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rogress in both speech and language processing has spurred efforts to sup-
port applications that rely on spoken—rather than written—language input.
A key challenge in moving from text-based documents to such “spoken doc-
uments” is that spoken language lacks explicit punctuation and formatting,
which can be crucial for good performance. This article describes different

levels of speech segmentation, approaches to automatically recovering segment bound-
ary locations, and experimental results demonstrating impact on several language pro-
cessing tasks. The results also show a need for optimizing segmentation for the end
task rather than independently.

INTRODUCTION
Dramatic improvements in automatic speech recognition (ASR) technology make it now
possible to explore how language processing techniques designed for text can be applied to
spoken language. Ever-increasing collections of information are available as speech record-
ings, including news broadcasts, meetings, debates, lectures, hearings, oral histories, and
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Web casts, among other types of human-directed (versus com-
puter-directed) communications. Given the vast amount of audio
data and the time involved in human listening, clearly some
automatic means for data processing is necessary. ASR can auto-
matically transcribe (albeit imperfectly) the speech in such spo-
ken documents into a stream of words. But to derive content of
interest, one would like to be able to apply language processing
techniques, such as question answering and summarization,
which have traditionally been developed for written input. 

In applying text-based language processing techniques to
speech, it is important to acknowledge that there are many dif-
ferences between the two genres, as well as within each genre,
depending on the specific communication context. For example,
conversational speech is generated on the fly and thus contains
disfluencies and discourse elements used to manage turn-taking
and other forms of interaction. In contrast, news broadcasts are
typically read from a script and more closely resemble written
documents. Nevertheless, a shared challenge for the processing
of most classes of spoken documents—as compared with text
documents—is the lack of overt segmentation information. Text
input typically contains punctuation and capitalization, which
segments words into sentences and subsentential units.
Sentences are further organized into higher-level units such as
speaker quotes, paragraphs, sections, chapters, articles, and so
on, via formatting. In contrast, when spoken language is
processed by an automatic speech recognizer, the output is sim-
ply a nonannotated stream of words, as shown in “Unformatted
Word Transcripts.” Human listeners can easily segment such
spoken input, arriving at the formatted version shown in
“Formatted Transcripts.” To do so they can draw on sophisticat-
ed syntactic, semantic, acoustic, prosodic, pragmatic, and dis-
course knowledge—not all of which are fully understood.

Automatic segmentation, on the other hand, is much more
difficult. Nevertheless, significant progress has been made in the

area of sentence segmentation by combining lexical information
from a word recognizer, with spectral and prosodic cues. Lexical
sequence information provides cues related to syntactic and
semantic constraints and is thus helpful in finding sentence and
clause boundaries. For example, a sentence in English is not
likely to end with a determiner. Such cues, however, are subject
to degradation from word recognition errors. Lexical cues can
also be fairly domain specific and may thus perform poorly when
training and test data come from different speaking contexts.
Spectral information provides cues to speaker and show (or
scene) changes, as well as to nonspeech events such as laughter.
Prosodic features such as fundamental frequency, duration, and
energy patterns provide information about multiple types of seg-
ment boundaries. For example, pitch tends to drop before the
ends of sentences and to an even lower value at the end of a
topic or paragraph-like unit. Boundaries are often accompanied
by pauses and by durational lengthening of phones directly pre-
ceding the boundary.

For many language processing tasks, it is essentially impossi-
ble to process speech without some sort of segmentation.
Historically, spoken language processing has assumed the avail-
ability of good sentence and document segmentation. Most ini-
tial work on problems such as parsing and summarizing speech
were based on oracle conditions using hand-marked sentence
and story boundaries. However, automatically detecting these
boundaries is challenging, and several studies have demonstrated
that segmentation and punctuation prediction accuracy signifi-
cantly impact language processing performance in a variety of
tasks. Hence, over the past decade researchers have been explor-
ing methods for improving the accuracy of models for various
levels of segmentation, showing that combining both acoustic
and lexical cues provides significant benefit to detection accuracy
beyond a naive pause-based segmentation. More importantly, as
will be shown here for a variety of language processing tasks,

UNFORMATTED WORD TRANSCRIPTS
with more american firepower being considered for the
persian gulf defense secretary cohen today issued by far
the administration’s toughest criticism of the u. n. securi-
ty council without mentioning russia or china by name
cohen took dead aim at their reluctance to get tough
with iraq frankly i find it uh incredibly hard to accept the
proposition that in the face of saddam’s uh actions that
uh members of the security council cannot bring them-
selves to declare that this is a fundamental or material
breach uh of uh conduct on his part i think it challenges
the credibility of the security council in europe today
secretary of state albright trying to gather support for
tougher measures was told by the british and french that
before they will join the u. s. in using force they insist
the security council pass yet another resolution british
prime minister blair said if saddam hussein then does not
comply the only option to enforce the security council’s
will is military action

FORMATTED TRANSCRIPTS
Reporter: With more American firepower being considered
for the Persian Gulf, defense secretary Cohen today issued by
far the administration’s toughest criticism of the U.N. Security
Council. Without mentioning Russia or China by name, Cohen
took dead aim at their reluctance to get tough with Iraq.

Cohen: Frankly I find it incredibly hard to accept the proposi-
tion that in the face of Saddam’s actions that members of the
Security Council cannot bring themselves to declare that this is
a fundamental or material breach of conduct on his part. I
think it challenges the credibility of the Security Council.

Reporter: In Europe today, Secretary of State Albright trying
to gather support for tougher measures was told by the
British and French that before they will join the U.S. in using
force they insist the Security Council pass yet another resolu-
tion. British Prime Minister Blair said if Saddam Hussein then
does not comply:

Blair: The only option to enforce the security Council’s will is
military action.
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these segmentations also lead to much better task performance
than pause-based segmentations. In addition, when looking at
findings over a range of tasks, it is clear that optimizing segmen-
tation for the task is a useful strategy, i.e., the best tradeoff of
recall and precision varies depending on the task. 

In the remainder of this article, we describe different types
of segmentation useful for spoken document processing, out-
line popular methods for feature extraction and computation-
al modeling, survey recent results in several language
processing applications that
demonstrate the impact of
speech segmentation, and dis-
cuss open challenges for leverag-
ing and augmenting automatic
segmentation. For historical rea-
sons, most research has been
conducted on broadcast news;
the studies represented here
reflect that bias. While there is
less research on segmentation of
conversational speech, it has particular importance because,
unlike news broadcasts, communications such as meetings or
telephone conversations contain information that may not
appear in any other source. Hence, a few results for conversa-
tional speech are included here to highlight issues associated
with the processing of different genres.

