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ABSTRACT 

Conventional speaker recognition systems identify speakers 
by using spectral information from very short slices of 
speech. Such systems perform well (especially in quiet 
conditions), but fail to capture idiosyncratic longer-term 
patterns in a speaker's habitual speaking style, including 
duration and pausing patterns, intonation contours, and the 
use of particular phrases. We investigate the contribution of 
modeling such prosodic and lexical patterns, on 
performance in the NIST 2003 Speaker Recognition 
Evaluation extended data task. We report results for (1) 
systems based on individual feature types alone, ( 2 )  systems 
in combination with a state-of-the-art frame-based baseline 
system, and (3) an all-system combination. Our results 
show that certain longer-term stylistic features provide 
powerful complementary information to both frame-level 
cepstral features and to each other. Stylistic features thus 
significantly improve speaker recognition performance over 
conventional systems, and offer promise for a variety of 
intelligence and security applications. 

1. INTRODUCTION 

Speaker recognition systems based on short-term spectral 
features model a speaker's use of the resonances of his or 
her vocal tract as determined by its physical dimensions. In 
a conventional speaker recognition system, these features 
are modeled by a Gaussian Mixture Model (GMM) and 
scored with respect to a universal background model trained 
from many speakers [e.g., I]. Such conventional systems 
result in good speaker detection performance under 
favorable acoustic conditions. Yet because these systems 
depend heavily on features affected by spectral variation, 
they degrade in noise or unmatched acoustic conditions. 
More generally, and perhaps more importantly, 
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conventional approaches fail to capture habitual stylistic 
patterns in the way a person talks. For example, they do not 
directly capture prosodic variations in speaking rate, 
pausing, or intonation, because these patterns occur on a 
scale larger than the frame. Humans use such patterns to 
identify speakers, for example, when listening to a 
conversation through a wall (or, as a more entertaining 
example, to discern the targets of comedians' 
impersonations). Because such habits are behavioral, rather 
than physiologically based, they can provide complementary 
information to standard GMM cepstral features. 
Furthermore, because certain longer-range prosodic patterns 
(such as  duration and pausing) are invariant to channel 
variation, they may offer robustness in the face of difficult 
or unmatched acoustic conditions. 

In recent years, a number of approaches for using stylistic 
features for speaker modeling have been investigated. Early 
work explored the modeling of prosodic variation based on 
a parameterization of stylized pitch contours and pause and 
voiced segment durations [2 ] ,  and modeling of idiosyncratic 
lexical features [3]. More recently, a group at the JHU 
Summer Workshop experimented with prosodic and lexical 
features, and found that the performance of conventional 
systems can be greatly improved by adding longer-term 
features [4]. 

In this work we describe research on the modeling of 
prosodic and lexical features for the NIST Speaker 
Recognition Evaluation (SRE) 2003 extended data task. The 
extended data task provides considerably more training data 
per speaker (as many as 16 conversation sides) than the 
standard one-speaker task, thus facilitating the modeling of 
long-range features. We report results for (1) systems based 
on individual feature types alone, (2) systems in 
combination with a state-of-the-art frame-based baseline 
system, and (3) an all-system combination. 
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The paper is organized as follows: Section 2 introduces the 
task; Section 3 details the segmentation, transcription, and 
system .combination; Section 4 describes our baseline 
system. Sections 5, 6, 7, and 8 describe individual systems. 
The results for the individual systems and the combination 
of all systems are presented in Section 9. Finally, Section 10 
presents our conclusions. 

2. 2003 NET EXTENDED-DATA ONE-SPEAKER 
RECOGNITION EVALUATION (SRE) 

The 2003 NIST Extended-data SRE is a text-independent 
one-speaker detection task based on data drawn from 
Switchboard 2 (SWB2) phase 2 and 3 databases. These 
databases have two-speaker conversations recorded over 
telephone channels. The main task is divided into three parts 
based on the amount of data used for training speaker 
models. In each pad, 4, 8, or 16 conversation sides are used 
for training speaker models and one conversation side is 
used for testing. In general, speaker recognition 
performance improves by increasing the training data. 
However, the 16-conversation (training) condition has fewer 
speaker models and a smaller test set compared to the 8- 
conversation condition. Therefore, in this paper we focus on 
the &conversation condition.' 

