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ABSTRACT

This paper describes ICSI’s 2005 speaker recognition system,
which was one of the top performing systems in the NIST 2005
speaker recognition evaluation. The system is a combination of
four sub-systems: 1) a keyword conditional HMM system, 2) an
SVM-based lattice phone n-gram system, 3) a sequential non-
parametric system, and 4) a traditional cepstral GMM System, de-
veloped by SRI. The first three systems are designed to take ad-
vantage of higher-level and long-term information. We observe
that their performance is significantly improved when thereis
more training data. In this paper, we describe these sub-systems
and present results for each system alone and in combinationon
the Speaker Recognition Evaluation (SRE) 2005 developmentand
evaluation data sets.

1. INTRODUCTION

Because of their effectiveness and relative simplicity, cepstral-
based Gaussian Mixture Models (GMMs) [16] have become the
mainstream approach for text independent speaker recognition
systems. However, the cepstral bag-of-frames modeling, al-
though powerful, does not take advantage of long-term informa-
tion present in the speech signal. There have been myriad attempts,
especially since the Johns Hopkins 2002 Workshop [18], to har-
ness the power of such features. The systems developed at ICSI,
and presented in this paper, are contributions to this endeavor.

ICSI’s 2005 speaker recognition system is a weighted combi-
nation of four systems. Three of the systems were developed at
ICSI and aim at employing higher-level information. These sys-
tems are:� Keyword Conditional HMM System (WordHMM)� SVM-based Lattice Phone N-gram System (PhoneNgram)� Sequential Non-Parametric System (SNP)

Each system relies on either phone- or word-level recognition
transcription. The fourth system, which has been developedby
SRI, is a traditional cepstral-based GMM system. The four sys-
tems are combined at the score level using a neural network.

The nature of the data often determines the parameters of the
research. Starting in year 2001, NIST added the “extended data
task” to its yearly speaker recognition evaluation (SRE), with the
intent “to foster new research ... through the discovery andex-
ploitation of higher-level and more complex characteristics of a
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speaker’s speech” [14]. The extended data task soon became a
main focus of the evaluations. Our three systems are designed to
use such long-term information and to model idiosyncratic speaker
behaviors.

This paper is organized as follows: In Section 2, we describe
the NIST Speaker Recognition Evaluation 2005 (SRE05) task.In
section 3, the resources that are common to the systems, suchas
the development data and combination strategy, are discussed. In
Section 4, the constituent system descriptions and experimental re-
sults on the development set are presented. Experimental results
on the SRE05 evaluation set and an analysis of system combina-
tions are presented in 5. Conclusions are presented in Section 6.

2. THE NIST SPEAKER RECOGNITION EVALUATION

To help the reader place this work in context, we briefly describe
NIST SRE05. For complete details, please see the EvaluationPlan
[15].

The NIST SRE05 is a part of yearly ongoing evaluations in
speaker recognition. For this year’s evaluation, data was selected
from the Mixer corpus [13]. Five mintues of each conversation
between unfamiliar speaking partners were selected, with the as-
sumption (or hope) that each party spoke for roughly half thetime.
Data from different channel conditions (e.g., landline, cellular,
hands-free) as well as languages other than English (e.g., Span-
ish, Mandarin, Arabic) were collected. The evaluation paradigm
includes a 5x4 matrix of optional training (such as 10 seconds, 1
side, or 8 sides of a conversation) and testing (such as 10 seconds,
or an entire conversation side) conditions. Therequiredcondition
was chosen to be one in which the length of both the training and
test segments were one conversation side each (referred to as “1
side training” in the rest of the paper), and included both English
and non-English trials. Thecommonsubset included only English
trials collected from a hand-held telephone.

Given our interest in long-term features, we also participated
in the “8 side training” condition, using 8 conversation sides for
training. In both cases, we evaluated the systems on test segment
durations of 1 conversation side only.