TYPES OF SEGMENTATION IN SPOKEN LANGUAGE
Sentence segmentation is of particular importance for speech
understanding applications, from parsing and information
extraction (IE) at the more basic level, to machine translation
(MT), summarization, and question answering at the application
level. Sentence boundaries are also important for aiding human
readability of the output of ASR systems [1]. As noted earlier,
most work aimed at language processing of speech input was
originally developed for text and thus assumes the presence of
explicit sentence boundaries in the input. Even as the amount of
spoken material online increases, making spoken document
processing an interesting target in its own right, models contin-
ue to be trained on text data mainly because text is available in
much larger quantities than is transcribed speech. Hence, auto-
matic recognition of sentence boundaries in speech is important
for automatic language processing, as is the general problem of
reducing the mismatch between text and speech.

Note that while the definition of a sentence boundary is
fairly clear in written text, spontaneous speech requires con-
ventions for phenomena not typically present in written text.
Such phenomena include incomplete utterances, backchannel
responses such as “uhhuh,” boundaries involved in disfluen-
cies, and a variety of elliptical utterances that may not include
a main verb (e.g., “Five,” as in an answer to “When should we
meet?”). Nevertheless, hand-labeling efforts show fairly good
agreement once such conventions are established [2], allow-
ing for high-level comparisons with read speech or text. In
studies of conversational speech, it has also been beneficial to

mark boundaries of different classes of sentences, or dialog
acts—including statements, questions, and backchannels. For
example, dialog act boundaries rather than sentence bound-
aries have been widely used for multiparty meeting speech
[2], [3]. Dialog act boundaries are thus essentially equivalent
to sentence boundaries in such work but provide additional
information on utterance function.

Sentence-level information is but one of many useful levels
of structure in language, as evidenced by the additional forms of

punctuation (for example, com-
mas) often available in text. For
some language analysis tasks,
such as parsing and entity extrac-
tion, subsentence punctuation is
of additional value. Applications
using language generation, such
as question answering and sum-
marization, may also benefit from
subsentence structure annota-
tions, as would speech playback in

spoken document browsing applications. However, many of
these applications may benefit more from an alternative to
punctuation: prosodic phrase boundaries. Speakers naturally
group words into semantically coherent phrases indicated by
timing and pitch cues; these prosodic phrase boundaries often
coincide with major syntactic constituent boundaries but have a
much flatter structure than syntax. Prosodic phrase boundaries
tend to coincide with commas and semicolons, but they also
occur in other syntactically important places and thus they pro-
vide smaller (and potentially more useful) units for processing.

Segmentation above the sentence level can be useful for
choosing appropriate size units, depending on genre. For exam-
ple, topic segmentation may not be useful for call center data,
but it is important when processing longer spoken documents,
such as news broadcasts that include multiple stories or meet-
ings that may cover multiple agenda items. Similarly, speaker
tracking and possibly role or identity recognition can provide
useful structure in genres with multiple speakers. Simply
knowing who is speaking (even without an associated name)
can improve the readability of a speech transcript when there is
more than one person talking. Speaker tracking is also useful
for automatic analysis of conversation or meeting dynamics. In
other applications, the speaker role can provide useful informa-
tion, e.g., reporter versus sound-bite speaker as in our example
or caller versus agent in a call center. When speaker identifica-
tion is needed, as for attribution in question answering, it bene-
fits from speaker tracking and role recognition. Both speaker
and topic segmentation can be useful in speech recognition, for
acoustic and language model adaptation, respectively.

COMPUTATIONAL MODELING TECHNIQUES
Two very different types of segmentation algorithms are used:
audio diarization and structural segmentation. Audio diarization
aims to segment an audio recording into acoustically homoge-
neous regions, given only features extracted from the audio

DRAMATIC IMPROVEMENTS IN
AUTOMATIC SPEECH RECOGNITION
TECHNOLOGY MAKE IT POSSIBLE

TO EXPLORE HOW LANGUAGE
PROCESSING TECHNIQUES

DESIGNED FOR TEXT CAN BE
APPLIED TO SPOKEN LANGUAGE.
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signal. Audio diarization techniques can include a variety of
tasks, such as distinguishing speech from music or advertise-
ments from news. Probably the most important example is
speaker diarization, sometimes referred to as the “Who Spoke
When” task, which is what the next section will focus on. The
term structural segmentation is used here to include tasks that
represent linguistic structure, for which algorithms leverage
both acoustic and lexical cues. The task receiving the most
attention thus far has been sen-
tence segmentation, but the
methods are applicable to other
tasks as well, including story seg-
mentation and comma prediction.
The two classes of algorithms are
treated separately below, followed
by a discussion of how different
types of segmentation may be
combined. In both cases, the algo-
rithms have been evaluated in a
range of speech genres, including broadcast news, talk shows,
and conversational meeting or telephone speech, as well as mul-
tiple languages. The basic mathematical framework is essential-
ly the same for most scenarios, but the implementation details
may change (particularly feature extraction), and some exam-
ples are given below.

SPEAKER DIARIZATION
Much of the foundation for speaker diarization comes from
speaker recognition research; some of the earliest systems were
developed to support work on speaker identification in broadcast
news. A driving force behind current speaker diarization
research is the competitive evaluations run by the U.S. National
Institute of Standards and Technology, in which speaker diariza-
tion must be performed with little knowledge of the characteris-
tics of the audio or of the talkers involved. The systems are
evaluated in terms of diarization error rate (DER), which meas-
ures the percentage of time that a system incorrectly labels the
audio recording. A typical speaker diarization system may be
broken down into several “standard” components [4], with the
two main components being “segmentation” and “clustering.”
During the segmentation step (or “speaker change detection”),
boundaries between acoustic events (typically due to a change of
speaker) are located to create homogeneous segments of audio.
Then, during clustering, all of the segments belonging to the
same speaker are grouped together. 

The dominant approach to segmentation involves com-
puting a generalized log likelihood ratio at candidate
boundaries, comparing the likelihood of the data using two
distributions for the subsets of data to the left and right of
the boundary versus a single distribution for the combined
set. At change points, the ratio will be high. To determine
the cut-off point, typically some form of regularization or
prior is used, such as the Bayesian information criterion,
which effectively adds a penalty for increased numbers of
parameters. Some of the parameters to optimize when

using penalized likelihood ratios include the size of the data
windows on each side of the proposed change point, the
penalty term, and the form of the distributions.

The most common approach for the initial speaker cluster-
ing is hierarchical agglomerative clustering. Hierarchical
agglomerative clustering typically begins with a large number of
clusters which are merged pairwise, until arriving (ideally) at a
single cluster per speaker. Since the number of speakers is not

known a priori, a threshold on the
relative change in cluster distance
is used to determine the stopping
point (i.e., number of speakers).
Determining the number of speak-
ers can be difficult in applications
where some speak only briefly
(e.g., in news sound bites or back
channels in meetings), since they
tend to be clustered in with other
speakers. Although there are sev-

eral parameters to tune in a clustering system, the most crucial
is the distance function between clusters, which impacts the
effectiveness of finding small clusters. 

