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Abstract

Speaker diarization is the task of partitioning an inpuéain

into speaker homogeneous regions, or in other words, to de-
termine "who spoke when.” While approaches to this problem
have traditionally relied entirely on the audio stream, dkail-
ability of accompanying video streams in recent diarizatior-

pora has prompted the study of methods based on multimodal
audio-visual features. In this work, we propose the uselmiso
video features based on oriented optical flow histogramsdJs
the state-of-the art ICSI diarization system, we show thgn
combined with standard audio features, these featureimapr
the diarization error rate by 14% percent over an audio-only
baseline.

Index Terms. multimodal, speaker diarization, optical flow,
audio-visual

1. Introduction

The goal of speaker diarization is to partition an inputatne

More recent audio-visual, or multimodal, speaker diariza-
tion work has considered more realistic and subsequenthg mo
challenging datasets, which contain more participantslessl
restrictive scenarios (e.g. participants are free to movardal
the room). Thus far, a range of video features have been ex-
plored. In [4], the authors used video features from diffese
frames to locate regions where they hypothesized the speake
was. In [5], scale-invariant feature transform (SIFT) fees
were extracted over face regions and the mutual information
was computed for the average acoustic energy and grayscale
pixel value variation. In [6], visual focus of attention faees
were used to determine the current speaker. In [7], comgdess
domain video features, specifically average motion vecioes
skin regions, were used to improve upon an audio-only diariz
tion baseline.

In this work, we explore the use of optical flow based fea-
tures, which to our knowledge have not been investigatelddn t
context of speaker diarization. Similar to difference femnand
compressed domain motion vectors, optical flow captures how

into speaker homogeneous speech regions, as shown in Figure images change over time. More specifically, the optical flow

1, where the number of speakers as well as the speaker idsntit
are not known a priori. Speaker diarization has many applica
tions, including speaker adaption for automatic speeabgrae

tion, audio indexing, and generating “more usable trapsors

of human-human speech ... for both humans and machines” [1].
The latter being the objective of the NIST Rich Transcriptio
(RT) evaluations.
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Figure 1: The output of a speaker diarization system segmrat
the input stream by speaker and non-speech (NSP).

Speaker diarization is a task that has been investigated
within the speech community for over eight years, over which
NIST has held eight RT evaluations [1]. Thus far, most daiz
tion work is done using only the audio data. However, with
the increasing ease of capturing and storing data, videotdet
become more readily available and was included for the first
time in the most recent NIST RT 2009 evaluation. However, so
far audio-visual systems have not improved accuracy ower th
audio-only baseline in any NIST RT evaluation.

Initial work on audio-visual speaker localization focused
scenarios containing only 2 participants [2, 3], which often-
tained frontal views of the participants [3]. Both [3] and [2
investigated variants of difference frames, used to captiue
movement occurring in the video.

is an estimation of the 2-D motion field [8]. We derive fea-
tures from histograms of oriented optical flow. These fesgur
are similar to the video features used in [9], which used @udi
visual features for speaker verification.

Like recent work in audio-visual speaker diarization [4, 5,
6, 7], we focus on a realistic meeting scenario where thexe ar
many speakers who were free to move around the room and
generally look at the other participants and not the viden-ca
eras, resulting in many non-frontal facial views. Due toltuk
of frontal facial views, we do not constrain the video featur
to isolate regions of the face and instead extract optical flo
features over the entire frame to capture the participants/e-
ments throughout the body; thereby taking advantage ofamoti
related to gesturing (which is a descriptor of speech [10]i-
thermore, we use histogram based features and thus thase is n
dependency on the location of the motion, which we expect to
be more robust to a speaker moving from one side of a room
to the other during the course of the meeting. We use a multi-
modal diarization system similar to those presented in fif] a
[6] to combine the audio and video modalities and achieved a
14% relative improvement over the audio-only baseline.

This paper is outlined as follows: in Section 2 we describe
our multimodal speaker diarization system, in Section 3 ke p
vide and discuss the experiments and results, and in Settion
we give our conclusions as well as areas of future work.