For each training condition, the evaluation data are divided 
into I O  non-overlapping splits. The evaluation paradigm 
uses the splits for N-fold cross validation. N-1 split($ are 
used for development and the results are applied on the 
remaining one split. 

Two metrics are used to evaluate a system: ( .I)  equal-error 
rate (EER), and (2) detection cost function (DCF). These 
measures are computed using false-acceptance (FA) rate, 
false-rejection (FX) rate, the cost for both types of errors, 
and the target and impostor priors. EER assumes that the 
costs and priors are equal. DCF assumes that FA is 10 times 
more costly than FR, and impostors are 10 times more likely 
than target speakers. 

3. SEGMENTATION, TRANSCRIPTION AND 
SYSTEM COMBINATION 

The evaluation data are segmented into speech and non- 
speech segments using a two-state hidden Markov model 
(HMM). The resulting speech segments are processed by 

' The 8-conversation training condition uses roughly 1200 
speaker models and 23,000 test trials. 

DECIPHER, SRI'S conversational speech reco,pition 
system [5], to generate word-, phone-, and state-level 
transcriptions. The recognition system is trained using the 
SWBl database. The system uses Mel-frequency cepstral 
coefficient (MFCC) features, which are normalized using 
vocal-tract length normalization, and then transformed using 
heteroscedastic linear discriminant analysis. The a:oustic 
models are gender dependent within-word triphone rnodels, 
trained using a maximum mutual information estimation 
criterion. The models are adapted to each speaker using 
open-loop maximum likelihood linear regression. The 
language model uses word bigrams, and is trained on a 37K- 
word plus 3K-multiword vocabulary. The recognition 
system Nns at 3xRT on a Pentium Xeon processor and 
yields a word error rate of approximately 38% on the 
transcribed portion of the SWB2 database. 

Information from different systems is combined at the score 
level using LNKnet software from MIT Lincoln Laboratory 
[6]. The combiner is a single-layer perceptron. It has two 
complementary output classes: true speaker and impostor. 
Class priors are adjusted to minimize the DCF metric. 
Combiners are trained using N-fold cross-validation for 
each training condition. 

4. MFCC-GMM BASELINE SYSTEM 

Our baseline system uses a 39-dimensional feature vector: 
13 MFCCs (Cl-C13) after mean subtraction, 13 delta and 
13 double delta coefficients. This vector is normalized using 
feature normalization as described in [7]. For normalization, 
gender and handset models are trained using the MST 1997 
SRE data. 

Distribution of the normalized features is modeled using a 
GMM with 2048 Gaussian components. The background 
model is trained using the same data used for feature 
normalization. Speaker models are adapted from the 
background model using MAP adaptation, and the score is 
computed as the log-likelihood ratio of test data with respect 
to the speaker and the background model. The score is 
normalized to compensate for variation due to different test 
durations (TNORM, [SI). Normalization data for splits 1-5 
is obtained from splits 6-10, and vice versa. This system 
results in an EER of 1.9% and a DCF of 0.91~10~"~. The 
performance of our baseline system was thus superior to the 
baseline scores made available by MST for the evaluation. 
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5. CONDITIONAL PHONE PRONUNCIATION 
SYSTEM 

W e  developed a conditional phone pronunciation system by 
adopting the approach used in the system that was fust 
developed in the JHU summer workshop [4,91. The main 
idea is to model phonemic variation across different 
speakers. The phonemic variation is captured using 
conditional probability of an open-loop phone given the 
phone identity obtained by an automatic speech recognition 
(ASR) system. These probabilities are used to train 
background and speaker models. The score is computed as 
the likelihood ratio of the observed pairs of {open-loop 
phone, ASR phone] with respect to the speaker and 
background models. 

The open-loop phone transcriptions are obtained from five 
recognition systems for a set of languages - English, 
German, Spanish, Japanese, and Mandarin. For each 
language, conditional phone pronunciation systems are 
developed separately and they are combined at the score 
level using the neural network combiner (see Section 4). 
Results show that this system gives the best performance 
among non-baseline systems with EER=2.25% and 
DCF=8.870~10~’. However, it does not provide any 
improvement when combined with the baseline system, 
suggesting that it does not capture complementary 
information. 

6. DURATION-BASED SYSTEM 

This system aims to capture speaker-specific duration 
patterns. To this end, each word and each phone are 
represented by feature vectors comprised by the durations of 
their component phones or ASR phone model states. These 
vectors are then modeled by GMMs. For a detailed 
description of this system see [lo]. 