The segmentation and clustering steps may be iterated
until some stopping criteria is satisfied. In subsequent pass-
es, different models may be used, such as hidden Markov
models (HMMs) for joint segmentation and clustering.
Multipass methods are useful for the challenge of handling
speaker overlap (in meetings and talk shows) and handling
noisy conditions (meetings with distant microphones,
reporters calling in from the field).

The most common features used in audio diarization are
cepstral features and their derivatives, as in speech recogni-
tion except without the normalization aimed at factoring out
speaker and channel differences since these are exactly the
types of differences that are targeted in diarization. For tasks
where there are multiple microphones, such as meeting
recordings, spatial information extracted from time delays
between microphones is useful.

STRUCTURAL SEGMENTATION
As noted earlier, many types of structural segmentation
(e.g., sentence boundary, comma, intonational phrase
boundary, story boundary) benefit from the use of both
prosodic and lexical cues. While the effectiveness of specific
cues often varies depending on the type of segmentation,
the mathematical frameworks and feature extraction meth-
ods are often quite similar. 

MODELS
In general terms, there are two basic modeling approaches used
for structural segmentation: 1) detection of boundary events and
2) whole constituent modeling. The approaches can also be
combined. Both models are applied after speech recognition and
take advantage of the alignment between words (and the phones
therein) and the acoustic speech signal.

A SHARED CHALLENGE FOR THE
PROCESSING OF MOST CLASSES

OF SPOKEN DOCUMENTS—
AS COMPARED WITH TEXT
DOCUMENTS—IS THE LACK
OF OVERT SEGMENTATION

INFORMATION.
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Boundary-event detection can be treated as a sequence tag-
ging problem. For each word in the sequence, one must assign a
boundary label to the interval between that word and the next.
As such, several of the different approaches that have been
applied to other tagging tasks have also been applied to bound-
ary detection. An HMM is one of the basic models for sequence
tagging problems, and HMM-like models dominated early work
in speech segmentation [5]. Given the word sequence W and the
prosodic features F, the most likely event sequence E is given by

Ê = argmax
E

P(E |W, F ) ≈ argmax
E

P(W, E )P(F |E ). (1)

The transition probabilities (in
P(W, E )) are obtained from an n-
gram language model (also
referred to as a hidden-event lan-
guage model) characterizing the
event labels and words jointly. The
observation posteriors P(F |E ) are
generated from a prosody model
(e.g., a decision tree classifier or
neural network). HMMs that are
discriminatively trained have also been used for sentence
boundary detection (e.g., [6]).

More recently, maximum entropy (Maxent) and conditional
random field (CRF) classifiers have been investigated for bound-
ary event detection [7], [8]. Unlike HMMs, Maxent and CRF
approaches provide more freedom to incorporate contextual
information, both using the exponential form for the condition-
al probabilities. For example, in Maxent 

P(Ei |W, F ) = 1
Zλ(W, F )

exp

(∑
k

λkgk(Ei, W, F )

)
. (2)

A CRF models sequence information, whereas Maxent individu-
ally classifies each data sample. The features used in these mod-
eling approaches are typically word n-grams, part-of-speech
(POS) tags, and output from prosody model or directly modeled
prosodic features. The weights (λ) for the features are estimated
to maximize the conditional probabilities of the training set. In
[8], HMM, Maxent, and CRF approaches are compared for sen-
tence segmentation of broadcast news and conversational
speech, finding that the CRF leads to the best results but by a
small margin and at a higher computational cost. Because the
approaches are quite different, further gains can be obtained by
combining the different systems but the biggest impact on per-
formance comes from improving the speech recognition system.
Another approach that can accommodate a rich variety of fea-
tures is based on combining Boostexter with a hidden-event lan-
guage model [9]. Boostexter is based on the principle of
boosting that combines many weak classifiers, each having a
basic form of one-level decision trees using confidence-rated
prediction. It has the advantage of good performance with a rel-
atively low-cost implementation. Performance differences
among approaches are small compared to differences across

genres, with sentence segmentation accuracy on broadcast news
being much worse than conversational speech in part because
sentences in news are longer and more complex.

Whole constituent modeling considers both the beginning
and the end time of a segment in determining boundary loca-
tion. For many problems, the cues are local to the boundary,
such as for prosodic phrase boundaries. For others, the cues
extend over the entire phrase, and the whole constituent
approach is preferable. Whole constituent modeling can also be
useful when a maximum or minimum length constraint is
needed. The challenge of modeling the constituent is that the

search space is much larger than
in searching for sequential
boundary events based on local
cues, since all possible previous
segment boundaries up to the
maximum must be considered.
Since this is impractical for long
constituents, the search space can
be reduced by restricting the set
of candidate boundaries. Whole
constituent modeling has been

used for sentence segmentation, story segmentation, and in
speaker modeling where both acoustic and lexical cues are
incorporated. In sentence segmentation for translation [10], an
explicit sentence length model is incorporated in a log-linear
combination of language model and prosody model scores.
Posterior probabilities identified via boundary event detection
can be included in the combination for further improvements
[11]. In story segmentation, whole constituent modeling is
needed for characterizing the topical coherence of sentences in
the segment and extracting position-based information about
lexical cue words. Again, it is useful to combine prosodic and
lexical cues [12]. Recent work in diarization [13] and speaker
role modeling has also investigated combining acoustic and
lexical features of the whole constituent.

FEATURES
To predict the presence or absence of a boundary event between
two words, the modeling approaches described above rely on
various lexical, prosodic, and structural features. Lexical fea-
tures typically consist of word n-grams and POS n-grams. These
features are useful for identifying short utterances in sponta-
neous speech such as backchannels (“uhhuh,” “yeah”), for char-
acterizing sequences of words that are unlikely to be split by a
sentence boundary (“the problem”), and for representing words
that are likely to start a new sentence (such as “I”). These fea-
tures have different representations in different modeling
approaches, for example, an n-gram language model in the
HMM framework or word tuple indicators in discriminative clas-
sifier approaches. 

Prosodic features reflect information about duration, pause,
intonational and energy contours. Features can be extracted
from the automatic alignments of word and phone transcriptions
with the speech signal. Duration features (such as word, pause,

SENTENCE-LEVEL INFORMATION IS
BUT ONE OF MANY USEFUL LEVELS
OF STRUCTURE IN LANGUAGE, AS
EVIDENCED BY THE ADDITIONAL
FORMS OF PUNCTUATION (FOR

EXAMPLE, COMMAS) OFTEN
AVAILABLE IN TEXT.
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and phone durations) are obtained directly from alignment time
marks. Since different phones (and obviously different words)
have different baseline durations, duration features are typically
normalized for phonetic content. In addition they may be nor-
malized by speaker, since speakers differ in speaking rate. The
definition of pause durations in conversational speech is more
tricky than in monologues, since in the former one must specify
how to treat pause time during which another speaker has the
floor. Useful pitch and energy features tend to capture differences
across the word boundary in question, as well as slopes and nor-
malized level of pitch or energy just before a boundary. In the
case of both pitch and energy, features must be appropriately
normalized (by speaker for pitch; by channel for energy).
Stylization of contours often aids feature robustness.