Note that these conditions also include some non-English tri-
als, where either the training, testing, or both segments are in a
language other than English. Due to both the linguistic dependen-
cies of some of our systems, as well as the availability of speech
recognition output in English, we have chosen to concentrate on
the English trials. Although for the SRE05 evaluation we didtest
a subset of our systems on the non-English trials, in this paper we
focus on and only report results on the English trials.



In SRE, performance is measured primarily using the Decision
Cost Function (DCF), although the traditional measure of equal
error rate or EER (the point at which the rate of false alarms and
misses are equal) is also reported. DCF is the weighted sum of
miss and false alarm error probabilities, defined by:CDet = CMiss � PMissjTarget � PTarget+ CFalseAlarm � PFalseAlarmjNonTarget � (1� PTarget)
where(CMiss; CFalseAlarm; PTarget) are defined to be
(10, 1, 0.01).CDet is normalized by dividing by the best cost that
could be obtained without processing the data, i.e., by(CMiss �PTarget), which effectively multipliesCDet by 10.

3. COMMON RESOURCES

In this section, we describe resources that the systems share, such
as the datasets, the combination strategy, and the ASR system.

3.1. Datasets

Five databases, all of which contain conversational telephone
(landline or cellular) speech, were used for development and test-
ing of the systems:

1. NIST SRE 2005 (Mixer)

2. NIST SRE 2004 (Mixer)

3. NIST SRE 2003 extended data
(Switchboard-II phases 2 and 3)

4. NIST SRE 2002 (Switchboard Celluar)

5. Fisher

The NIST SRE 2005 was only used for the final evaluation.
Subsets of the other four databases were used for training the
background models, estimating the TNORM statistics, training the
combination weights, and development testing . For detailson the
selection of the development subsets, see Section 1 of [9].

Background Models Training: Background data for the
WordHMM, SNP, and PhoneNgram systems was selected from
Fisher and SRE 2003 data sets. The SRI GMM system addition-
ally used NIST SRE 2002 for background training. The amount
of data used for background training by each system is detailed in
Section 4.

TNORM Models Training: TNORM models [2] were
trained using utterances from Fisher. The models were constructed
from the speech in one conversation side of the middle 5-minute
segment of the conversations. These TNORM models were from
unique speakers and roughly gender-balanced. The data comprised
a similar number of electret and cellphone channels, and a handful
of carbon-button channels.

Combination Weights Training: We experimented with
SRE04 eval data and subsets of SRE03 and Fisher to train the
weights of the neural network combiner (discussed in Section 3.2).
However, in the final system (which is reported in this paper),
SRE04 eval data was used to estimate the neural network com-
bination weights and the optimal operating point corresponding to
the minimum DCF.

Development Testing: The SRE04 evaluation set, as well as
subsets of SRE03 and Fisher were used for development testing.
For brevity, we only report on the development testing on SRE04
eval data.

Evaluation Testing: The SRE05 evaluation set served as the
held-out evaluation data. Table 1 shows the number of models
and trials for SRE04 and SRE05 evaluation sets for all English
trials. The “common condition” subset has fewer trials thanthe
“all English” subset; hence, we report results on the latterfor more
statistically meaningful comparisons.

Eval Set Train Cond Models Trials
SRE04 1side 479 15,317
SRE04 8side 225 7,336
SRE05 1side 598 20,907
SRE05 8side 464 16,053

Table 1. The number of all English models and trials for SRE04
and SRE05 evaluation sets.

3.2. Combination Strategy

The systems were combined using LNKNet software [12]. A neu-
ral network with no hidden layer and sigmoid output non-linearity
was used. The combination of all four systems was used to obtain
scores for the English trials.

As mentioned in the previous section, SRE04 data was used to
estimate the optimal combination weights. SRE04 1side-1side and
8side-1side train/test conditions were used for SRE05 1side-1side
and 8side-1side evaluation conditions, respectively. Furthermore,
only the English trials in SRE04 were used to estimate weights and
operating threshold for English trials in SRE05.

