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ABSTRACT

This paper describes ICSI's 2005 speaker recognition syste
which was one of the top performing systems in the NIST 2005
speaker recognition evaluation. The system is a combimatfo
four sub-systems: 1) a keyword conditional HMM system, 2) an
SVM-based lattice phone n-gram system, 3) a sequential non-
parametric system, and 4) a traditional cepstral GMM Systim
veloped by SRI. The first three systems are designed to take a
vantage of higher-level and long-term information. We obtse
that their performance is significantly improved when there
more training data. In this paper, we describe these suterags
and present results for each system alone and in combination
the Speaker Recognition Evaluation (SRE) 2005 developwaaat
evaluation data sets.

d

1. INTRODUCTION
Because of their effectiveness and relative simplicitypsteal-
based Gaussian Mixture Models (GMMSs) [16] have become the
mainstream approach for text independent speaker recmynit
systems. However, the cepstral bag-of-frames modeling, al
though powerful, does not take advantage of long-term iméer
tion present in the speech signal. There have been myriamats,
especially since the Johns Hopkins 2002 Workshop [18], te ha
ness the power of such features. The systems developed kat ICS
and presented in this paper, are contributions to this emtdea

ICSI's 2005 speaker recognition system is a weighted combi-
nation of four systems. Three of the systems were developed a
ICSI and aim at employing higher-level information. Thegs-s
tems are:

e Keyword Conditional HMM System (WordHMM)
e SVM-based Lattice Phone N-gram System (PhoneNgram)
e Sequential Non-Parametric System (SNP)

Each system relies on either phone- or word-level recagmiti
transcription. The fourth system, which has been develdped
SR, is a traditional cepstral-based GMM system. The fowr sy
tems are combined at the score level using a neural network.

The nature of the data often determines the parameters of the

research. Starting in year 2001, NIST added the “extendéal da
task” to its yearly speaker recognition evaluation (SRE)hthe
intent “to foster new research ... through the discovery exd
ploitation of higher-level and more complex characterstf a
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speaker’s speech” [14]. The extended data task soon became a

main focus of the evaluations. Our three systems are deskigne
use such long-term information and to model idiosyncrat@aker
behaviors.

This paper is organized as follows: In Section 2, we describe
the NIST Speaker Recognition Evaluation 2005 (SREO5) task.
section 3, the resources that are common to the systemsasuch
the development data and combination strategy, are disduss
Section 4, the constituent system descriptions and expetahre-
sults on the development set are presented. Experimestatse
on the SREO5 evaluation set and an analysis of system combina
tions are presented in 5. Conclusions are presented ino8eti

2. THE NIST SPEAKER RECOGNITION EVALUATION

To help the reader place this work in context, we briefly dbscr
NIST SREO5. For complete details, please see the EvaluBtam
[15].

The NIST SREO5 is a part of yearly ongoing evaluations in
speaker recognition. For this year’s evaluation, data wlecged
from the Mixer corpus [13]. Five mintues of each conversatio
between unfamiliar speaking partners were selected, Wwitas-
sumption (or hope) that each party spoke for roughly halfithe.
Data from different channel conditions (e.g., landlinellutar,
hands-free) as well as languages other than English (gpgn-S
ish, Mandarin, Arabic) were collected. The evaluation gdayan
includes a 5x4 matrix of optional training (such as 10 sespiid
side, or 8 sides of a conversation) and testing (such as bhdsc
or an entire conversation side) conditions. Téguiredcondition
was chosen to be one in which the length of both the trainirng an
test segments were one conversation side each (referred“fo a
side training” in the rest of the paper), and included botlylEh
and non-English trials. Theommorsubset included only English
trials collected from a hand-held telephone.

Given our interest in long-term features, we also partigiga
in the “8 side training” condition, using 8 conversationesdor
training. In both cases, we evaluated the systems on testesgg
durations of 1 conversation side only.

Note that these conditions also include some non-English tr
als, where either the training, testing, or both segmergsraa
language other than English. Due to both the linguistic ddpa-
cies of some of our systems, as well as the availability oéspe
recognition output in English, we have chosen to concentoat
the English trials. Although for the SREOQ5 evaluation we teisk

a subset of our systems on the non-English trials, in thigipage
focus on and only report results on the English trials.