In a number of machine learning experiments on prosodic
features for sentence segmentation, e.g., [8], it has been found
that different features play different roles in different genres.
The approach has been to perform feature selection to arrive at
useful feature sets for a given genre. In a recent study, however,
it was found that with the exception of pause length (which,
because of turn-taking differences, can differ dramatically
between monologues and conversational speech), different
speaking styles actually appear to share similar underlying fea-
ture distributions and separability for boundaries versus non-
boundaries. (Comparisons were made using dialog act
boundaries that can be viewed as equivalent to sentence bound-
aries when collapsed into one class.) When comparing meetings
and broadcast news in English [3], F0, duration, and energy fea-
tures show remarkable similarity across styles. Figure 1 provides
an example for a feature measuring durational lengthening in
the word before the boundary. Such results suggest, unexpect-
edly, that with the exception of pausing behavior, people may be
marking sentence boundaries prosodically in a similar manner
in both styles—even extending duration of preboundary words
by about the same amount over nonboundaries, relatively speak-

ing. Thus, previously assumed genre-specific feature differences
may alternatively be explained by two factors: the modeling of
priors in the machine learning techniques used and differences
in pause length distributions. One might then propose that
more robust cross-genre prosodic sentence segmentation mod-
els could be built via adaptation and adjustment for these two
sources of variation.

In addition to lexical and prosodic features, other structural
features such as speaker change and overlap information can
improve the performance of a boundary detection system.
Syntactic features have also been used [14] to provide phrase level
constraints for sentence boundary detection. At an even higher
level, in story or topic segmentation, topic-related text features
from much longer windows are useful, as in TextTiling [15].

MULTILEVEL SEGMENTATION
Since the various types of segmentation are generally interde-
pendent and automatically detected boundaries can be full of
errors, soft predictions (boundary posteriors) at the different
levels can be considered jointly to improve performance.
Speaker boundaries in particular, being based purely on acoustic
information, often do not align perfectly with sentence bound-
aries that are based on speech recognizer output. Since speaker
and sentence boundaries typically coincide (except in cases of
overlapping sentences, which may be seen in conversational
speech), higher accuracy can be obtained by adjusting speaker
boundary times to match those of nearby sentence boundaries.
However, it may be more effective to include hypothesized
speaker boundary scores directly into the sentence boundary
detection process. At a higher level, story boundary detection
also benefits from the use of soft sentence boundary decisions.
In experiments on broadcast news speech [12], improved story
boundary detection is achieved by considering candidate bound-
ary points at more locations than the automatically detected
sentence boundaries, either by lowering the threshold for sen-
tence detection (e.g., from probability 0.5 to probability 0.1) or
simply by considering all boundaries with a 250 ms or greater
length pause. Taking into consideration the higher-level infor-
mation associated with story boundary detection can potentially
feed back into improvements in sentence segmentation. The use
of soft decisions on segment boundaries makes it possible to
tune the boundary detection threshold or operating point for
specific applications. Work described in the next section shows
that this is indeed useful, though the best operating point varies
with the different tasks.

APPLICATIONS
Spoken document processing can involve a combination of sev-
eral different tasks, typically starting with speech recognition and
speaker segmentation, followed by some basic linguistic analysis
such as POS tagging and parsing, and then involving higher level
processing such as translation, IE, and/or summarization.
Automatic segmentation touches on all of these problems, but
we will focus on stages after speech recognition. Often these
modules are implemented in a strict pipeline, but a more tightly

[FIG1] Duration distributions at boundary and nonboundary
events in broadcast news (BN) and meeting recordings (MRDAs).
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coupled architecture can reduce propagation of errors and
improve performance. Hence, the structure of the presentation
here does not imply that a pipelined architecture is required.

In the various examples here, the segmentation types used
(speaker, sentence, comma, intonational phrase, and story)
employ the basic algorithms described earlier. The specific varia-
tions and performance vary with genre and with the time period
of the work, since this is still an area of research and the best
case configurations are evolving.

Since this section describes a
variety of applications, the work
is evaluated with a variety of dif-
ferent measures, typically with
standard scoring software pack-
ages or algorithms that are well
documented in the literature. For
brevity, detailed scoring descrip-
tions are omitted. Most applica-
tions are scored by counting the number of correct matches
to a reference. In many cases, the result is reported based on
an F-score, which is the harmonic mean of precision (the per-
centage of detected events that are correct) and recall (the
percentage of target events that are detected). For translation
and summarization, scoring metrics count matches of differ-
ent length word strings in the hypothesized text compared to
one or more references.

SPEAKER ROLE AND IDENTITY RECOGNITION
In broadcast news speech, most speech is from anchors and
reporters. The remaining speech is from excerpts from quota-
tions or interviews, sometimes referred to as “sound bites.”
Detecting these sound bites and associating their speech with
particular speakers is important for IE and attribution in ques-
tion answering. This task takes as input the segmentation and
speaker indexing provided by speaker diarization, and aims to
determine the speaker role and name associated with each seg-
ment. Using the example cited earlier, the task is to associate the
speech segments produced by Cohen and Blair with their names. 

Data from the TDT4 Mandarin broadcast news has been
used for sound-bite segment detection and speaker name
recognition [16] using a classification framework. For sound-
bite segment detection, each speaker turn is labeled based on
the speaker’s role: anchor, reporter, or sound bite. The features
used are based on textual information (mainly word n-grams)
from the current segment, the preceding and the following seg-
ments. For speaker name recognition, the approach takes
advantage of the coded behavior typical of broadcast news (i.e.,
reporters often naming the next or previous speaker). First,
hypothesized names are identified from the current and the
neighboring segments, each name is classified in terms of
whether or not it is the speaker’s name for the target sound-
bite segment. The features used were words and associated
positions (e.g., in the sentence, in the segment). 

The study looked at the impact of word errors and sen-
tence segmentation errors on both the sound-bite detection

and name recognition tasks. For sound-bite detection, the
impact of segmentation errors was much greater than that of
word errors, with degradation in F-measure of 20% versus
5%, respectively. This may be due to the fact that the error
rate of the recognition system is low (less than 10% charac-
ter error rate), and the wrong sentence segmentation leads to
misses of important cue words for sound-bite detection. For
name recognition, the opposite is true: there is no impact of

segmentation error, while word
errors degrade F-measure by
13%. Since many sound-bite
speaker names do not appear fre-
quently in the recognizer train-
ing data, these are less reliably
recognized than other words. In
the pipelined implementation,
errors propagate and the fully
automatic system detects the

sound bites and the associated names with an overall F-meas-
ure of 54%. It is likely that this result could be improved by
considering multiple candidate sentence segmentations, as
has been explored in other applications.

