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ABSTRACT

This work looks at the impact of automatically predicted com-
mas on part-of-speech (POS) and name tagging of speech
recognition transcripts of Mandarin broadcast news. There
is a significant gain in both POS and name tagging accuracy
due to using automatically predicted commas over sentence
boundary prediction alone. One difference between Mandarin
and English is that there are two types of commas, and experi-
ments here show that, while they can be reliably distinguished
in automatic prediction, the distinction does not give a clear
benefit for POS or name tagging.

Index Terms— natural language, speech recognition

1. INTRODUCTION

As large vocabulary automatic speech recognition (ASR) tech-
nology has dramatically improved in the past few years, it
is now possible to explore language processing on speech
sources as well as text. Information extraction and summa-
rization of broadcast news is of particular interest, because of
the large number of such information sources available and
the generally higher recognition accuracy for news sources
(when compared to other domains).

One of the key differences between speech and text sources,
other than the potential for transcription errors, is that typi-
cal ASR systems do not output punctuation cues, which are
used in most text processing systems. In [1], researchers from
BBN showed that missing commas can have a dramatic im-
pact on information extraction performance compared to us-
ing hand-transcribed commas, with performance losses typi-
cally bigger than that for moving from reference to automatic
sentence segmentation (for a range of word error rates on En-
glish news). In the current work, we confirm these results for
Mandarin and further look at how much performance can be
recovered using automatically predicted commas. We exam-
ine name tagging, as in the BBN study, but also look at part-
of-speech tagging which benefits name tagging (and other
NLP tasks) as a pre-processing step. In addition, since the
role of the English comma is split in Chinese to distinguish
commas separating words in a list (caesura) from other uses,
we consider the question of whether the distinction between
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the two different comma types in Mandarin can be reliably
predicted and whether it is useful for the two tagging tasks.

The overall system architecture used here involves run-
ning automatic speech recognition, then punctuation predic-
tion, then part-of-speech tagging, and finally name tagging.
In the next sections, we describe the baseline components,
the corpora and evaluation paradigm used in the studies, ex-
perimental results on punctuation prediction and its impact on
the tagging tasks, and finally conclude with a summary of the
key findings.

2. COMPONENT SYSTEMS

The speech recognition system used in this work is a state-of-
the-art system, based on the SRI Decipher recognizer [2] and
trained/tuned specifically for the Mandarin broadcast news
task. Training texts for the system from a variety of sources
were automatically word-segmented, using a maximum n-gram
probability criterion as in [3] and using all punctuation marks
as delimiters during segmentation. The top 60k words were
used as the decoding vocabulary, which includes several thou-
sand frequent Chinese person names. The recognizer com-
bines cepstra, pitch, and neural network phone posteriors as
features, and uses MPE training, cross-system adaptation, and
a 5-gram mixture language model with components from 9
separate text sources. On the broadcast news development set
used in these experiments, character error rate is 5.6%.

We utilized two part-of-speech taggers. The first is a Viterbi
tagger that builds on the tagger developed in [4] that uses tri-
gram transition probabilityP (Ti|Ti−1Ti−2) and trigram emis-
sion probabilityP (Wi|TiTi−1), whereTi andWi represent
thei-th tag and word. When a word was not observed during
training (unknown word), it estimates the emission probabil-
ity as a weighted sum ofP (Sk

i |TiTi−1), whereSk
i is thek-th

suffix in wordWi. When applied to the LDC Chinese Tree-
bank 5.2, the tagger obtained a tagging accuracy of 93.6%
(69.2% on unknown words). However, the accuracy of the
tagger was improved to 94.5% (76.8% on unknown words) by
enriching the context model in two ways: the emission proba-
bility is replaced byP (Wi|TiTi−1)

1
2 ×P (Wi−2|Ti−2Ti−1)

1
2

for both known and unknown words, andP (Wi|TiTi−1) is
replaced by the geometric mean ofP (Ck

i |TiTi−1) for all the
charactersCk

i in any unknown wordWi (and similarly for
P (Wi−2|Ti−2Ti−1)). The second POS tagger, which utilizes
the N-best extraction of the first tagger, incorporates various
higher order N-gram features in a reranking method based on
the boosting approach described in [5]. This tagger improves



tagging accuracy to 94.84% (76.98% on unknown words).
The name tagger is based on an HMM that generally fol-

lows the Nymble model [6]. It identifies names of three classes:
people, organizations, and locations. Nymble used an HMM
with a single state for each name class, plus one state for non-
name tokens. To take advantage of the structure of Chinese
names, we used a model with a larger number of states, 14 in
total. The expanded HMM can handle name prefixes and suf-
fixes, and has separate states for transliterated foreign names.
The HMM was supplemented with a set of post-processing
rules to correct some omissions and systematic errors. Some
of these rules are dependent on the part-of-speech tags as-
signed to the tokens.