In SRE, performance is measured primarily using the Degisio
Cost Function (DCF), although the traditional measure afagq
error rate or EER (the point at which the rate of false alarnt a

Evaluation Testing: The SREO5 evaluation set served as the
held-out evaluation data. Table 1 shows the number of models
and trials for SREO4 and SREOQ5 evaluation sets for all Englis

misses are equal) is also reported. DCF is the weighted sum oftrials. The “common condition” subset has fewer trials thia®

miss and false alarm error probabilities, defined by:

CDE)‘, - CMiss * PMiss\Targef, * PTargef,

+ CF‘alseAlarm * PFalseAlarm,\NonTarget * (1 - PT{M‘get,)
Where(CMiss; CFa,lseAla,rm, PTarget) are deﬁned to be
(10, 1, 0.01).Cpe: is normalized by dividing by the best cost that

could be obtained without processing the data, i.e.(®y;ss *
Prarget), Which effectively multipliesCp.: by 10.

3. COMMON RESOURCES

In this section, we describe resources that the systems,shath
as the datasets, the combination strategy, and the ASRsyste

3.1. Datasets

Five databases, all of which contain conversational telaph
(landline or cellular) speech, were used for developmedttast-
ing of the systems:

1. NIST SRE 2005 (Mixer)
2. NIST SRE 2004 (Mixer)

3. NIST SRE 2003 extended data
(Switchboard-Il phases 2 and 3)

NIST SRE 2002 (Switchboard Celluar)
Fisher

4.
5.

The NIST SRE 2005 was only used for the final evaluation.
Subsets of the other four databases were used for trainmg th
background models, estimating the TNORM statistics, ingithe
combination weights, and development testing . For detailthe
selection of the development subsets, see Section 1 of [9].

Background Models Training: Background data for the

“all English” subset; hence, we report results on the lddemore
statistically meaningful comparisons.

Eval Set || Train Cond | Models | Trials |

SRE04 1side 479 15,317
SRE04 8side 225 7,336
SREO05 1side 598 20,907
SREO05 8side 464 16,053

Table 1. The number of all English models and trials for SRE04
and SREO5 evaluation sets.

3.2. Combination Strategy

The systems were combined using LNKNet software [12]. A neu-
ral network with no hidden layer and sigmoid output non-dirity
was used. The combination of all four systems was used tarobta
scores for the English trials.

As mentioned in the previous section, SRE04 data was used to
estimate the optimal combination weights. SRE04 1siddeland
8side-1side train/test conditions were used for SREQ0Se1tside
and 8side-1side evaluation conditions, respectivelytifeumore,
only the English trials in SRE04 were used to estimate wsightl
operating threshold for English trials in SREO5.

3.3. ASR System

The WordHMM and SNP systems rely on word recognition, us-
ing the word-level word and phone alignments, respectivEhe
PhoneNgram system uses lattices produced from open phope lo
recognition. We used the output produced by SRI's DECIPHER
3xRT conversational telephone speech (CTS) recognitistesy.
For the word-level recognition, we used models developedthi®

WordHMM, SNP, and PhoneNgram systems was selected fromNIST RT-03F evaluation. The system was trained on Switcttboa
Fisher and SRE 2003 data sets. The SRI GMM system addition-!, Some Switchboard-Il, and CallHome English data, as well a
ally used NIST SRE 2002 for background training. The amount Broadcast News and web data for the language model (no Fisher
of data used for background training by each system is eeltail data was used in training the ASR system). For the detailbeof t
Section 4. ASR system, see [11].

TNORM Models Training: TNORM models [2] were
trained using utterances from Fisher. The models were rarnstl
from the speech in one conversation side of the middle 5-tinu
segment of the conversations. These TNORM models were from|n this section, we describe the four sub-systems that mpaeiu
unique speakers and roughly gender-balanced. The dataiseahp  recognition system and present development results onRE©S
a similar number of electret and cellphone channels, anddfbla ~ dataset. Three of the systems, which aim to take advantage of
of carbon-button channels. higher-level information, were developed at ICSI. The fbune,

Combination Weights Training: We experimented with  the cepstral GMM system, was developed at SRI and its output
SREO4 eval data and subsets of SREO3 and Fisher to train theyas shared with us. It is a common approach in the field to com-
weights of the neural network combiner (discussed in Se&id). bine cepstral GMM systems with those designed for longen ter
However, in the final system (which is reported in this paper) features in order to take advantage of both short- and leng-in-
SREO4 eval data was used to estimate the neural network com<formation inherent in the speech signal and to evaluateddech

bination weights and the optimal operating point corresjiogto information provided by the long-term features.
the minimum DCF.