2. System Description

Similar to previous work [7, 6], we use the ICSI multi-stream
speaker diarization engine to combine the audio and video
modalities.



2.1. Audio Features

We extract Mel-Frequency Cepstral Coefficients (MFCCs) to
describe the audio data. We compute the first 19 MFCCs, which
are computed over a 30 ms window with a 10 ms forward shift.
The MFCC features are extracted using the Hidden Markov
Model Toolkit (HTK) [11]. Since most speaker diarizatiorssy
tems include MFCCs as their primary features, a systemeidain
on MFCC features alone is used as a baseline.

2.2. Video Features
2.2.1. Optical Flow Preliminary Experiment

We initially performed a simple, deterministic experimansee

if the person speaking in a given frame was in fact the most ac-
tive person as determined by the optical flow. We used OpenCV
to compute the Lucas-Kanade optical flow [12] over a 5x5 re-
gion for each 160x120 closeup recording of each of the four

of the audio features, the video features are repeated 4.time

Table 1: Method used to bin orientation of optical flow, where
0 denotes the optical flow orientation, as explained in Sactio
2.2.2.

[ Bin | Condition |
Horizontal —m/6 <0 <7/6,5m/6 <6< Tr/6
. m/6 <6< 7/3,2n/3 <0 <57/6,
Diagonal |- 6 =g < —9x/3, —n/3< 0 < —1/6
Vertical 7/3<6<2n/3, 27/3<0< —m/3

2.3. Multi-Stream Diarization Engine

The diarization engine used in this study has been used in pre
vious multimodal speaker diarization work [7, 6] and is lthse

speakers (sample images from the closeup cameras are shownon the state-of-the-art ICSI diarization system, which és d

in Figure 4 and the data is further described in Section 31d) a
then summed the magnitudes of the optical flow for each frame
of the closeup video recordings. For each frame of speech, we
hypothesized the speaker to be the participant assigndteto t
closeup view with the greatest amount of optical flow. Using
this simple method of determining the speaker, we were cor-
rect 53.5% of the time. This result was promising especially
considering there were four potential speakers. More@amh
decision was done at the frame level and no smoothing was ap-
plied to ensure sequential speech frames were assigned to th
same speaker. Based on the success of this initial experimen
we looked into exploring an optical flow based feature, dpeci
ically normalized weighted optical flow histograms whichlwi

be described below.

2.2.2. \ideo Feature Description

Since the optical flow seemed promising from the preliminary
experiment, we compute a normalized weighted histogram of
the optical flow. By computing the histogram, we capture more
characteristics of the optical flow without constraining fea-
tures to be location dependent. The orientatihis determined
by = tan™'(v/u), whereu is the optical flow along the x-
axis andv is the optical flow along the y-axis. The orientation is
then binned according to the conditions given in Table 1,r&he
the weight is given by the log-magnitude of the optical flow.

The orientation binning was chosen so that left and right
movement would be grouped together as horizontal movement,
up and down movement would be grouped as vertical move-
ment, and diagonal movements would similarly be grouped to-
gether. Based on this binning, each of the three types of move
ment contains one third of the possible optical flow origotet.

Since the sum of the optical flow is such a valuable descrip-
tor for speech, we chose to bin based on the log-magnitude of
the optical flow; thereby giving more weight to regions con-
taining a greater amount of motion. We clip the optical flow
magnitude to suppress the effect of erroneous optical fldw va
ues and found that binning with a weight of the log-magnitude
performed better than the magnitude. Finally, we normaliee
3 bins by the total optical flow log-magnitude; thereby neitag
the percent each bin type had of the total optical flow. We also
include the normalization factor since the total magnitofiie
optical flow has already been shown to be a valuable descripto
of who was speaking.

The video used in this work is sampled at 25 Hz while the
audio features are sampled at 100 Hz. In order to match tae rat

scribed in more detail in [13]. The system performs threenmai
tasks: speech/non-speech detection, speaker segmentatib
speaker clustering, where the latter two tasks are perfiitne
eratively using an agglomerative clustering approach.