3. CORPORA AND EVALUATION
Different corpora were used for training the various compo-
nent systems, as described in the respective sections. In all
cases, text normalization was needed to get rid of phrases with
bad or corrupted codes, and convert numbers, dates and cur-
rencies into their verbalized forms in Chinese. Among these,
number normalizations were performed using a set of context-
independent and context-dependent heuristic rules. Then au-
tomatic word segmentation was run, using all punctuation
marks as delimiters. For training most systems, we kept sen-
tence boundary punctuation marks, comma and caesura marks,
and removed all other punctuation marks.

The speech test set in this work includes transcripts from
the GALE Mandarin ASR/MT development test set, where
we use the four dev shows from the GALE Year 1 BN audio
release. The data set includes about 15k words (about 26k
characters). To avoid over-tuning on this set, all text data from
months covered by these shows are excluded from training.

The target data for this work is automatically transcribed
speech, specifically Mandarin broadcast news, but there is
no such speech data with hand-annotated part-of-speech tags
and name labels. For that reason, most of the development
work involved text corpora, where annotated data is available
and precision/recall can easily be measured. For experiments
with speech, we have adopted a change comparison method
to assess the impact of comma prediction on both POS and
name tagging accuracy for speech recognition output. Specif-
ically, human annotators examine only those tokens for which
the automatic POS (or name) predictions differ on the speech
recognition output and assess whether the change corrects or
introduces an error, with access to the reference transcription.

4. PUNCTUATION PREDICTION
Previous work on punctuation detection to enhance the output
of automatic speech recognizers mostly focuses on sentence
segmentation [7, 8, 9]. For intra-sentence punctuation inser-
tion for text, Beefermanet al. [10] use lexical information in
the form of trigram language models. Zhanget. al. [11] use
decision trees with linguistically sophisticated features for en-
riching natural language generation output, and obtain better
results than usingn-gram language models.

In this work, we use the ICSI+ multi-lingual sentence seg-
mentation tools [12] for both comma and sentence boundary
detection. The sentence boundary detection is treated as a
classification problem, where every word boundary can be
of one of two classes: sentence boundary vs. non-sentence
boundary. The classifier uses a combination of hidden-event

language models (5-gram) to exploit lexical information and
sequence dependencies, and a boostexter classifier [13] to ex-
ploit lexical cues (word triples) in combination with prosodic
and speaker change information. Prosodic features include
various measures and normalizations of pause duration, phone
duration, fundamental frequency and energy. The posteriors
from the two models are interpolated using equal weights.
The SRI-LM toolkit [14] (with Kneser-Ney smoothing) is used
for training the hidden-event model for sentence boundary
prediction, with the same data sources as for training the Man-
darin ASR language models, including broadcast news speech
transcripts, TDT text data, the Chinese Gigaword corpus, the
Chinese portion of various news translation corpora, and web
news data collections from National Taiwan University and
Cambridge University.

The approach to comma prediction is similar to sentence
boundary prediction. The same features apply, with the ex-
ception of speaker change (because it is not informative for
sentence internal events), and prosodic features are only in-
cluded for the speech experiments. While comma and sen-
tence boundary prediction could be treated jointly as a multi-
class problem, in this work we take predicted sentence bound-
aries as given and then predict commas within the sentence in
order to factor out the impact of comma prediction on sen-
tence prediction from the impact of commas per se.

The comma hidden-event language model is trained on
the Chinese Gigaword corpus, where the training text has
been stripped of all punctuation but comma and caesura. (Pre-
liminary experiments showed that interpolation with other
sources did not give a gain, and some other sources did not
distinguish between commas and caesura.) The boostexter
model is trained on a subset of the TDT4 Chinese news data
(40 shows) using flexible alignment [15] to obtain word tran-
scripts from the closed-captions. For performance analysis,
reference punctuation is determined by first aligning the ASR
words to reference words, and then choosing the best punctu-
ation alignment if multiple word alignments are equivalent.

Figure 1 shows the precision/recall curve for commas (us-
ing ASR words and reference sentence boundaries) on a held-
out set of 10 shows from our TDT4 set. The best results are
obtained with the combined model, but the individual com-
ponent models both give reasonable performance alone. We
have merged the two commas into one class for this figure to
evaluate only comma position performance, ignoring comma
type. We found a slight improvement in the merged comma
prediction by modeling the two types of commas separately
and mapping them to a single comma afterwards (rather than
training on merged commas).

