A Parallel Meeting Diarist

Gerald Friedland
International Computer
Science Institute
1947 Center Street, Suite 600
Berkeley, CA 94704-1198
fractor@icsi.berkeley.edu

ABSTRACT

The following article presents an application for browsing
meeting recordings by speaker, keyword, and pre-defined
acoustic events (e.g., laughter), which we call the Meeting
Diarist. The goal of the system is to enable browsing of
the content with rich meta-data in a graphical user inter-
face (GUI) shortly after the end of meeting, even when the
application runs on a contemporary laptop. We therefore de-
veloped novel parallel methods for speaker diarization and
speech recognition that are optimized to run on multicore
and manycore architectures. This paper presents the appli-
cation and the underlying parallel speaker diarization and
speech recognition realizations.

Categories and Subject Descriptors

H5.5 Information Interfaces and Presentation]: Sound
and Music Computing—=Signal analysis, synthesis, and pro-
cessing; H5.4 [Information Systems Applications|: Nav-
igation

General Terms

Experimentation

Keywords

parallel computing, speaker diarization, speech recognition,
video navigation, meetings, rich transcription

INTRODUCTION

Go to any meeting or lecture with the younger genera-
tion of researchers, business people, or government, and you
will see a laptop or smartphone at every seat. Kach lap-
top and smartphone is capable not only of recording and
transmitting the meeting in real time, but also of advanced
analytics such as speech recognition and speaker identifica-
tion. These advanced analytics enable speech-based meta-
data extraction that can be used to browse meeting record-
ings by speaker, keyword, and pre-defined acoustic events

1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SSCS’10, October 29, 2010, Firenze, Italy.

Copyright 2010 ACM 978-1-4503-0162-6/10/10 ...$10.00.

Jike Chong
UC Berkeley
Dept. of EECS
Berkeley, CA 94720

jike@berkeley.edu

57

Adam Janin
International Computer
Science Institute
1947 Center Street, Suite 600
Berkeley, CA 94704-1198
janin@icsi.berkeley.edu

(e.g., laughter). The Meeting Diarist project aims to pro-
vide an interactive application running on your own laptop
or smartphone that enables browsing, searching, and index-
ing of a meeting. Our target application is to provide an
alternative to manual note-taking in multiparty meetings,
providing additional functionality to what is available in the
typical set of notes. In particular, since spoken language in-
cludes significant useful information besides the words, e.g.,
speaker identity and emotional affect (significantly cued by
speaker intonation), enabling search through the complete
audio record can be much more useful than a simple tran-
scription.

The two major components of the Meeting Diarist are au-
tomatic speech recognition, which computes what was said,
and speaker diarization, which computes who said it. Fig-
ure 1 shows the overall architecture of the system. The
combination of the two allow users to search for relevant
sections without having to review the entire meeting—for ex-
ample, “What did the boss say about the timeline?” Both
components are very expensive computationally. The best
systems typically run on large clusters and are much slower
than real-time (e.g., a one hour meeting might take 50 hours
to process). By exploiting recent advances in parallel hard-
ware and software, we can dramatically decrease the amount
of time required to process a meeting. This article presents
the main concepts used to parallelize state-of-the-art spea-
ker diarization and speech recognition using both CPU and
GPU parallelism.

2. RELATED WORK

There have been many attempts to parallelize speech reco-
gnition on emerging platforms, leveraging both fine-grained
and coarse-grained concurrency in the application. Fine-
grained concurrency was mapped onto five PLUS processors
with distributed memory in [7] with some success. The im-
plementation statically mapped a carefully partitioned re-
cognition network onto the multiprocessors, but the 3.8 x
speed up was limited by runtime load imbalance, which
would not scale to 30+ multiprocessors. The authors of
[5] explored coarse-grained concurrency in large vocabulary
conversational speech recognition (LVCSR) and implemented
a pipeline of tasks on a cellphone-oriented multicore ar-
chitecture. [10] proposed a parallel LVCSR implementa-
tion on a commodity multicore system using OpenMP. The
Viterbi search in [10] was parallelized by statically partition-
ing a tree-lexical search network across cores. The parallel
LVCSR system proposed in [6] uses a weighted finite state
transducer (WFST) and data parallelism when traversing

Speaker
Diarization

"who spoke when"
"who said what"

Speaker
Attribution

GUI
Retrieval, Search

Audio
Signal

"what was said"

Speech
Recognition

Figure 1: Overview diagram of the meeting diarist.