An overview of the system is shown in Figure 2. The sys-
tem first separates the speech and non-speech regions. Typi-
cally this is done using Gaussian Mixture Models (GMMs) as
described in [13]. However, in our experiments we use the
reference speech/non-speech to isolate the impact of tlsing
video features. The speech regions are then evaluateeéftioth
segmentation and speaker assignment using a Hidden Markov
Model (HMM) where each state is modeled as a GMM with
a minimum duration constraint of 2.5 seconds. We initially
chooseK clusters, where the number of clusters is equal to the
number of HMM statesK is chosen to be much greater than the
number of speakers. The GMM parameters are initializeda afte
segmenting the data int& uniform regions. Re-segmentation
is performed using Viterbi decoding and the GMMs are re-
trained based on the new segmentation. The clusters arederg
based on the Bayesian Information Criterion (BIC), shown in
Equation (1). More specifically, the two clusters which sfgti
Equation (1) and have the largest difference between thanef
right sides of Equation (1) are merged. In this system, wiven t
clusters are merged the number of parameters for the new clus
ter is equal to the sum of the parameters in the clusters that a
merged which results in the simplified BIC equation shown be-
low.

log p(D|0) > log p(D161) + log p(D2|f2), @
where D, and D, are the data from clusters 1 and2,is the
data fromD; U D-, andé represents the parameters for the re-
spective models [14]. After two clusters are merged, weatpe
the process of retraining the GMMs, re-segmenting the data,
and determining which clusters to merge (assuming Equation
(1) was satisfied), as shown in Figure 2. Once no two clusters
satisfy Equation (1), we output the final segmentation.

Similar to [7] and [6], separate GMMs are trained for the
audio and video features and the combined log-likelihood of
the two streams is defined as

log p(Davup, Dvip|0:i)=(1 — a)logp(Davpl|bi,aup)

+ alogp(Dvipllivip), (2)



whered; avp andf; v p denote the parameters of the GMM
trained on audio features and video features of clustespec-
tively. The combined log-likelihoods are used for segmioma
as well as computing the BIC scores.
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Figure 2: Overview of the multimodal speaker diarizatios-sy
tem that uses both audio and video features.

3. Experiments and Results
3.1. Evaluation Data

We evaluated our system on twelve meetings from the pub-
licly available Augmented Multi-Party Interaction (AMIoc-
pus [15], which is the same subset of meetings used in [7, 6].
Each of the twelve meetings consists of four participans th
were assigned roles (including project manager, marketing
rector, industrial designer, and interface designer) theoto
develop a prototype of a new remote control over multipletmee
ings over the course of a day. Though the scenario is fictifiou
the meetings are unscripted and otherwise natural. The-meet
ings are on average 27 minutes long.

The meetings were recorded in an instrumented meeting
room, as shown in Figure 3, with multiple microphones and
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Figure 3: The floor plan of the meeting room including the
views from the different camera angles. Figure taken froéj.[1

vant to gesturing. Audio data was also recorded using multi-
ple nearfield and farfield microphones. In this work, we ettra
audio features over one farfield microphone. For each of the
meetings, speech, as well as other phenomena includinggdial
acts and head movement, were human annotated.

Figure 4: Screenshots from the closeup view in our dataset.

Figure 5: Screenshots from the left sideview, rear, andtrigh
sideview in our dataset.