6.1 Features 

Three different duration features are used and for each of 
them a different system is created 

Word features: Sequence of phone durations in 
the words in the utterance. The number of 
components depends on the word pronunciation. 
Phone features (lcomp): Duration of the phones 
in the utterance. These are scalar values. 

Svstem 

Phone features (3cnmp): Sequence of state 
durations in the phones in the utterance. These are 
three-component vectors. 

In all cases the features are obtained from alignments of 
recognized words. 

6.2 Training and adaptation 

Once the features are computed, speaker-independent 
background GMMs for each word and each phone (one- 
component and three-component models) are estimated. The 
speaker models are later obtained through MAP adaptation 
of means and weights of the hackground model. Because 
speakers typically increase duration before pausing 
(“prepausal lengthening”) for both grammatical and 
hesitation pauses, we train context-dependent models along 
with the context-independent ones. Pause context models 
are trained using samples that occur before a pause longer 
than 200 ms; word context models are trained using the 
remaining samples. 

6.3 Scoring procedure and results 

Three separate scores are obtained, one for each set of 
models: words, phones-lcomp, phones-3comp. Each score 
is computed as the sum of the log-likelihoods of the 
corresponding feature vectors in the test utterance according 
to target speaker models. This sum is then divided by the 
total number of scored components and normalized by the 
background model score. 

Without TNORM I With TNORM 
EER 1 DCF I EER I DCF 

Table 1: Performance of different duration systems 

(I-comp) 
Word model 
Combination 

10.93 60.8 9.12 43.4 
7.07 42.0 4.62 25.5 

I I (x10-3) I ( Yo) I (x103) 
Phonemodel I 8.01 I 53.4 I 5.70 I 34.6 
(3-comp) I I I I 
Phonemodel 1 12.47 I 87.3 I 8.64 1 49.8 

During scoring, if the context-dependent model 
corresponding to a feature vector was not adapted to the 
speaker with more than a certain number of samples, the 
context-independent model is used instead. In addition, only 
models adapted to the speaker with at least five samples are 
used for scoring. 
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Results for the three sets of models are presented in Table 1, 
W e  observed that scores from duration models are sensitive 
to the test segment length. Therefore, scores were 
normalized using TNORM where TNORM statistics were 
estimated in the same way as they are for the baseline 
system scores. As shown in Table 1, normalizing the score 
using TNORM yields considerable performance 
improvements. Also as shown, performance improves when 
all duration systems are combined. 

7. NEW EXTRACTION REGION FEATURES 

W e  also defined a large set of features based on various new 
regions of interest, which we will refer to as “New 
Extraction Region Features (NEWS).” Work on these 
features is preliminary, thus we report results for only two 
sample subtypes of NERFs. NEWS define a sliding 
temporal region based on either a fixed window length or 
boundaries defined by the presence or values of other 
features (see Figure 1). 

/ Region n 

Max phone dur in pause-to-pause 

Figure 1: Sample NERFs 

The regions are defined to be larger than a frame, to capture 
longer-term behaviors, and to he smaller than a whole 
conversation side, to yield more samples. Both the region 
definitions and the features defined inside regions are 
motivated (albeit loosely) by psycholinguistics. Note that 
the duration features described earlier can also he thought of 
as NERFs, where regions are defined as words. 

7.1 Pause-to-pause region 

This particular system’s region stretches from a pause to the 
next pause, using a certain minimum pause duration 
threshold (500 ms for the system used in these experiments). 

Four types of prosodic features are extracted for each 
region: pitch, duration, pause, and energy. 
Duration features are extracted from the time alignments of 
the phones inside the region. An example of these features is 
the duration of the longest phone or vowel in the region, 
normalized by the average duration for that vowel overall. 

Pitch features are obtained from pitch tracks extracted from 
the signal and then post-processed using an improved 
version of the approach in [Z], where pitch contours are 
“stylized.” Features such as the maximum stylized pitch, the 
last slope, and the mean pitch in the region are then 
computed. 

Energy features are obtained using a stylized version of the 
raw energy. A linear approximation of the energy contour is 
obtained over each segment of the stylized pitch, and 
features like the energy range and the last or first slope in 
the region are computed. 