3.3. ASR System

The WordHMM and SNP systems rely on word recognition, us-
ing the word-level word and phone alignments, respectively. The
PhoneNgram system uses lattices produced from open phone loop
recognition. We used the output produced by SRI’s DECIPHER
3xRT conversational telephone speech (CTS) recognition system.
For the word-level recognition, we used models developed for the
NIST RT-03F evaluation. The system was trained on Switchboard-
I, some Switchboard-II, and CallHome English data, as well as
Broadcast News and web data for the language model (no Fisher
data was used in training the ASR system). For the details of the
ASR system, see [11].

4. THE CONSTITUENT SYSTEMS

In this section, we describe the four sub-systems that made up our
recognition system and present development results on the SRE04
dataset. Three of the systems, which aim to take advantage of
higher-level information, were developed at ICSI. The fourth one,
the cepstral GMM system, was developed at SRI and its output
was shared with us. It is a common approach in the field to com-
bine cepstral GMM systems with those designed for longer term
features in order to take advantage of both short- and long-term in-
formation inherent in the speech signal and to evaluate the added
information provided by the long-term features.

4.1. Keyword Conditional HMM System (WordHMM)

The main idea of the Keyword Conditional HMM system [3] is
to capitalize on advantages of text-dependent systems in a text-



independent domain. Whole-word HMM models are trained on
only a small subset of words (and word-pairs). We use a set of
19 keywords which we believe are rich with speaker characteristic
cues. These keywords are drawn from the following classes:� Discourse markers: actually, anyway, like, see, well, now,

you know, yousee, ithink, i mean� Filled pauses: um, uh� Backchannels: yeah, yep, okay, uhhuh, right, isee, iknow

The keyword HMMs were left-to-right state sequences with
self-loops and no skips. Each state model consisted of a mixture
of eight Gaussians and the number of states for each keyword was
defined to be the smaller of the average number of phones in pro-
nunciations of the word, multiplied by 3, and the median duration
in frames, divided by four; that ismin(mean(NumPhones �3);median(NumFrames=4)). All modeling and scoring was
performed using the HMM Toolkit, HTK [5].

The HMM feature vectors consisted of MFCCsC0 throughC19 and their deltas, producing a 40 element feature vector. Cep-
stral Mean Subtraction was performed over the speech regions of
each conversation side, as determined by the ASR word align-
ments.

Universal Background Models (UBMs) were trained on 1,128
Fisher and 425 SRE03 conversation sides from unique speakers.
Speaker models were obtained by MAP adapting the Gaussian
means of the UBMs. In the cases where there were no speaker
training data for a particular word, the UBM was simply copied
as the speaker-specific model. This resulted in removing theinflu-
ence of the keyword, as the contribution to the overall scorewas
zero, due to the cancellation of target and background. The loca-
tion of the keywords within the conversation was determinedusing
word-level ASR alignment.

Each keyword appearing in the test segment was scored by
taking the difference between the log probabilities obtained from
scoring the speaker-specific and UBM models on the test tokens.
The final score was obtained by adding these keyword scores and
normalizing by the total number of frames. The final scores were
T-normalized with 249 models constructed from unique conversa-
tion sides of the Fisher database. Figure 1 is a schematic diagram
of the WordHMM system.

Fig. 1. Schematic diagram of the WordHMM system.

Table 2 shows the improvement in performance of the SRE05
WordHMM system compared to SRE04 evaluation and post-

evaluation systems. The SRE04 evaluation system UBMs were
trained entirely on SRE03 data, whereas those of the SRE04 post-
evaluation system were trained entirely on Fisher data, which is a
better match to SRE04 eval data. Therefore, the improvementbe-
tween the first and second rows of the table is entirely due to the
difference in data used to train the UBMs. This year’s WordHMM
system (the third row in the table) differed with the previous two
systems in a number of ways. The most significant was major
infrastructure changes which resulted in the ability to more accu-
rately utilize the word alignment boundaries. Similarly, speed en-
hancements allowed the addition of TNORM as well as enabled us
to better search the system parameter space, such as the number of
states per model and number of Gaussians per state. This system
utilized eight, versus the previously used four, Gaussiansper state.
Finally, the UBM models were trained on a combination of SRE03
and Fisher data.