the recognition network. Prior work such as [4, 1] lever-
aged manycore processors and focused on speeding up the
compute-intensive phase (i.e., observation probability com-
putation) of LVCSR on manycore accelerators. Both [4]
and [1] demonstrated approximately 5x speedups in the
compute-intensive phase and mapped the communication
intensive phases (i.e., Viterbi search) onto the host proces-
sor. This software architecture incurs significant penalty
for copying intermediate results between the host and the
accelerator subsystem and does not expose the maximum
potential of the performance capabilities of the platform.
Recently, some progress has been made on parallelizing
the communication intensive phase. A complete data paral-
lel LVCSR on the GPU with a LLM-based recognition net-
work was presented in [3]. Parallel WFST-based LVCSR is
also implemented on CPU and GPU in [9, 2]. [9] compared
sequential and parallel implementations of the WFST-based
recognition network representations. This paper contrasts
the implications of using different recognition network rep-
resentations on the GPU. In the following sections, we will
briefly introduce the key differences in the recognition net-
work representations as well as outline our implementation
strategies to arrive at efficient parallel implementations.
Despite the initial successes of prior work in parallelizing
speech recognition, at the time of writing this article, the
authors were not able to find any prior work on the paral-
lelization of a state-of-the-art speaker diarization system.

3. SPEAKER DIARIZATION

The goal of speaker diarization is to segment a single or
multi-channel audio recording into speaker-homogeneous re-
gions with the goal of answering the question who spoke
when? using virtually no prior knowledge of any kind (such
as number of speakers, the words spoken, the language used,
etc.). In practice, a speaker diarization system has to answer
not just one, but two questions:

e What are the speech regions?
e Which speech regions belong to the same speaker?

Therefore, a speaker diarization system conceptually per-
forms three tasks: First, discriminate between speech and
non-speech regions; second, detect speaker changes to seg-
ment the audio data; and third, group the segmented re-
gions together into speaker-homogeneous clusters. While
this could in theory be achieved by a single clustering pass,
in practice many speaker diarization systems use a speech
activity detector as a first processing step and then perform
speaker segmentation and clustering in one pass as a second
step. Other pieces of information, such as the number of
speakers in the recording, are extracted implicitly.

58

Component/Runtime 1 CPU | 8 CPUs+GPU
Find & Merge Best Pair 0.372 0.04
Re-training/-alignment 0.168 0.01
Everything else 0.06 0.02
Total 0.6 0.07

Table 1: Runtime distribution of the ICSI Speaker
Diarization System. Runtimes are given as x real-
time, e.g. 0.1 means that 10 minutes audio take 1
minute of processing.

We chose to parallelize the ICSI speaker diarization en-
gine [8].

The result of the algorithm consist of a segmentation of
the audio track with k clusters and an audio GMM for each
cluster, where k is assumed to be the number of speak-
ers. The output of a speaker diarization system consists of
meta-data describing speech segments in terms of starting
time, ending time, and speaker cluster name. This output is
usually evaluated against manually-annotated ground truth
segments. A dynamic programming procedure is used to
find the optimal one-to-one mapping between the hypothe-
sis and the ground truth segments so that the total over-
lap between the reference speaker and the corresponding
mapped hypothesized speaker cluster is maximized. The
difference is expressed as Diarization Error Rate, which is
defined by NIST'. The Diarization Error Rate (DER) can
be decomposed into two components: 1) Speech/non-speech
error (speaker in reference, but non-speech in hypothesis, or
speaker in hypothesis, but non-speech in reference), and 2)
speaker errors (mapped reference is not the same as hypoth-
esized speaker).

The Speaker Diarization System used for these experi-
ments has competed in the NIST evaluations of the past
several years and established itself well among state-of-the-
art systems®. The baseline single-distant microphone sys-
tem as discussed here and presented in the NIST RT ’07
evaluation, results in a DER of 21.03 %.

3.1 Parallel Implementation

The goal for parallelizing speaker diarization was to in-
crease the speed without harming the accuracy of the sys-
tem. We parallelized about 10k lines of code and brought
down the runtime from 0.6 X realtime to 0.07 X realtime on
an 8-core Intel CPU with an NVidia GTX280 card without
affecting the accuracy. Using GPU parallelism has the ad-
vantage of being able to use fine-grain parallel resources on
many cores. However, the cores are less powerful and im-
plementation restrictions, such as the lack of 10 operations
and operating system calls, making it challenging to port
code to a GPU. CPU parallelism on the other hand is eas-
ier to implement but there are significantly fewer cores and
the current software solutions for implementing CPU paral-
lelism do not allow for the same level of fine granularity as
GPU tools. Therefore our solution is a hybrid and with two
key implementation decisions that resulted in the speedup:

"http:/ /www.itl.nist.gov/iad /mig/tests/rt/2003-
spring/index.html

2NIST rules prohibit publication of any rankings. Please
refer to the NIST website for further information:
http://www.itl.nist.gov/iad /mig/tests/rt/

Recognition Network

Acoustic
Model

Pronunciation
Model

Language
Model

Speech Word

Sequenc
e

Voice
Input

Speech
Feature
Extractor

Inference
Engine

es

Inference Engine: Beam Search with Graph Traversal

Iterative through inputs
one time step at a time
()

]
11

In each iteration,
perform beam search
algorithm steps

In each step, consider
alternative interpretations

J

Figure 2: Decoder Architecture as described in Section /.