TAGGING AND PARSING
POS tagging is the process of marking up a sequence of words
with their parts of speech (e.g., noun, verb). Parsing produces a
structural analysis of a word sequence with respect to a gram-
mar. POS tagging and parsing, which are well studied and useful
techniques for processing text, are now being applied to spoken
language transcripts. High-quality automatic sentence segmen-
tation is fundamental for utilizing these techniques most effec-
tively. Although a POS tagger can process word sequences that
are not segmented into sentences, particularly when trained
under that condition, its accuracy can be greatly improved when
it is trained and evaluated on word strings segmented into sen-
tences rather than larger segments such as stories or an entire
conversation. Speech transcripts that are automatically annotat-
ed with punctuation can be tagged even more accurately. Hillard
et al. [17] evaluated the impact of automatic comma prediction
on POS tagging accuracy of Mandarin broadcast news speech. A
Viterbi tagger trained with tag sequences from the Penn Chinese
Treebank 5.2 augmented with automatically predicted commas
was significantly more accurate than one trained using the same
training data without punctuation.

Most natural language parsers require long word sequences
to be segmented into shorter subsequences to address length-
dependent complexity issues. Again parsers can be trained to
process the pause-based segmentation that some speech sys-
tems use. However, since the training corpora for parsers are
largely based on textual resources or employ a segmentation
that is sentence-like, automatic sentence segmentation pro-
vides better matching of training and testing conditions and
can improve accuracy. Until recently, research on parsing
speech was done using reference transcripts hand-segmented
into sentences (e.g., [18]), in part because the available parsing

THERE ARE TWO BASIC MODELING
APPROACHES USED FOR

STRUCTURAL SEGMENTATION:
DETECTION OF BOUNDARY EVENTS

AND WHOLE CONSTITUENT
MODELING.
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metrics could not measure parse performance on an input
word string that did not match the yield of a reference parse.
However, because parsing is a useful component technology for
speech processing applications,
researchers are now investigating
the impact of word transcription
and sentence segmentation errors
on parse quality. These efforts
were supported by the develop-
ment of the SParseval evaluation
suite [19], which can measure
parse accuracy for inputs that
contain word and sentence seg-
mentation errors.

Kahn et al. [20] compared the
effect of sentence segmentation
quality on parsing of reference transcripts of conversational
English. They found that parsing accuracy was greater with ref-
erence segmentation than those produced by a state-of-the-art
sentence segmentation algorithm using both lexical and prosod-
ic features, and both are significantly better than the simple
pause-based segmentation of an ASR system. Using SParseval,
Harper et al. [19] found similar results for ASR transcripts. In
addition, they found that using ASR (versus reference) tran-
scripts had a slightly greater impact on parse accuracy than
automatic (versus reference) sentence segmentation. Roark et
al. [14], [19] further investigated using a soft decision from sen-
tence segmentation for parsing. Their reranking system, when
optimized on two different downstream objectives—parse accu-
racy and sentence segmentation accuracy [19]—obtained differ-
ent patterns of improvement in sentence segmentation and
parse accuracy. Optimizing on sentence accuracy reduced sen-
tence segmentation error and improved parse accuracy relative
to a pause-based segmentation, but optimizing specifically for
parse accuracy yielded greater improvements in parsing (more
than a factor of two for ASR transcripts) at some expense in sen-
tence accuracy. When optimizing for parse accuracy, the system
tended to produce shorter segments than when optimizing for
sentence segmentation accuracy, i.e., trading off precision for
recall. The shorter sentence-like segments also benefited a pars-
ing language model used in speech recognition [21], leading to
significant improvements in the SParseval score when word
sequences and parses are chosen jointly.

INFORMATION EXTRACTION
IE aims at finding semantically defined entities in documents and
characterizing relations between them. Like many other text pro-
cessing tasks, an IE system is often trained from a text corpus
with the availability of manually written punctuation. While sys-
tems for speech can be trained by removing punctuation from
training data, studies have shown that there is an associated loss
in performance. For example, missing commas can have a dra-
matic impact on IE [22], with performance loss typically bigger
than that observed when moving from reference to ASR output
(for a range of word error rates on English news). Hillard et al.

[17] obtained similar results for name tagging on Mandarin
broadcast news. Further, it was shown that automatic comma
prediction could be used to recover half of the lost performance in

experiments on text. In experi-
ments on speech, analyses of differ-
ences in results with and without
commas show cases where a
comma is predicted before or after a
name, which enabled the name tag-
ger to identify a name that it had
previously missed, or to correct a
name boundary error.

Another study [23] confirmed
these observations for English IE
on speech and found that optimiz-
ing punctuation prediction

thresholds for IE performance is more effective than optimiz-
ing these thresholds separately for punctuation prediction
accuracy. Favre et al. [23] focused on two types of punctuation,
periods and commas, and conducted experiments using the
NYU IE system [24] for a subset of TDT4 English broadcast
news corpus. The results showed that removing or poorly pre-
dicting punctuation by using fixed sentence lengths adversely
affects IE. Error analysis showed that punctuation errors can
result in merged noun phrases or split entities. The best case
performance was obtained by optimizing both comma and sen-
tence boundary thresholds specifically for detecting entities or
relations. This work suggests that punctuation should be gen-
erated differently depending on the final objective, similar to
the findings for other tasks described here.

MACHINE TRANSLATION
In MT, sentence segmentation helps provide translations with
proper punctuation, but it also impacts the word choice since
sentence boundaries are incorporated in the language model
and the possible phrase translations. In addition, many system
configurations (e.g., syntax-based statistical MT, ASR word lat-
tice translation, rescoring and system combination algorithms
for (N-best) output of one or several MT systems) require that
the number of words in the input source language sentence
units should not be too large (e.g., <50 words) nor too small
(e.g., >2 words) to avoid losing context information.

The sentence length constraints motivate a constituent-
based approach to sentence segmentation, in which an explicit
sentence length model is included [10]. The translation applica-
tion also motivates a new type of feature, introduced in [11] to
characterize phrase coverage in the MT system of the words that
span the candidate boundaries. The idea behind it is to make
sure that word sequences with good phrasal translations will not
be broken by a segment boundary. The phrase coverage feature
is a bigram language model probability. Depending on whether
the bigram probability is high or low, there is likely to be a good
phrasal translation in the system or not, respectively. If there is
a good phrasal translation, then this is probably not a good can-
didate for a sentence boundary.