WordHMM 1side Train 8side Train
EER DCF EER DCF

SRE04 system 13.06% 0.526 8.85% 0.382
SRE04 post-eval 12.98% 0.445 7.06% 0.306
SRE05 system 11.38% 0.399 6.27% 0.224

Table 2. The improvement in the WordHMM system from SRE04
to SRE05. Results are shown on all English trials of SRE04 eval-
uation set. DCF is short for Min DCF in tables throughout this
paper.

It is of interest to examine the performance of the WordHMM
system alone, but particularly in combination with the traditional
cepstral GMM system (discussed in Section 4.4). Table 3 shows
the results of the WordHMM system on all English trials of
SRE04. As mentioned in Section 3.2, the systems were combined
at the score level using a neural network. We see that as the amount
of training data increases, the relative performance gap between
the WordHMM and GMM narrows. Also, the WordHMM con-
tributes much more significantly in the reduction of error inthe
8-side training condition, as expected.

WordHMM 1side Train 8side Train
EER DCF EER DCF

WordHMM 11.38% 0.3990 6.27% 0.2244
GMM 7.73% 0.3113 4.96% 0.2115
WordHMM+ 7.59% 0.2721 4.08% 0.1672
GMM (2%) (13%) (18%) (21%)

Table 3. The performance of the WordHMM system alone and
in combination with the cepstral GMM. Results are on all English
trials of SRE04 evaluation set. Values in ( ) are percent improve-
ments relative to the GMM system alone.

4.2. SVM-based Lattice Phone N-gram System

The Phone N-gram (PhoneNgram) system uses an open-loop
phone recognizer to generate phone lattices, which are thenused
to compute expected counts of phone n-grams. These expected
counts are converted into relative frequencies, which formthe fea-
ture vectors for training SVM-based speaker models [7]. This sys-
tem builds on [1, 4] and dramatically improves the results byusing
lattices rather than 1-best phone recognition hypotheses.



As mentioned in Section 3.3, we used SRI’s speech recognizer
[11] to generate phone lattices for every conversation side. Our
particular realization of the ASR system used gender-dependent,
monophone acoustic models, where each monophone was mod-
eled by a 3-state HMM. The acoustic models were trained on the
Switchboard I corpus using MFCC features. Phone decoding was
performed in open-loop mode (i.e. we used a unigram phone lan-
guage model with uniform probabilities) with a vocabulary of 46
phone units.

For the SVM, one feature vector for every conversation side
was used, where the features represent relative frequencies of the
8500 most frequent phone bigrams and trigrams. We used a linear
kernel [4] to train an SVM-based model for every target speaker.
The SVMs were trained using a one-versus-all approach, where
the conversation sides from the target speaker’s training data were
used as positive training examples, and the conversation sides in
a set of background data were used as negative training exam-
ples. For this system, we used the same background dataset as
the WordHMM system. SVM training and scoring was done using
the SVMlite package [8].

To score a given test-target pair, we simply applied the feature
vector of the test conversation to the SVM output function ofthe
target model. We then used TNORM to normalize the scores for
every test conversation.

Table 4 shows the results of the PhoneNgram system on all
English trials of SRE04 alone and in combination with the cepstral
GMM system. For the 1-side training case, the performance ofthe
PhoneNgram system is significantly worse than the GMM system,
but with the addition of data in the 8-side training condition, the
PhoneNgram system’s performance dramatically improves tothe
point of matching the GMM’s. Yet, the behaviors of the systemare
complementary, as their combination yields further improvement
(˜30% for the 8-side training case).

