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ABSTRACT

Accurate modeling of speaker clusters is important in the task
of speaker diarization. Creating accurate models involvesboth
selection of the model complexity and optimum training given
the data. Using models with fixed complexity and trained
using the standard EM algorithm poses a risk of overfitting,
which can lead to a reduction in diarization performance. In
this paper a technique proposed by the author to estimate the
complexity of a model is combined with a novel training al-
gorithm called “Cross-Validation EM” to control the number
of training iterations. This combination leads to more robust
speaker modeling and results in an increase in speaker diariza-
tion performance. Tests on the NIST RT (MDM) datasets for
meetings show a relative improvement of 10.6% relative on
the test set.

Index Terms— Speaker Diarization, speaker segmenta-
tion and clustering, complexity selection, cross-validation EM
training.

1. INTRODUCTION

The task of speaker diarization involves the automatic seg-
mentation and clustering of acoustic data into speakers, at-
tempting to answer the question “who spoke when?” in an au-
dio recording. It is usually done so without any prior informa-
tion about the number of speakers or their identities. Agglom-
erative clustering is the most commonly used technique and
is used in the system presented in this paper [1]. The system
starts by creating many clusters from the input data, which
are modelled using Gaussian Mixture Models (GMM), and
then iteratively merges the closest pair of clusters (according
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to some defined metric) until a stopping criterion indicates
that the optimum number of clusters has been reached. The
GMM is trained using the Expectation Maximization (EM)
algorithm [2]. In standard implementations of this algorithm
([3], [4]) the model complexity is chosen independently of the
amount or nature of the acoustic data to be modeled and us-
ing a fixed number of EM iterations. Doing so, it is easy to
cause the models to overfit to the data resulting in errors when
comparing pairs of clusters. This is particularly the case when
little data is available for training.

Several methods have been proposed to solve both of these
problems. Methods such as the Bayesian Information Crite-
rion (BIC) [5] or the Minimum Description Length (MDL) [6]
for model complexity selection Data driven techniques such
as cross-validation and bootstrapping [7] have been used for
training. These methods are not necessarily the best solutions
for speaker diarization. On one hand, BIC and MDL usually
carry a large computational cost. On the other hand, the use
of these algorithms for training is prone to instabilities in the
mixtures placement when little training data is available.

In this paper we apply a recently proposed iterative train-
ing algorithm called Cross-Validation EM (CV-EM) to the
model training of speaker diarization for meetings. CV-EM
is introduced by T. Shinozaki in [8] for robust model training
and applied to the task of large vocabulary speech recognition.
CV-EM performs an iterative EM-like training where multi-
ple models are trained on subsets of data. The portion of the
data that is held out in estimating the cross validation model is
used to determine whether to continue or stop training. This
method is combined with a cluster complexity algorithm [9]
to obtain robust models.

In section 2 we review the speaker diarization system used
in this work. Then, in section 3 we describe the model com-
plexity algorithm and in 4 we explain the CV-EM training
algorithm in detail. Section 5 describes experiments to show
the performance of these algorithms, and section 6 concludes.



2. AGGLOMERATIVE SPEAKER DIARIZATION
SYSTEM

As explained in [1], the speaker diarization system is based
on an agglomerative clustering technique. It initially splits the
data intoK clusters (whereK must be greater than the num-
ber of speakers and is chosen using the algorithm presented
in [9]), and then iteratively merges the clusters (according to
the∆BIC metric described by [5] and modified by [3]) until a
stopping criterion is met. Each cluster is modeled via a Gaus-
sian Mixture Model (GMM) of variable complexity, chosen
automatically.

The system modified for this paper works as follows:

1. When multiple channels are available, acoustic beam-
forming is used to combine the channels into a single
“enhanced” channel.

2. Run speech/non-speech detection to eliminate non-speech
regions and then extract acoustic features.

3. Estimate the number of initial clustersK and create
cluster models. The complexity of the models is de-
termined by the algorithm explained in section 3.

(a) Run a Viterbi decode to resegment the data and re-
train the models using the CV-EM algorithm pre-
sented in 4. Iterate between segmentation and
training until the segmentation stabilizes.

(b) Select the cluster pair with the largest merge score
(based on∆BIC) that is> 0.0.

(c) If no such pair of clusters is found, stop and out-
put the current segmentation.

(d) Merge the pair of clusters found in step (b). The
models for the individual clusters in the pair are
replaced by a single, combined model and its com-
plexity is recomputed.

