-to-pause region
features

NERF System Amount
of data

%EE
R

1 Single GMM,
all known elements

32% 15.0

2a Separate GMMs 86% 11.57

2
b

Separate GMMs 99% 12.40

3a Single GMM, retrained EM 86% 11.87

3
b

Single GMM, retrained EM 100% 11.57

4 Single GMM, complete EM 100% 13.57

Table 3 shows performance of the combination of baseline

and different NERF systems. Results show that NERF systems
trained using all the three methods give 14-17% improvement
(significant at 95% confidence level) in EER after
combination. Their performance is also better than the
combination of the GMM baseline with the NERF baseline.

Table 3 Performance of the combination of NERF
systems with Baseline, Baseline + n, where n refers to
the system in row n from Table 2.

System Combination %EER
Baseline 2.30
Baseline + 1 2.07
Baseline + 2a 1.94
Baseline + 3a 1.90
Baseline + 3b 1.94
Baseline + 4 2.00

7. Summary and Conclusions

We have presented nonuniform extraction region features
(NERFs), which model long-term patterns associated with the
speaking style of individual speakers. We described the
modeling issues and proposed three methods to model these
features in the existing framework of GMM.

The first method assumes that features with different
combinations of unknowns must be modeled separately.
Therefore, features for different unknown combinations are
collected and modeled using different GMMs. This
assumption is based on the hypothesis that correlations
among features might be different when some features are
missing, for example, NERFs from voiced and unvoiced
regions where the pitch features will be defined or undefined
respectively. This method requires preprocessing of the data
to create labels for feature vectors, but the modeling requires
no changes to the GMM framework.

The drawback of the first method is that if a data set had a
lot of unknown combinations with few feature vectors per
combination, then the modeling would not be efficient. To
overcome this problem, we propose a second method. Here, a
single GMM is trained using all data. This model is booted
from data with all defined feature elements. This method
models averaged correlations among features when some of
them are missing. However, it is more efficient in modeling
infrequent unknown combinations.

A minor drawback of the second method is that it assumes
that there is sufficient data with all-known vectors to boot the
model. We investigate a third method where a single model is
trained using all data without booting. First, a single Gaussian
model is estimated from the data. Then, split-and-retrain
iterations are used to derive the GMM. This approach does
not require any preprocessing of the data, but it does not give
any improvement over the second method.

Results show that systems based on these methods give
significant improvements over a NERF baseline, which uses
only all-known feature vectors. They also give a significant
reduction in EER when combined with a state-of-the-art
baseline system.

This paper lays the groundwork for modeling NERFs. We
consider the performance of NERFs independently and in
combination with the baseline as very promising. In future
work, we will add more NERFs and model joint region-
feature correlations, and we will also explore other issues,
such as feature selection of NERFs.

8. Acknowledgment

This work was funded by a DoD KDD award via NSF
IRI-9619921. The views herein are those of the authors
and do not reflect the views of the funding agencies.

9. References

[1] D. Reynolds, T. Quatieri, and R. Dunn, “Speaker
Verification Using Adapted Mixture Models,” Digital
Signal Processing, vol. 10, pp.181-202 (2000).

[2] 2001 JHU Summer Workshop Report, SuperSID:
Exploiting high-level information for high-performance
speaker recognition,
http://www.clsp.jhu.edu/ws2002/groups/supersid/supersi

d-final.pdf
[3] D. Reynolds, W. Andrews, J. Campbell, J. Navratil, B.

Peskin, A. Adami, Q. Jin, D. Klusacek, J. Abramson, R.
Mihaescu, J. Godfrey, D. Jones, and B. Xiang, “The
SuperSID Project: Exploiting High-level Information for
High-accuracy Speaker Recognition,” in Proc. IEEE
ICASSP (Geneva), 2003

[4] S. Kajarekar, L. Ferrer, A. Venkataraman, K. Sonmez, E.
Shriberg, A. Stolcke, H. Bratt, and R. R. Gadde, “Speaker
Recognition Using Prosodic and Lexical Features,” in
Proc. IEEE ASRU (St. Thomas, VI), pp. 19-24, December
2003.

[5] LNKNet, MIT Lincoln Laboratory.
http://www.ll.mit.edu/IST/lnknet/

[6] K. Sonmez, E. Shriberg, L. Heck, M. Weintraub,
“Modeling Dynamic Prosodic Variation for Speaker
Verification”, Proc. Intl. Conf. on Spoken Language
Processing, vol. 7, pp. 3189-3192, Sydney, Australia
(1998).

[7] D. A. Reynolds, “Channel Robust Speaker
Verification via Channel Mapping”, Proc. IEEE
ICASSP, vol. 2, pp. 53-56, Hong Kong (2003).