PhoneNgram 1side Train 8side Train
EER DCF EER DCF

PhoneNgram 12.09% 0.5408 4.96% 0.2358
GMM 7.73% 0.3113 4.96% 0.2115
PhoneNgram+ 6.47% 0.2767 3.64% 0.1443
GMM (16%) (11%) (27%) (32%)

Table 4. The performance of the Phone N-gram system alone and
in combination with cepstral GMM. Results are reported on all
English trials of SRE04 evaluation set.

4.3. Sequential Non-Parametric (SNP) system

The SNP system uses a non-parametric technique, where no ex-
plicit speaker models are built. The system performs speaker de-
tection by comparing a test segment directly to similar instances
of that segment in the training data [6]. Figure 2 shows the system
schematically.

The cepstral features employed by this system were identi-
cal to the ones used in the WordHMM system (MFCC C0-C19
plus deltas, with CMS). The system utilized ASR word align-
ments to compare phone-trigram regions in the test conversation
with every occurrence of the phone-trigram in the training con-
versation(s). Dynamic Time Warping (DTW) was used to align
frame sequences of different lengths. Frame normalized Euclidean
distances were calculated between warped phone-trigram regions.

Fig. 2. Schematic diagram of the SNP system.

Using the best (smallest) Euclidean distance, the “Hit Score” was
calculated, where:

Hit Score= Xi2test tokens

number of matched frames inikdistance[i℄ (1)

This scoring method primarily captures positive evidence by
placing exponentially higher weight on small distance values. The
value of the constantk was empirically estimated to be 1.5.

Background normalization was implemented by scoring the
test conversation against a background set in a similar procedure as
the test-target scoring. The background set consisted of 60SRE03
and 40 Fisher conversations from unique speakers. The test-target
Hit Score was then divided by the test-background Hit Score.

Finally, ZNORM was applied to normalize the scores.
ZNORM was scored in the typical method using 35 SRE03 con-
versations. TNORM was not performed due to time and computa-
tional constraints.

Table 5 shows the results of the SNP system on all English
trials of SRE04 alone and in combination with the cepstral GMM
system. As expected, the SNP system performs relatively better in
the 8-side conversation training, where there is more data.

SNP 1side Train 8side Train
EER DCF EER DCF

SNP 12.65% 0.5177 6.12% 0.3169
GMM 7.73% 0.3113 4.96% 0.2115
SNP+GMM 7.10% 0.2943 4.37% 0.1777

(8%) (6%) (12%) (16%)

Table 5. The performance of the SNP system alone and in com-
bination with cepstral GMM. Results are on all English trials of
SRE04 evaluation set.

4.4. Cepstral GMM System

The cepstral Gaussian mixture model (GMM) was developed by
our collaborators at SRI. The data was bandlimited to between
300-3300 Hz. 19 mel filters were used to compute 13 cepstral co-
efficients (C1-C13), and their delta, double delta, and triple-delta
coefficients, producing a 52 dimensional feature vector. CMS was
applied. The number of components of the GMM was chosen
to be 2048. The background GMM was trained using data from



Fisher, SRE02, and SRE03. For channel normalization, feature
mapping [17] was applied using gender- and handset-dependent
models that were adapted from the background model. The re-
sulting features were mean and variance normalized over theutter-
ance. Speaker models were adapted from the background GMM
using MAP adaptation of the means of the Gaussian components.
Verification was performed using the 5-best Gaussian components
per frame selected with respect to the background model scores. T-
normalization, where the models were constructed from the Fisher
database, was applied to the final scores. Performance of this sys-
tem on all English trials of SRE04 is reported in Tables 3-5.