1. Gaussian Mixture Model Training and BIC calculation
is CPU parallelized. Each GMM is trained on a differ-
ent CPU and each BIC comparison is performed in a
different thread. The overall speed up is about a factor
of five.

2. Calculation of the log-likelihoods is parallelized on the
frame-level by creating one NVidia CUDA (Compute
Unified Device Architecture) thread per frame. This
resulted in near constant time calculation of the log-
likelihoods, since one core handles several threads con-
currently. Practical experiments showed that the run-
time is almost constant for up to 84,000 frames or 14
minutes of audio data. Table 1 compares the runtimes
of the different components.

4. AUTOMATIC SPEECH RECOGNITION

We implemented a data-parallel automatic speech reco-
gnition inference engine on the NVIDIA GTX280 graph-
ics processing unit (GPU), and achieved over 10 x speedup
compared to single instruction, multiple data (SIMD) opti-
mized sequential implementation on a single core on an In-
tel core i7 CPU. It was important to expose the inner most
level of parallelism in the application that describe the thou-
sands of alternative interpretations for conducting design
space exploration. With the proper software architecture,
our implementation has less than 8 % sequential overhead,
which promises more speedup on future, more parallel plat-
forms [9]. Our parallelization of ASR involved three steps:
description, architecting, and implementation.

In the description step, we exposed fine-grained paral-
lelism by describing the operations of the ASR application.
The algorithm structure of the inference engine is illustrated
in Figure 2. The Hidden Markov model (HMM) based in-
ference algorithm dictates that there be an outer iteration
processing one input feature vector at a time. Within each
iteration, there is a sequence of algorithmic steps implement-

59

Avg. # of Active States | 32820 | 20000 | 10139 | 3518
WER 41.6 41.8 42.2 | 44.5
Sequential 4.36 3.17 2.29 1.20

RTF | Multicore 1.23 0.93 0.70 0.39
Manycore 0.40 0.30 0.23 | 0.18

Table 2: Accuracy, word error rate (WER), for var-
ious beam sizes and corresponding decoding speed
in real-time factor (RTF)

ing maximal-likelihood inference process. The parallelism of
the application is inside each algorithmic step, where the in-
ference engine keeps track of thousands to tens of thousands
of alternative interpretations of the input waveform.

In the architecting step, we defined the design spaces to
be explored. We made a design decision to implementing all
parts of the Viterbi search algorithm on the GPU: Current
GPUs’ accelerator subsystems are controlled by a CPU over
the PCle data bus. With close to a TeraFLOP of comput-
ing capability on the GPUs, moving operands and results
between CPU and GPU can quickly become a performance
bottleneck. In the inference engine, there is a compute inten-
sive phase and a communication-intensive phase of execution
in each inference iteration. The computation-intensive phase
calculates the sum of differences of a feature vector against
Gaussian mixtures in the acoustic model and can be read-
ily parallelized. The communication intensive phase keeps
track of thousands of alternative interpretations and man-
ages their traversal through a complex finite state transducer
representing the pronunciation and language models. While
we achieved 17.7 x speedup for the computation-intensive
phase compared to sequential execution on the CPU, the
communication-intensive phase is much more difficult to par-
allelize and received a 4.4 x speedup. However, because the
algorithm is completely implemented on the GPU, we are
not bottlenecked by the communication of intermediate re-
sults between phases over the PCl-express data bus, and
have achieved a 11.3 X speedup of the overall inference en-
gine.

In the implementation step, we leveraged various hard-
ware and system support infrastructure to construct efficient
implementations. The two most important implementation
optimizations were:

1. Leveraging fast hardware atomic operation support:
The inference process is composed of data-parallel graph
traversals on the recognition network. The graph traver-
sal routines execute in parallel on difference cores and
frequently have to update the same memory location.
This causes race conditions as the same piece of data
must be read and conditionally written by multiple
instruction streams at the same time. The race condi-
tion can be resolved using a sequence of data-parallel
algorithmic steps in the application software or by us-
ing hardware-based atomic operation support. When
leveraging hardware-based atomic operation support,
however, the operations must be carefully managed as
atomic operations to the same memory address are se-
quentialized. We leverage hardware-atomic operation
support at two levels, the core-level and the chip-level,
to avoid significant sequentialization of atomic opera-
tions.

Applet Viewer: jokeomat Jokeomat

066 Video 000 Fier

Filter by Keywords:

cache
= e
oK Clear

Filter by Person:

™ clus_8

™ clus_10

™ clus_2

™ clus_0

W% H0

™ clus_3 &
» @ <) Y
006 Navigation
Dialog

e

Applet started.