Table 1 shows confusion between comma and caesura types
on the TDT4 heldout set. There are many fewer caesuras, but
even with the highly skewed distribution there is very little
confusion between the two comma types.

The speech test set we use for POS and name tagging in-
cludes about 1,400 commas (with no comma/caesura distinc-
tion) and 600 sentences. Results for comma prediction on this
data are given in Table 2 for automatically detected sentence
boundaries (using a threshold of 0.5 for the sentence poste-
rior). For this condition, senten ce boundary detection perfor-
mance is P=0.53, R=0.79, and F=0.63, so sentence bound-
ary recall is much higher than precision. While precision
for the commas with automatic sentence boundaries is sim-
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Fig. 1. Comma prediction for TDT4 ASR words with ref-
erence sentence boundaries and three different modeling ap-
proaches.

Table 1. Confusion table counts for comma and caesura pre-
diction on the TDT held out set, using a .5 comma threshold.

Predicted
True comma caesura null

comma 2,924 8 2,049
caesura 32 104 245

null 992 12 74,207

ilar to using reference sentences, recall is significantly lower.
The primary reason is that many “false” sentence boundaries
are hypothesized at comma locations, limiting the possible re-
call. When selecting sentence boundaries with the.5 thresh-
old used here, 27% of the reference comma locations are un-
available due to being marked as sentence boundaries, while
with a .8 sentence boundary threshold, 12% are unavailable.

5. PART-OF-SPEECH TAGGING

In an attempt to optimize our tagger for the condition of tag-
ging speech transcripts with automatically generated commas
and caesuras, we performed a series of experiments on textual
data to determine the impact of punctuation on tagging accu-
racy, and to assess the best conditions to train our tagger when
using automatically generated commas. We also report the no
punctuation (lower bound) and all punctuation (upper bound)
performance levels. For these experiments, before scoring the
tag sequence, we remove all punctuation along with their tags
to more fairly compare the tag accuracy on words resulting
from the absence or presence of punctuation of various qual-
ities. These studies, selectively reported in Table 3, used the
LDC Chinese Treebank 5.2 with 10-fold cross-validation. Be-
cause the Viterbi tagger is computationally efficient, we uti-
lized it in all the experimental conditions, but report selective
results with the reranking tagger to highlight the best possible
performance with our current systems.

The best tagging results overall were obtained when train-
ing and testing on matched conditions. For example, if we
train the tagger using all of the Treebank punctuation and then
apply it to tag word sequences with automatically generated
commas, there is a serious degradation in tagging accuracy

Table 2. Results for comma detection on ASR transcripts
with different thresholds for comma posteriors. Automatic
sentence boundary detection F=0.63.

Thresh Rec Prec F
0.2 0.26 0.67 0.38
0.5 0.20 0.69 0.31
0.8 0.15 0.73 0.25

(e.g., 92.90% using comma and caesura predictions). We also
found that using a comma prediction threshold of 0.5 (out of
0.2, 0.5, and 0.8) gave the best accuracy. There is a negligible
improvement from keeping the distinction between comma
and caesura, rather than merging the two to a single comma
type. The best overall tagging accuracy for comma predicted
data was obtained when using a comma threshold of 0.5 after
training with word sequences annotated with gold commas,
no commas, and predicted commas.

We evaluated the impact of automatic comma prediction
on POS tagging accuracy on the ASR output for the speech
test set. We compared tagging results using our Viterbi tagger
under two conditions. For the first case without punctuation,
the ASR output was tagged by a tagger trained on the Tree-
bank with all punctuation removed. For the second case, in
which ASR output was augmented with predicted commas
and caesuras with a 0.5 threshold, the best setup in Table 3
was used. Three annotators were asked to compare the POS
tag changes in the two tagging outputs, without knowing in
advance which system they came from. To support the com-
parison, we adapted an emacs tagging tool used by LDC to
highlight the differences and mark up whether the change was
from incorrect to correct, correct to incorrect, or incorrect to
some other incorrect tag. All tag changes related to word seg-
mentation and/or ASR errors were discarded. If the POS of
a word could not be agreed upon among the annotators, then
the majority vote was used for scoring (or the tag change of
the word was discarded when all annotators disagreed). Of
the 247 differences between the no punctuation and the auto-
matic comma prediction tagging outputs, 29 were discarded,
120 were positive changes, 69 were negative changes, and 29
were wrong in both cases. Hence, the predicted commas sig-
nificantly improved POS tagging accuracy (p <= 0.00027
using the sign test).