Development Testing: The SRE04 evaluation set, as well as
subsets of SRE03 and Fisher were used for developmentgestin
For brevity, we only report on the development testing on @RE  The main idea of the Keyword Conditional HMM system [3] is
eval data. to capitalize on advantages of text-dependent systems énta t

4. THE CONSTITUENT SYSTEMS

4.1. Keyword Conditional HMM System (WordHM M)



independent domain. Whole-word HMM models are trained on evaluation systems. The SREO04 evaluation system UBMs were
only a small subset of words (and word-pairs). We use a set of trained entirely on SREO3 data, whereas those of the SREG4 po
19 keywords which we believe are rich with speaker charestter evaluation system were trained entirely on Fisher dataghvisi a

cues. These keywords are drawn from the following classes: better match to SRE04 eval data. Therefore, the improvebent
o Discourse markers: actually, anyway, like, see, well, now, ~ Ween the first and second rows of the table is entlfely dubéo t
you know, yousee, ithink, i_mean difference in data used to train the UBMs. This year's WordiAM

. system (the third row in the table) differed with the preidwo
* Filled pauses: um, uh systems in a number of ways. The most significant was major
e Backchannels: yeah, yep, okay, uhhuh, rightsee, iknow infrastructure changes which resulted in the ability to enaccu-
rately utilize the word alignment boundaries. Similarlyesd en-
The keyword HMMs were left-to-right state sequences with nancements allowed the addition of TNORM as well as enatded u
self-loops and no skips. Each state model consisted of auraixt {0 Petter search the system parameter space, such as themfmb
of eight Gaussians and the number of states for each keywasd w States per model and number of Gaussians per state. Thestsyst
defined to be the smaller of the average number of phones in pro Utilized eight, versus the previously used four, Gaussienstate.
nunciations of the word, multiplied by 3, and the median tiara Finally, the UBM models were trained on a combination of SREO
in frames, divided by four; that imin(mean(NumPhones * and Fisher data.
3), median(NumFrames/4)). All modeling and scoring was - - - .
p)erformed l(Jsing the HMM/T())E)Ikit, HTK [5]. ’ ’ WordHMM IsideTrain 8gde Train
The HMM feature vectors consisted of MFCC% through EER [ DCF EER | DCF
Ch and their deltas, producing a 40 element feature vector: Cep SREO4 system || 13.06% | 0.526 || 8.85% | 0.382
stral Mean Subtraction was performed over the speech regibn SREO4 post-eval| 12.98% | 0.445 | 7.06% | 0.306
each conversation side, as determined by the ASR word align- | SREO5system || 11.38% | 0.399 || 6.27% | 0.224
ments.

~ Universal Background Models (UBMs) were trained on 1,128 Tap|e 2. The improvement in the WordHMM system from SRE04
Fisher and 425 SREO3 conversation sides from unique speaker g SREQ5. Results are shown on all English trials of SREO# eva

Speaker models were obtained by MAP adapting the Gaussianation set. DCF is short for Min DCF in tables throughout this
means of the UBMs. In the cases where there were no speakepaper.

training data for a particular word, the UBM was simply capie

as the speaker-specific model. This resulted in removingnthe It is of interest to examine the performance of the WordHMM
ence of the keyword, as the contribution to the overall sems system alone, but particularly in combination with the itiadal
zero, due to the cancellation of target and background. dte|  cepstral GMM system (discussed in Section 4.4). Table 3 show
tion of the keywords within the conversation was determingidg the results of the WordHMM system on all English trials of
word-level ASR alignment. SREO04. As mentioned in Section 3.2, the systems were comhbine
Each keyword appearing in the test segment was scored byat the score level using a neural network. We see that as therdm
taking the difference between the log probabilities olsdifrom of training data increases, the relative performance gapeas

scoring the speaker-specific and UBM models on the test soken the WordHMM and GMM narrows. Also, the WordHMM con-
The final score was obtained by adding these keyword scotks an tributes much more significantly in the reduction of errottlie
normalizing by the total number of frames. The final scoreeewe  8-side training condition, as expected.