3.2. Error Metric

The Diarization Error Rate (DER) defined by NIST [1] is used
to evaluate the performance of the speaker diarizatioresyst

In order to compute the DER, first an optimal one-to-one map-
ping of reference speakers to system output speakers is dete

cameras. Three camera angles were recorded: a closeup view ™" d. The DER is then th £th ker fal |
where the cameras were positioned in the center of the table mined. the IS then the sum or (n€ per Speaker lalse alarm

facing each of the four participants, a side view which tafiic t@me (non-si)le(te]ch t:at the sygéem_fiq%ntified as speeﬁh), miss
captured two participants sitting on the same side of thietab ;[lme. (spgec h't r?t ¢ Ie system |kent| 1€ lgs n.(]z.n-dspee% of ol\(/er
and a rear view which captured all participants in the meetin ap “”?e In Which only one speaker was | entified), and speake
Figures 4 and 5 show sample frames from each of the camera error time (assigning an incorrect speaker to a speech styme

angles. For this study, we used the four closeup cameradecor divideq by the total speech time in an audio file, as shown in
ings. Since we plan to carry out experiments on the farfield Equation (3).
cameras in the future and frontal faces are generally niftleis

from the rear camera, we avoided using face specific features

and instead hoped to capture face and body movement rele-
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3.3. Results

We first evaluated the baseline system, which used only MFCCs
as an input. The number of initial cluste#s, was set to 16 and

the original number of mixtures for each state was 5. These
were the same parameters used in [7, 6] for their audio-only
systems. We then compared the baseline results to that of our
multimodal system. The multimodal system combined the au-
dio and video systems, where the audio features were MFCCs
and the video features were the total log-magnitude offimal

and normalized weighted oriented optical flow histogranrs fo
each closeup video. The number of mixtures for MFCCs was
kept at 5, the number of mixtures for the oriented optical flow
histograms was 10, and from Equation (2) was set to 0.1.
These values were empirically found to do well for our datase
and are similar to the values used in [7] and [6]. The DERs
for the baseline and multimodal systems are shown in Table 2.
Note that we have presented both the time weighted DER of all
of the meetings, where longer meetings account for moreeof th
total time, similar to what was presented in [6] as well asahe
erage DER for all of the meetings, which weights each meeting
equally, and is similar to what was presented in [7].

Table 2: Diarization Error Rates (%) For Baseline and Multi-
modal Systems and the Relative Improvement (%).

Meeting ID Baseline | Multimodal | Relative
DER DER Improve
1S1000a 29.1 29.8 -2.3
1S1001a 30.4 32.1 -5.9
1S1001b 35.6 34.9 2.1
1S1001c 30.7 26.9 12.4
1S1003b 16.0 15.2 5.1
1S1003d 55.2 47.4 14.1
1S1006b 22.9 16.5 27.9
1S1006d 56.5 52.4 7.2
1S1008a 3.1 4.8 -54.3
1S1008b 7.5 7.2 4.0
1S1008c 12.7 12.4 2.1
1S1008d 31.9 11.2 64.8
Time Avg 29.4 25.3 13.9
Meeting Avg 27.6 24.2 12.3

4. Conclusions and Future Work

From Table 2, it is clear that the addition of the weighted ori
ented optical flow histogram features improved the diaidrat
error rate over the baseline system. Although some meetings
did not improve, the relative improvement over all 12 meggin
was 13.9%. These results are better than the best results pre
sented in [7] and [6]. The multimodal result in [7] was 25.31%
DER when averaged across all of the meetings and weighting
each meeting equally. We were able to achieve a 24.2% DER
when using that metric. However, our audio-only baselire sy
tem performed 5% better (absolute) than the one presented in
[7] so it is difficult to identify which differences in the sigsns
resulted in the overall improvement. The best result reugbrt

in [6] was 26.5% DER, where the total DER was weighted by
duration of each meeting. While our work resulted in a 25.3%
DER, the speech/non-speech detectors were not the same be-
tween the two systems, so again it is difficult to pinpoint tvha
caused the improvement. Nevertheless, it is clear thatsbel
optical flow based features improved diarization resules @n

audio-only baseline.
In the future we plan to investigate how the normalized

weighted oriented optical flow histogram features fare i th

rear camera setting. In order to do so, we must first reliably
track the participants throughout the meeting. We also @oul
like to more closely investigate the video features to see ho
they would perform in speech/non-speech detection asshis i
area of improvement for speaker diarization systems anddvou
give us more insight into useful features.
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