23

SPEPLE]

Figure 3: Interface of the Meeting Diarist.

2. Constructing runtime data buffers to maximally reg-
ularize data access patterns: The recognition network
is an irregular network and the traversal through the
network is guided by user input available only at run-
time. In each iteration of the inference engine, to max-
imally utilize the memory load and store bandwidth,
we gather the data to be accessed during the itera-
tion into a consecutive vector acting as runtime data
buffers, such that the algorithmic steps in the iteration
are able to load and store results one cache line at a
time. This maximizes the utilization of the available
data bandwidth to memory.

5. THE APPLICATION

Figure 3 shows a current version of the Meeting Diarist.
The speaker diarization output and the speech recognition
output are combined with the audio file into a GUI. We
expect the Meeting Diarist to replace a typical YouTube
video/audio player. The browser shows either a video or
hand-selected images of the speakers and allows play and
pause, as well as seeking to random positions. The naviga-
tion panel on the bottom shows iconized frames of a video or
the speaker images. It allows a user to directly jump to the
beginning time of either a dialog element. When acoustic
event detection is used in addition, these events can serve as
segement boundaries for further navigation elements, e.g.,
laughter for funny remarks. Also, the current dialog ele-
ment is highlighted while the show is playing. In order to
make navigation more selective, the user can deselect one
or more speakers and select dialog elements by keyword as
determined by the speech recognizer.

6. CONCLUSIONS AND FUTURE WORK

This article presents a speech-based Meeting Diarist and
discusses how low-latency meeting analysis is made possible
through novel hybrid CPU and GPU parallelization strate-
gies for speaker diarization and speech recognition. Paral-
lelism can be leveraged for fast-response (low-latency) on
different levels, especially in speaker diarization. The train-
ing of Gaussian Mixture Models, for example, primarily re-
quires matrix computation. If matrix computation is sped

60

up by parallelism, more training can be run in the back-
ground at reduced wait times, resulting in both higher accu-
racy and lower latency. Also, giving models more iterations
often leads them to converge with even less data, which also
reduces latency. Automatic Speech Recognition (ASR) is
an application that consistently benefits from more power-
ful computation platforms. With the increasing adoption of
parallel multicore and manycore processors, we see signifi-
cant opportunities for speech recognition in increasing reco-
gnition accuracy, increasing batch-recognition throughput,
and reducing recognition latency. Here we have presented
our on-going work on these directions, focusing on the op-
portunities and challenges for parallelization.

Acknowledgments

This research is supported by Microsoft (Award # 024263)
and Intel (Award # 024894) funding and by matching fund-
ing by U.C. Discovery (Award # DIG07-10227).

7. REFERENCES

[1] P. Cardinal, P. Dumouchel, G. Boulianne, and
M. Comeau. GPU accelerated acoustic likelihood
computations. In ISCA Interspeech, 2008.

[2] J. Chong, E. Gonina, Y. Yi, and K. Keutzer. A fully
data parallel WFST-based large vocabulary
continuous speech recognition on a graphics processing
unit. 10th Annual Conference of the International
Speech Communication Association (InterSpeech),
September 2009.

[3] J. Chong, Y. Yi, A. Faria, N. Satish, and K. Keutzer.
Data-parallel large vocabulary continuous speech
recognition on graphics processors. Proceedings of the
1st Annual Workshop on Emerging Applications and
Many Core Architecture, pages 23-35, June 2008.

[4] P. R. Dixon, T. Oonishi, and S. Furui. Fast acoustic
computations using graphics processors. In IEEE
ICASSP, Taipei, Taiwan, 2009.

[5] S. Ishikawa, K. Yamabana, R. Isotani, and
A. Okumura. Parallel LVCSR algorithm for
cellphone-oriented multicore processors. In IEEFE
ICASSP, Toulouse, France, 2006.

[6] S. Phillips and A. Rogers. Parallel speech recognition.
Intl. Journal of Parallel Programming, 27(4):257-288,
1999.

[7] M. Ravishankar. Parallel implementation of fast beam
search for speaker-independent continuous speech
recognition. Technical report, Indian Institute of
Science, Bangalore, India, July 1993.

[8] C. Wooters and M. Huijbregts. The ICSI RT07s
speaker diarization system. In Proceedings of the Rich
Transcription 2007 Meeting Recognition Evaluation
Workshop, 2007.

[9] K. You, J. Chong, Y. Yi, E. Gonina, C. Hughes,

Y. Chen, W. Sung, and K. Keutzer. Parallel

scalability in speech recognition: Inference engine in

large voc abulary continuous speech recognition.

(6):124-135, November 2009.

K. You, Y. Lee, and W. Sung. OpenMP-based parallel

implementation of a continous speech recognizer on a

multi-core system. In IEEE ICASSP, Taipei, Taiwan,

20009.

(10]