(e) Go to step (a).

This system does not require any external training data
and has been developed with the goal of robustness to changes
in the acoustics of the data, thus allowing it to easily port to
new acoustic domains.

3. MODEL COMPLEXITY SELECTION

The acoustic models used to represent each cluster are a key
part of the agglomerative clustering process. On the one hand,
comparing the models is how it is decided whether two mod-
els belong to the same cluster, while on the other hand, the
models are used in the decoding process to redistribute the
acoustic data into the different clusters. When comparing two
models via∆BIC, if the models are too general, they tend to
over-merge. If the models are too specific they under-merge.
Therefore it is important to find the optimal number of mix-
tures to use, i.e. the model complexity.

We presented an algorithm in [9] that selects the number
of mixtures based on the number of data frames assigned to
the cluster. In the current work, we combine this approach
with a variation of EM training in an attempt to obtain the
optimum cluster models. The algorithm works as follows:
whenever there is a change in the amount of data assigned to
a cluster (normally due to a segmentation step), the number
of acoustic frames that are assigned to the model is used to
determine the new number of mixtures in the GMM using:
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where the number of Gaussian mixtures to model clusteri at
iterationj (M j

i ) is determined by the number of frames be-
longing to that cluster at that time (N

j

i ) divided by the Cluster
Complexity Ratio (CCR), which is a constant value across all
meetings.

When the desired model complexity changes, the new gaus-
sians are created by either splitting the mixtures with largest
weight (whenM j

i > M
j−1

i ) or forgetting the current model
and training it from “scratch”.

4. CROSS-VALIDATION SPEAKER MODEL EM
TRAINING

The EM algorithm is the most used iterative training method
for training models that includes hidden variables. It has the
disadvantage that there is no mechanism to avoid overfitting
of the model to the data. As a result, the algorithm is some-
times unstable and can lead to overtraining depending on the
structure of the models, especially for the cases when small
training data is available.

This often happens when training Gaussian Mixture Mod-
els (GMM) as they are prone to instability. For example, a
two-mixture Gaussian distribution gives large likelihoods for
training data if one of the Gaussians covers only a single data
point (and has a very small variance) and the other Gaussian
spans the rest of the data points. The same phenomenon can
occur, when the model trains too much to the data, losing
generality. Therefore, it is important for the EM training to
find the optimal number of iterations. However, the optimal
number of iterations depends on the data and it is difficult to
predict.

For these reasons we are experimenting with a new train-
ing algorithm called cross-validation EM (CV-EM), which is
presented by T. Shinozaki in [8]. CV-EM uses cross-validation
in the iterative process of EM, addressing the problems of
overfitting and potential local maxima.

Figure 1 shows the CV-EM procedure. The system starts
from an initial single model to be trained and finishes also
with a single model. On the initial E-step of the EM pro-
cessing the training data is split into N partitions as evenly
as possible (in the speaker diarization using GMM models,
each consecutive frame is assigned to a different partitionse-
quentially until all frames have been assigned). Then the con-



Fig. 1. Cross-validation EM training algorithm

ditional probability of each frame to each Gaussian mixture
in the initial model is computed. This process is identical to
the initial E-step in the technique called parallel EM training
[10].

In the following M-step, each modelMi is reestimated us-
ing the sufficient statistics computed for all partitions except
for SSi, which is kept as cross-validation data (differing from
the parallel-EM procedure). In the CV-EM algorithm, once
all the N models have been reestimated, new conditional prob-
abilities are computed for the frames in each partitionSSi

using modelMi. As data in partitionSSi was not involved
in the reestimation of the parameters inMi, the accumulated
likelihood from all partitions can be used as a check for con-
vergence, avoiding overfitting to the data. Once convergence
is reached, the current sufficient statistics computed for each
of the subsets are used to derive a single output model.

In [8] CV-EM is applied to speech recognition using a
fixed number of (five) iterations. In speaker diarization, con-
vergence based on an increase in the likelihood is preferredin
order to bound the likelihood variation between iterationsof
all models and therefore make them more comparable. In the
implementation here, a likelihood increase of∆Linc = 0.1%
is used.