5. SRE05 RESULTS & ANALYSIS

The constellation plots [10] in Figures 3 and 4 show the perfor-
mance (EER vs. DCF) of various system combinations on all En-
glish trials of SRE05 for the 1-side and 8-side training conditions,
respectively. The first group on the top right (group 1) denotes the
performance of each system alone. The second group denotes the
performance of each system combined with the GMM. The third
group is the combination of all systems minus the noted system
(e.g., “-G” is the system which excludes GMM, and is the combi-
nation of WordHMM, PhoneNgram, and SNP). This group of per-
formance points indicate the significance of the contribution of a
paraticular sub-system to the ensemble: the further a pointis from
the origin, the more significant the contribution of the sub-system.
Finally, the point at the origin (group 4) is the combinationof all
four systems.

Fig. 3. Constellation plot with results of all the systems for 1-side
Training condition on all English trials of SRE05. The labels on
the graph are: (W: WordHMM), (P: PhoneNgram), (S: SNP), and
(G: GMM).

Many observations can be made from these results. Common
to the 1-side and 8-side training case, we see that the cepstral
GMM is the best stand-alone system. Examining groups 2, we
see that the combination of any system with the GMM produces
a better system than the GMM (or any other system) alone. Also,
it is reassuring to note that every system contributes to improving
the final four-way combination results.

There are some notable differences in the performance of the
1-side and 8-side training cases. One is that leaving the GMMout
of the combination in the 1-side training case degrades the results
drastically, whereas, this is not the case in the 8-side training case.

Fig. 4. Constellation plot with results of all the systems for 8-side
Training condition on all English trials of SRE05.

In the latter case, the composite is hurt at least as much by remov-
ing the WordHMM or the PhoneNgram systems. It appears that in
the condition with more training data, the other systems perform
well in the GMM’s absence by effectively utilizing long-term in-
formation.
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Fig. 5. The DET plot with results of each system alone.

Figure 5 shows the DET curves for each system in groups 1.
As we noted in Section 4.2, the performance of the PhoneNgram
system improves more dramatically with increase of training data,
from being ranked the worst system in the 1-side training condition
to performing almost as well as the GMM system in the 8-side
condition.

Table 6 shows the EER and DCF and Figure 6 shows the
DET curves of the GMM system, the fusion of the three “higher-
level” systems, and all four systems combined. We note that for
the 1-side training condition, the combination of higher-level sys-
tems performs as well as the bag-of-frames cepstral GMM system



SRE05 1side Train 8side Train
Systems EER DCF EER DCF
GMM 7.68% 0.2572 5.03% 0.1668
HighLev Sys 7.51% 0.2503 3.98% 0.1049
GMM+HighLev Sys 6.07% 0.1901 3.64% 0.0970

Table 6. Comparing the contribution of the cepstral GMM system
with the combination of the three systems which model higher-
level features (“HighLev Sys”). Results are reported on allEnglish
trials of SRE05 evaluation set.

alone. For the 8-side training condition, the combination of the
three higher-level systems significantly outperforms the cepstral
GMM stand-alone system. In both cases, the addition of the GMM
system to the combination improves the results.
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Fig. 6. DET plots comparing the performance of GMM, the fusion
of the “higher-level” systems, as well as the combination ofall four
systems.

6. CONCLUSIONS

In this paper we described our speaker recognition system devel-
oped for the NIST Speaker Recognition Evaluation 2005. This
system was made up of four sub-systems, three of which were aim-
ing to take advantage of long-term features, and the fourth was a
traditional cepstral GMM system. Results were presented onNIST
SRE04 and SRE05 evaluation sets.

The strength of our systems could be characterized as fol-
lows: the WordHMM capitalized on the finer-grained modeling
of a text-dependent strategy in a text-independent domain.The
PhoneNgram system took advantage of improved statistics ina
lattice phone decoding approach to model what may resemble the
phonetic pronunciation variations of the speaker. The SNP sys-
tem used a non-parametric approach to compare test and training
segments directly, while heavily biased towards positive evidence.
Finally, the SRI GMM system is a state-of-the-art cepstral system.
We observed that, as expected, the three “higher-level” systems
perform particularly well in the training condition with more data.
These relatively complementary strategies and systems combined
well together to create one of the top performing systems at the
2005 NIST Speaker Recognition evaluation.
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