THERE IS A CONSISTENT FINDING
THAT TUNING THE SEGMENTATION

THRESHOLDS FOR THE APPLICATION
LEADS TO SIGNIFICANT

PERFORMANCE IMPROVEMENTS
OVER USING THE THRESHOLD

THAT MINIMIZES SEGMENTATION
ERROR ALONE. 
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Different sentence segmentation algorithms have been eval-
uated on large vocabulary Arabic-to-English and Chinese-to-
English broadcast news translation tasks using the phrase-based
MT system of RWTH [25]. The explicit length modeling of the
whole-constituent model (using a less sophisticated prosody
model and without the phrase coverage feature) did not do as
well as the boundary detection approach in terms of sentence
segmentation accuracy, but it did lead to better MT perform-
ance. MT performance improves by combining the two methods,
but the best result was achieved by using the phrase coverage
feature. The sentence boundary precision is reduced significant-
ly when the phrase coverage feature is used, but this does not
affect the translation because the context at the erroneously
inserted boundaries was not captured in MT training anyway. As
in the parsing work, MT experiments have shown that a lower
detection threshold is better for translation of Chinese (0.2 ver-
sus the minimum error threshold of 0.5), favoring recall over
precision. This effectively says that shorter segments are better
for translation of Chinese, though average lengths depend on
genre. For Arabic, longer sentences are better, and the results
are less sensitive to sentence unit prediction than for Chinese-
to-English translation. A separate study on Arabic-to-English
translation also found that longer sentences are better, empha-
sizing the importance of optimizing sentence segmentation
directly for translation performance [26]. Shorter sentences in
Chinese are likely to help limit reordering errors, while for
Arabic (which has less long-distance reordering), longer seg-
ments likely provide additional context without much increased
risk of reordering mistakes. 

While punctuation marks predicted in ASR output can be
directly translated by a MT system into target language punctua-
tion marks, they can be also used to guide the MT process itself.
In [11], automatically predicted Chinese commas were used as
soft boundaries for reordering in MT search. The reordering
across a comma is assumed to be highly unlikely and is penal-
ized. This is done by modifying the lexicalized reordering model
of the phrase-based MT system [27]. The penalty for reordering
across a comma can be made dependent on the confidence with
which the comma was predicted. Thus, the penalty will be
smaller if the comma has a low posterior probability.

To test the effect of using automatically predicted commas as
soft boundaries, additional experiments were performed on the
Chinese-to-English task. The goal was to show that longer sen-
tence units which capture more context can be used when
reordering is constrained to subsentence units separated by
commas. Using standard MT development scoring methods that
do not require human assessment (BLEU and TER), no signifi-
cant improvement was observed when using the soft boundary
reordering constraints in comparison with translating shorter
sentence units. However, the word order in some of the translat-
ed sentences was subjectively better when the soft boundary
penalty was applied. (Punctuation is not affected, since only
reordering is impacted in this implementation, so only lexical
word changes are captured by the score.) It may be that intona-
tional phrases (rather than commas) would provide better soft

boundaries and/or that the constraints should depend on POS or
lexical context. In addition, approaches using predicted commas
as features rather than constraints may be more successful. 

EXTRACTIVE SPEECH SUMMARIZATION
Extractive speech summarization algorithms [28]–[30] operate
by selecting segments from the source spoken documents and
concatenating them to generate a summary. Generally, the
speech segments extracted for summarization should be seman-
tically meaningful and coherent stretches of speech. 

Segmentation approaches currently used or proposed for
extractive summarization include words, phrases, sentences, or
speaker turns [28]. The choice of segmentation unit greatly
influences the length and quality of the resulting summary. In
experiments on English broadcast news, researchers at
Columbia University explored the use of intonational phrases,
pause-based chunking, and sentence units as alternatives for
segmentation in summarization. A segment was labeled for
inclusion in the summary if more than 50% of the segment was
present in the human summary. Inclusion versus exclusion was
predicted automatically using a Bayesian network classifier that
used only acoustic and structural features for summarization.
Using the standard ROUGE summarization score, the best
results were obtained with intonational phrases.

Other experiments by researchers at the University of Texas,
Dallas have looked at whether tuning the sentence segmenta-
tion threshold for extractive summarization could lead to
improved performance. In this case, experiments were on the
ICSI meeting corpus, and the inclusion versus exclusion classifi-
er used maximal marginal relevance with textual features only.
An HMM was used for sentence segmentation, and the decision
threshold was varied to provide different units for the subse-
quent summarization module. Unlike many of the other applica-
tions explored here, results showed that performance was stable
over a large range of sentence segmentation thresholds, though
this may be a consequence of the specific text features used.

OPEN QUESTIONS
In summary, the fact that most language technology used in spo-
ken document processing is designed in large part from written
text argues that speech must be made to look more like text for
achieving good performance. One important challenge in this
respect is speech segmentation, including sentence segmenta-
tion at a minimum, but ideally also speaker and topic segmenta-
tion for formatting and adaptation, as well as subsentence
punctuation and/or intonational phrase prediction for higher
accuracy in many applications. There are a few basic computa-
tional models that have been developed for this purpose, many of
which combine lexical and acoustic cues in detecting boundaries.
While these algorithms are far from perfect, in most applications
they provide a much better solution than simple pause-based
segmentation. Of course, there is also evidence that further
improvements to segmentation algorithms would be worthwhile,
though improvements to word recognition alone will provide
some gains in structural segmentation performance. In addition,
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there are several remaining challenges for annotating speech to
improve language processing.

In the various applications surveyed here, there is a consis-
tent finding that tuning the segmentation thresholds for the
application leads to significant performance improvements
over using the threshold that minimizes segmentation error
alone. In many cases, higher recall is more effective (i.e.,
shorter sentences). However, the optimal threshold varies,
and in some cases longer sentences are more effective. This
raises the question as to how best to meet the needs of multi-
ple language processing modules, particularly when they
must all operate on the same hypothesized word sequence.
One solution is to use a low threshold (more hypothesized
boundaries) with confidences associated with the boundaries,
so that different downstream modules can use their own
threshold. Alternatively, it may be that the need for different
thresholds reflects a need for different types of structures,
including subsentence units such as intonational phrases or
syntactic chunking. Indeed, the information extraction exper-
iments show that the optimal sentence detection threshold
interacts with the comma threshold.

Another important difference between speech and text,
which was not addressed here, is the presence of disfluencies in
speech. Consider the example: “I went I left the store” is a sen-
tence containing a speech repair, where the speaker intends “I
went” to be replaced by “I left.” The appropriate processing of
such disfluencies poses a serious challenge, in part because they
are not well modeled in textual training materials. Research has
shown that the automatic identification of speech repairs can
significantly improve parsing [18] and that some of the structur-
al modeling approaches used sentence segmentation can be
applied to disfluency detection [8]. However, there has been rel-
atively little research on automatic detection of disfluencies and
its use in language processing, in part because there is so little
disfluency-annotated speech corpora. As language processing
research increasingly turns to conversational speech tasks, such
as talk shows and meetings, it will become important to address
this problem.