6. NAME TAGGING
The name tagger was trained on 585 documents from the
training data for the 2005 ACE (Automatic Content Extrac-
tion) evaluation, containing 198k words. Three separate name
tagger models were trained: one with all sentence-internal
punctuation in the training texts removed, one with the com-
mas and caesuras added automatically, and one with the ref-
erence commas and caesuras retained.

The effect of comma prediction on named entity tagging
was then evaluated using two test corpora, a text corpus and
an ASR transcript. The text corpus consisted of 50 documents
from the ACE 2005 training set (42 manually-prepared broad-
cast news transcripts and 8 newswire articles), containing a
total of 2,671 names. The results are shown in Table 4. The
first row represents a system trained and tested without com-
mas; the last row a system trained and tested with the com-



Table 3. POS tagging performance on various training/test
conditions using the Viterbi [and reranking] tagger. The last
group of results was obtained by joining the three training
sets (without punctuation, with Treebank commas, and with
predicted comas) into one large training set.

Punctuation Training Testing Accuracy (%)
Source Punctuation Punctuation Viterbi[Reranked]
None None None 92.99 [93.28]

Treebank All All 93.49 [93.91]
Merged comma Merged comma 93.40
Caesura/comma Caesura/comma 93.44

Prediction Merged comma Merged comma 93.13
Caesura/comma Caesura/comma 93.14

Combination Merged comma Merged comma 93.16
Caesura/comma Caesura/comma 93.17 [93.46]

Table 4. Named entity tagging performance on news text un-
der different punctuation conditions.

Recall Precision F-measure
No commas 85.1 84.7 84.9
Comma prediction 85.6 85.1 85.4
True commas 85.7 86.1 85.9

mas and caesuras from the original corpora. True commas
produced a 1% gain in NE F-measure. The intervening row
shows the results using comma prediction (with the system
distinguishing commas and caesuras); this yields half the gain
(0.5% in F-measure) of the true-comma case. The comma
predictions changed the tagging of 36 tokens in the text test
corpus: 26 incorrect tags were corrected, 9 correct tags were
changed to incorrect ones, and 1 incorrect tag was changed
to other incorrect tag (significant atp <= .006 by the sign
test). The performance when not distinguishing commas and
caesuras was slightly but not significantly worse – 0.1% lower
in F-measure.

The ASR test corpus, as for the POS tests, was the speech
test set drawn from GALE Y1 Mandarin ASR+MT common
dev set, and included 881 sentences with approximately 1700
names. The comma predictions changed the tagging of 59
tokens in the test corpus; 44 incorrect tags were corrected, 9
correct tags were changed to incorrect ones, and 6 incorrect
tags were changed to other incorrect tags. The predicted com-
mas significantly improved name tagging accuracy (p <=
0.000002 using the sign test). Two native speakers indepen-
dently evaluated the changes and then adjudicated their deci-
sions; the independent assessments agreed 94% of the time.

In examining the changes, we observed a number of cases
where the comma predictor was able to predict a comma be-
fore a name, and this enabled the name tagger to identify
a name that it had previously missed, or to correct a name
boundary error. For example, in the sentence (translating the
actual Chinese example):

More than 200 pictures including the masterpieces
by [Zhang Daqian]PER1, [Zhao Zhi Qian]PER2,
[Xu Beihong]PER3 and[Qi Baishi]PER4 etc. were
on sale in[Shanghai]LOC .

The second name, “Zhao Zhi Qian” is missed when commas

are not present because the “Zhi” in “Zhi Qian” can also be
interpreted as the common word meaning “’s” or “of”. The
comma predictor (correctly) predicts commas before and after
this name, and the name tagger then recognizes it.

7. DISCUSSION
In summary, this work found that automatically predicted com-
mas, despite a relatively low F-measure, can lead to a signif-
icant improvement in both POS and name tagging, relative
to the case of using only automatically predicted sentence
boundaries in ASR transcripts. It is possible to distinguish
between comma and caesura in automatic prediction, in that
there are few confusions between the two types, but it did not
lead to significant gains in POS or name tagging.

While the precision for comma prediction is high, recall is
relatively low because of false predictions of sentence bound-
aries at comma locations. Joint prediction of commas and
sentence boundaries would likely improve performance, though
it is not clear that it would have a big impact on tagging. Per-
haps a better area for potential gains would be joint modeling
of punctuation and tagging.
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