Pause features, such as the average pause in the region, the 
pause before and after the region, or the maximum pause 
inside the region, are also computed. 

After extraction, features are whitened and then modeled 
using GMMs. The rest of the recognition algorithm is 
similar to that used for the baseline system. 

7.2 Stylizer segment region 

In this system, the extraction regions are the segments of the 
stylized pitch. These types of units were successfully used in 
the JHU workshop [4]. Several feature vectors are (defined 
using start, end, and mean values of pitch and energy in the 
segment, their slopes, and the duration of the segment. 
These features are then modeled using GMMs. The 
individual EER for these systems is between 22% and 32%. 

In contrast with the findings of the JHU workshop, we found 
that none of these systems gave substantial improvements 
when combined individually with the baseline. This may bc 
due to two main differences in the systems. First, JHU 
workshop approaches included phone identity along with 
duration, and slopes of pitch and energy. We excluded this 
information since it is already modeled in our duration 
system. Second, unlike our approach, the JHU workshop 
approach used discretized versions of these features and 
modeled them using language models. 
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8. LANGUAGE MODEL BASED SYSTEM set are combined using the single-layer perceptron described 
in Section 4. 

This system uses word sequences from a spoken utterance 
as features and is an extension of (31. In this work, the word 
sequences are obtained from the recognizer described in 
Section 3. The sequence of words is modeled as a bag of 
bigrams. Background and target speaker models are the 
estimated probabilities of these bigrams. The score is 
computed as the log-likelihood ratio of a set of bigrams 
extracted from test utterance with respect to background and 
speaker models. 

We observed that the distribution of scores varies with the 
test duration length. This variation was compensated for by 
normalizing the scores using TNORM [SI. TNORM 
statistics were estimated in the same way as they are for 
baseline. This system gives an EER of 9.2% and a DCF of 

Table 3: E E B  and DCF values for different systems 

These results show that performance of the non-spectral 
system combination (NON-SPEC) improves by using 
TNORM on duration and LM system scores. This 
improvement is also reflected in the combination of scores 
from all systems (ALL versus ALL-TNORM). Note that 
the NON-SPEC-TNORM result is better than the 
BASELINE for both EER and DCF values and it rives 41.31~10~’. 

9. RESULTS 

Table 2 shows the results of two-way combinations of the 
baseline system with each of the non-spectral systems. 
Results show that combination with the duration-based 
system yielded the greatest improvement in performance 
(about 4076, for both EER and DCF). Combination with the 
LM-based system also gives large improvements over the 
baseline system. Among NEWS, pause-to-pause features 
give about 15% improvement, and stylizer segments give 
about 5% improvement in both DCF and EER. This is an 
encouraging fust result, especially given the low density of 
the NEWS. 

Table 2: Results of two-way combination with baseline 

5.817 

Table 3 and Figure 2 present combination performance 
results for five sets of systems: (1) MFCC-GMM baseline 
(BASELINE), (2) NONSPECTRAL systems without 
TNORM (NON-SPEC), (3) NON-SPECTRAL systems with 
TNORM (NON-SPEC-TNORM), (4) BASELINE and 
NON-SPEC (ALL), and (5) BASELINE and NON- 
SPEC-TNORM (ALL-TNORM). All the systems in each 

~~ - 
significant improvement when combined with the 
BASELINE. 

Performame on 8-conv condition 

False A l a n  probability (in %) 

Figure 2 DET C U N ~ S  for different sets of systems 

10. SUMMARY AND CONCLUSIONS 

We explored the contribution of stylistic features based on 
prosodic and lexical patterns to speaker recognition in the 
NIST 2003 extended data task. The systems using these 
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features were evaluated independently and in combination 
with each other in the context of the NIST 2003 extended 
data task evaluation. The baseline system was a state-of-the- 
art MFCC-GMM system, which was superior in 
performance to the baseline scores distributed by NIST. 

Combination results showed that the duration-based system 
provided the most complementary information to the 
baseline system. This was followed by the LM-based system 
and the prosodic NEW system. In addition to providing 
information complementary to the baseline, each of these 
new stylistic features provided information that was 
complementary to the other new ‘features. Additional gains 
were achieved by applying TNORM to various systems. 
Overall, these results suggest that modeling of longer-range 
features such as prosodic and lexical patterns can improve 
speaker recognition performance in contexts and 
applications in which extended training and test data are 
available. 
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