Of course, it is important to remember that there is useful
information in speech beyond what is in text. In particular,
there are cues to speaker intent and information salience that
are there to be mined in future applications. However, lever-
aging this information in language processing will require
annotating large speech corpora, as well as leveraging semisu-
pervised and unsupervised learning methods to avoid costly
hand-labeling efforts.

AUTHORS
Mari Ostendorf (mo@ee.washington.edu) has been a professor
of electrical engineering at the University of Washington since
1999. She received her Ph.D. from Stanford University in 1985
and subsequently worked at BBN and Boston University. Her
research interests are in statistical models for spoken language
processing. She is an IEEE Fellow and current editor in chief of
IEEE Transactions on Audio, Speech and Language Processing.

Benoit Favre (favre@icsi.berkeley.edu) received his Ph.D.
degree in 2007 from University of Avignon, France. From 2003
to 2007, he was research engineer at Thales L&J, France, and
teaching assistant at University of Avignon. In 2007, he obtained
a postdoctoral position at ICSI, USA. His research interests
include natural language and speech processing, focusing on
structural annotation and automatic summarization.

Ralph Grishman (grishman@cs.nyu.edu) is a professor of
computer science at New York University and directs the Proteus
Project, which conducts natural language processing research
with a focus on information extraction and the creation of
resources such as dictionaries and annotated corpora. He is a
past president of the Association for Computational Linguistics
and author of the textbook Computational Linguistics.

Dilek Hakkani-Tür (dilek@icsi.berkeley.edu) is a senior
researcher at ICSI. Prior to that, she worked for AT&T Labs-
Research. She received her Ph.D. in computer engineering from
Bilkent University in 2000. Her research interests include spo-
ken language processing, dialog systems, and active and unsu-
pervised learning. She is a member of ISCA, IEEE, ACL and an
associate editor of IEEE Transactions on Audio, Speech and
Language Processing.

Mary Harper (harper@ecn.purdue.edu) obtained her Ph.D.
in computer science from Brown University in 1990. She is a
senior research scientist at the Center for Advanced Study of
Language at the University of Maryland, where her research
focuses on computer modeling of human communication with a
focus on methods for incorporating multiple knowledge sources
(e.g., lexical, syntactic, prosodic, and visual).

Dustin Hillard (dhillard@yahoo-inc.com) received his Ph.D.
degree in electrical engineering from the University of
Washington in 2008. He is now with Yahoo, Inc.

Julia Hirschberg (julia@cs.columbia.edu) is a professor of
computer science at Columbia University. From 1985 to 2003
she worked at Bell Labs/AT&T Labs. She was president of the
International Speech Communication Association (2005–2007),
and edited Speech Communication (2003–2006) and
Computational Linguistics (1993–2003). She is an AAAI fellow .

Heng Ji (hengji@courant.nyu.edu) is an assistant research
scientist with the Computer Science Department, New York
University. She received her Ph.D. degree from New York
University in September 2007. Her research interests focus on
natural language processing. She published one book chapter
and 20 papers.

Jeremy G. Kahn (jgk@ee.washington.edu) received his M.A.
in linguistics from the University of Washington in 2005, where
he is currently pursuing his Ph.D. After his A.B. in linguistics
from Brown in 1997, he worked in speech synthesis at Eloquent
Technology and speech recognition at Conversay. His research
interests include the use of syntactic and prosodic information
to improve statistical language processing.

Yang Liu (yangl@hlt.utdallas.edu) received a Ph.D. in electri-
cal and computer engineering from Purdue University in 2004.
Before joining the University of Texas at Dallas in 2005, she was
a researcher at the International Computer Science Institute at

Authorized licensed use limited to: International Computer Science Inst (ICSI). Downloaded on May 07,2010 at 21:30:46 UTC from IEEE Xplore.  Restrictions apply. 



IEEE SIGNAL PROCESSING MAGAZINE [69] MAY 2008

Berkeley from 2002 to 2005. Her research interests are in the
area of speech and language processing.

Sameer Maskey (smaskey@us.ibm.com) is a research staff
member at IBM T.J. Watson Research Center. He defended his
Ph.D. thesis from Columbia University in December, 2007. He is
currently working on machine translation for speech-to-speech
translation project at IBM.

Evgeny Matusov (matusov@i6.informatik.rwth-aachen.de) is
a Ph.D. candidate at the Department of Computer Science of
RWTH Aachen University. His research interests are in the area
of statistical machine translation of text and speech, with the
focus on combination of speech recognition and machine trans-
lation systems. He has been author and co-author of more than
20 publications and received the ISCA Best Student Paper Award
in 2005.

Hermann Ney (ney@informatik.rwth-aachen.de) is a full
professor of computer science at RWTH Aachen University,
Germany. His research interests include statistical methods for
pattern recognition and their application to speech recognition,
machine translation and image object recognition. He has
worked on dynamic programming for speech recognition, lan-
guage modeling and phrase-based approaches to machine trans-
lation. He was the 2005 recipient of the Technical Achievement
Award of the IEEE Signal Processing Society.

Andrew Rosenberg (amaxwell@cs.columbia.edu) is a Ph.D.
student at Columbia University doing research on automatic
analysis of intonation, and story segmentation.

Elizabeth Shriberg (ees@speech.sri.com) received her Ph.D.
from the University of California, Berkeley, in 1994. She is a sen-
ior researcher at SRI and ICSI. Her work on spontaneous speech
aims to combine linguistic and discourse knowledge with tech-
niques from speech and speaker recognition, to advance both
scientific understanding and recognition technology.

Wen Wang (wwang@speech.sri.com) received her Ph.D.
degree from Purdue University in 2003. Since 2002, she has been
with the Speech Technology and Research Laboratory of SRI
International. Her research interests include language modeling,
speech and natural language processing and understanding, and
machine learning. She is a Member of the IEEE and ACL.

Chuck Wooters (ccwooters@gmail.com) received his B.A.
and M.A. in linguistics from  his Ph.D. in Speech Recognition in
1993, all from University of California at Berkeley. Throughout
his career, he has held several industry and research positions.
He is chief speech scientist at NextIT Corporation in Spokane,
Washington.

REFERENCES
[1] D. Jones, E. Gibson, W. Shen, N. Granoien, M. Herzog, D. Reynolds, and C.
Weinstein, “Measuring human readability of machine-generated text: Three case
studies in speech recognition and machine translation,” in Proc. Int. Conf.
Acoustics, Speech, and Signal Processing, 2005, pp. 1009–1012.

[2] E. Shriberg, R. Dhillon, S. Bhagat, J. Ang, and H. Carvey, “The ICSI meeting
recorder dialog act (MRDA) corpus,” in Proc. SIGDIAL, 2004, pp. 97–100.

[3] E. Shriberg, B. Favre, J. Fung, D. Hakkani-Tur, and S. Cuendet,
“Prosodic similarities of dialog act boundaries across speaking styles,” in
Linguistic Patterns in Spontaneous Speech (Language and Linguistics
Monograph Series), S.-C. Tseng, Ed. Taipei, Taiwan: Institute of Linguistics,
Academia Sinica, 2008. 