The advantages of the CV-EM algorithm are threefold.
While the EM algorithm iterates the E-step and the M-step
using the same data, CV-EM uses different data subsets so
that there is no overlap. In this way, CV-EM is more sta-
ble than EM with respect to overtraining since distributions
highly specialized to a particular data point cannot produce a
large likelihood during training. Another advantage of CV-
EM is that the likelihood obtained in the E-step is more reli-
able than the optimistic likelihood in the EM training and can
be used as a termination criterion for the training iteration.
Because the likelihood is estimated using cross-validation,
it decreases when the model looses generality. Therefore, a
good termination criterion is to stop iterating when the like-
lihood decreases. Finally, the increase in computational cost

of the CV-EM is small as only the sufficient statistics accu-
mulation needs to be repeated for each of the cross-validation
models.

5. EXPERIMENTS

To test the effectiveness of the proposed algorithms we use
the ICSI speaker diarization system as described in section
2. As a baseline system we refer to the submission used in
the RT06s evaluation, without the use of any purification [9],
using linear cluster initialization and only acoustic MFCC-
19 features. In this baseline system 5 iterations of standard
EM was performed and model complexity was fixed to 5 ini-
tial Gaussians per cluster, with complexity accumulated when
two clusters merge.

The development data is composed of the NIST RT02s,
RT04s and RT05s [11] conference room datasets (26 meeting
excerpts) and the test set is the RT06s eval data (8 meetings).
Experiments have been run on the Single Distant Microphone
(SDM) and Multiple Distant Microphone (MDM) tasks. The
metric used in all cases is the Diarization Error Rate, defined
by NIST as the percentage of misassigned time.
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Fig. 2. Model complexity selection DER changing the CCR
parameter

Figure 2 shows the effect of the Cluster Complexity Ratio
(CCR) when performing model complexity selection on the
development set. We can see that for both SDM and MDM
cases the optimum value is located atCCR = 7. Using this
optimum complexity setting we now substitute the standard
EM training by the CV-EM algorithm. In order to deter-
mine the optimum number of cross-validation models used in
CV-EM, we plot the DER for the range from 15 to 45 cross-
validation models in figure 3.

The best average DER is obtained with 25 cross-validation
models, but between 20 and 45 cross-validation models the
differences in the average are less than 1%, which shows the
robustness of the algorithm. With 15 models (or fewer), the
errors grow as the data differs too much between models and
therefore the training of the cross-validation models doesn’t
converge. In fact, each model differs from the others in 1/(N-
1) parts of the total number of frames, which becomes impor-
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Fig. 3. DER for different number of cross-validation models

tant as N decreases below 15. This increase can also be due
to the fragmentation of the training data being used.

Compared to the standard EM training (doing a fixed 5 it-
erations per training) now the training applies more iterations
to models whose complexity has changed (for example after
a merge) and does the minimum training for models contain-
ing almost the same data as in the previous iteration. Given
that only a few models change every iteration, this brings a
general speed-up to the system.

System DER Devel DER Test
SDM MDM SDM MDM

Baseline 20.60% 19.04% 24.54% 26.50%
Complex select 18.61% 18.49% 28.84% 23.68%
CV-EM 19.58% 19.08% 22.70% 26.74%
Complex + CV-EM 18.78% 16.92% 25.00% 23.68%

Table 1. Comparison of the DER for the different techniques
presented

Table 1 summarizes the results obtained on the develop-
ment and test sets. Compared to the baseline both methods in-
dividually perform in mixed ways in the different tasks. Com-
plexity selection outperforms the baseline in all except ontest
SDM, where the decrease in performance is mostly due to
two shows from the same meeting room with an increase in
error of over 80%. The CV-EM alone works well in general
for SDM and is comparable to the baseline for MDM. When
combining both methods the biggest improvements are in the
MDM case, improving by 11.3% relative on the dev set and
10.6% on the test set. The SDM task also improves by 8.8%
relative in the dev set but is slightly worse for the eval set.

6. CONCLUSIONS

In this paper two newly proposed techniques are presented
to obtain robust speaker models for the task of speaker di-
arization. When doing speaker diarization via agglomera-
tive clustering we need to robustly model the speakers given
varying amounts of data, thus the complexity of each speaker
model and its optimum training become important decisions.
A simple (yet effective) cluster complexity algorithm based

on the data size is combined with a recently proposed cross-
validation EM training algorithm that does an ML training
of the data while avoiding overfitting. We tested these two
techniques using an extensive development set composed of
26 meeting excerpts from the NIST RT evaluations and a test
set with 8 excerpts and find a relative 11.3% improvement on
the dev set and 10.6% on the eval set, for the multiple distant
microphones (MDM) case.
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