[4] S. Tranter and D. Reynolds, “An overview of automatic speaker diarization
systems,” IEEE Trans. Audio, Speech and Language Processing, vol. 14, no. 5, pp.
1557–1565, 2006.

[5] A. Stolcke and E. Shriberg, “Automatic linguistic segmentation of conversa-
tional speech,” in Proc. ICSLP, 1996, pp. 1005–1008.  

[6] M. Tomalin and P. Woodland, “Discriminatively trained Gaussian mixture mod-
els for sentence boundary detection,” in Proc. ICASSP, 2006, pp. 549–552. 

[7] J. Huang and G. Zweig, “Maximum entropy model for punctuation annotation
from speech,” in Proc. ICSLP, 2002, pp. 917–920. 

[8] Y. Liu, E. Shriberg, A. Stolcke, D. Hillard, M. Ostendorf, and M. Harper,
“Enriching speech recognition with automatic detection of sentence boundaries
and disfluencies,” IEEE Trans. Audio, Speech and Language Processing, vol. 14,
no. 5, pp. 1526–1540, 2006.

[9] M. Zimmermann, D. Tür, J. Fung, N. Mirghafori, L. Gottlieb, E. Shriberg, and
Y. Liu, “The ICSI+ multi-lingual sentence segmentation system,” in Proc.
Interspeech, 2006, pp. 117–120. 

[10] E. Matusov, A. Mauser, and H. Ney, “Automatic sentence segmentation and
punctuation prediction for spoken language translation,” in Proc. Int. Workshop
Spoken Language Translation, 2006, pp. 158–165. 

[11] E. Matusov, D. Hillard, M. Magimai-Doss, D. Hakkani-Tür, M. Ostendorf, and
H. Ney, “Improving speech translation by automatic boundary prediction,” in Proc.
Interspeech, 2007, pp. 2449–2452. 

[12] A. Rosenberg, M. Sharifi, and J. Hirschberg, “Varying input segmentation for
story boundary detection in English, Arabic, and Mandarin broadcast news,” in
Proc. Interspeech, 2007, pp. 2589–2592. 

[13] C. Ma, P. Nguyen, and M. Mahajan, “Finding speaker identities with a condi-
tional maximum entropy model,” in Proc. ICASSP, vol. 4, 2007, pp. 261–264. 

[14] B. Roark, Y. Liu, M.P. Harper, R. Stewart, M. Lease, M. Snover, I. Shafran, B.
Dorr, J. Hale, A. Krasnyanskaya, and L. Yung, “Reranking for sentence boundary
detection in conversational speech,” in Proc. Inter. Conf. Acoustics, Speech, and
Signal Processing, 2006, pp. 545–548. 

[15] M. Hearst, “TextTiling: Segmenting text into multi-paragraph subtopic pas-
sages,” Computat. Linguistics, vol. 23, no. 1, pp. 33–64, 1997.

[16] F. Liu and Y. Liu, “Sound-bite identification using reference and automatic
transcripts of broadcast news speech,” in Proc. ASRU, 2007, pp. 653–658.

[17] D. Hillard, Z. Huang, H. Ji, R. Grishman, D. Hakkani-Tür, M. Harper, M.
Ostendorf, and W. Wang, “Impact of automatic comma prediction on POS/name
tagging of speech,” in Proc. IEEE/ACL Workshop Spoken Language Technology,
2006, pp. 58–61. 

[18] E. Charniak and M. Johnson, “Edit detection and parsing for transcribed
speech,” in Proc. NAACL Conf., 2001, pp. 118–126.

[19] M.P. Harper, B. Dorr, J. Hale, B. Roark, I. Shafran, M. Lease, Y. Liu, M. Snover,
L. Yung, A. Krasnyanskaya, and R. Stewart, “2005 Johns Hopkins summer work-
shop final report on parsing and spoken structural event detection,” Johns
Hopkins Univ., Tech. Rep., 2005.  

[20] J.G. Kahn, M. Ostendorf, and C. Chelba, “Parsing conversational speech using
enhanced segmentation,” in Proc. HLT/NAACL Conf., 2004, pp. 125–128. 

[21] J.G. Kahn, D. Hillard, M. Ostendorf, and W. McNeill, “Joint optimization of
parsing and word recognition with automatic segmentation,” Univ. of Washington,
Tech. Rep., 2007.  

[22] J. Makhoul, A. Baron, I. Bulyko, L. Nguyen, L. Ramshaw, D. Stallard, R.
Schwartz, and B. Xiang, “The effects of speech recognition and punctuation on
information extraction performance,” in Proc. Eurospeech, 2005, pp. 57–60. 

[23] B. Favre, R. Grishman, D. Hillard, H. Ji, D. Hakkani-Tür, and M. Ostendorf,
“Punctuating speech for information extraction,” in Proc. Int. Conf. Acoustics,
Speech and Signal Processing, 2008. 

[24] R. Grishman, D. Westbrook, and A. Meyers, “NYU’s English ACE2005 system
description,” Computer Science Dept., New York Univ., Proteus Project Tech. Rep.
05-01 [Online]. Available: http://nlp.cs.nyu.edu/publication

[25] A. Mauser, R. Zens, E. Matusov, S. Hasan, and H. Ney, “The RWTH statistical
machine translation system for the IWSLT 2006 evaluation,” in Proc. Int.
Workshop Spoken Language Translation, 2006, pp. 103–110. 

[26] S. Matsoukas, I. Bulyko, B. Xiang, K. Nguyen, R. Schwartz, and J. Makhoul,
“Integrating speech recognition and machine translation,” in Proc. Int. Conf.
Acoustics, Speech, and Signal Processing, 2007, pp. 1281–1284. 

[27] R. Zens and H. Ney, “Discriminative reordering models for statistical machine
translation,” in Proc. HLT/NAACL Workshop Statistical Machine Translation,
2006, pp. 55–63. 

[28] C. Hori, S. Furui, R. Malkin, H. Yu, and A. Waibel, “Automatic speech summa-
rization applied to English broadcast news speech,” in Proc. Int. Conf. Acoustics,
Speech, and Signal Processing, 2002, pp. 9–12. 

[29] X. Zhu and G. Penn, “Roles of textual, acoustic and spoken-language fea-
tures on spontaneous-conversation summarization,” in Proc of HLT/NAACL,
2006, pp. 197–200. 

[30] H. Christensen, B. Kolluru, Y. Gotoh, and S. Renals, “From text summarisa-
tion to style-specific summarisation for broadcast news,” in Proc. ECIR, 2004,
pp. 223–237. [SP]

Authorized licensed use limited to: International Computer Science Inst (ICSI). Downloaded on May 07,2010 at 21:30:46 UTC from IEEE Xplore.  Restrictions apply. 