T-normalized with 249 models constructed from unique cosae

tion sides of the Fisher database. Figure 1 is a schematicaiia WordHMM 1side Train 8side Train
of the WordHMM system. EER | DCF EER | DCF
WordHMM 11.38% | 0.3990 || 6.27% | 0.2244
LEM GMM 7.73% | 0.3113]] 4.96% | 0.2115
WordHMM+ 7.59% | 0.2721 || 4.08% | 0.1672
GMM (2%) | (13%) || (18%) | (21%)

Table 3. The performance of the WordHMM system alone and
in combination with the cepstral GMM. Results are on all Estgl
trials of SRE04 evaluation set. Values in () are percent avgr
ments relative to the GMM system alone.
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4.2. SVM-based L attice Phone N-gram System
The Phone N-gram (PhoneNgram) system uses an open-loop
phone recognizer to generate phone lattices, which areubed
Spk1 to compute expected counts of phone n-grams. These expected
Fig. 1. Schematic diagram of the WordHMM system. counts are converted into relative frequencies, which fiverfea-

ture vectors for training SVM-based speaker models [7]s Blis-
Table 2 shows the improvement in performance of the SREO5 tem builds on [1, 4] and dramatically improves the resultsising
WordHMM system compared to SRE04 evaluation and post- lattices rather than 1-best phone recognition hypotheses.



. . . . Training Data
As mentioned in Section 3.3, we used SRI's speech recognizer & L B ]

[11] to generate phone lattices for every conversation. sidar kat) T —» /Fame di ,
. . . — = — distance: 22
particular realization of the ASR system used gender-cixen kat(2 = normalized

monophone acoustic models, where each monophone was mod- Kat(3)

Eudlidean
eled by a 3-state HMM. The acoustic models were trained on the d

Switchboard | corpus using MFCC features. Phone decodirsy wa
. . . Test Data
performed in open-loop mode (i.e. we used a unigram phore lan T
guage model with uniform probabilities) with a vocabulafy6 kay 3
phone units. -
For the SVM, one feature vector for every conversation side
was used, where the features represent relative freqseofttbe Final Score <—

8500 most frequent phone bigrams and trigrams. We usedax line
kernel [4] to train an SVM-based model for every target speak
The SVMs were trained using a one-versus-all approach, evher
the conversation sides from the target speaker’s trainitg were Fig. 2. Schematic diagram of the SNP system.
used as positive training examples, and the conversatit#s $in
a set of background data were used as negative training examy,
ples. For this system, we used the same background dataset
the WordHMM system. SVM training and scoring was done using
the SVMlite package [8].

To score a given test-target pair, we simply applied thasfeat Hit Score— Z number of matched frames in )
vector of the test conversation to the SVM output functiornhef rdistance;
target model. We then used TNORM to normalize the scores for

every test conversation. This scoring method primarily captures positive evidenge b
Table 4 shows the results of the PhoneNgram system on allpjacing exponentially higher weight on small distance ealuThe
English trials of SRE04 alone and in combination with thested  yajue of the constari was empirically estimated to be 1.5.
GMM system. For the 1-side training case, the performandteeof Background normalization was implemented by scoring the
PhoneNgram system is significantly worse than the GMM system test conversation against a background set in a similaepioe as
but with the addition of data in the 8-side training conditithe the test-target scoring. The background set consisted SFREED3
PhoneNgram system's performance dramatically improveseo  and 40 Fisher conversations from unique speakers. Thestestt
point of matching the GMM's. Yet, the behaviors of the syst® Kt Score was then divided by the test-background Hit Score.

sing the best (smallest) Euclidean distance, the “Hit Stmas
a(?’alculated, where:

ictest tokens

complementary, as their combination yields further imeroent Finally, ZNORM was applied to normalize the scores.
("30% for the 8-side training case). ZNORM was scored in the typical method using 35 SRE03 con-
versations. TNORM was not performed due to time and computa-
PhoneNgram 1sideTrain 8side Train tional constraints.
EER | DCF || EER | DCF Table 5 shows the results of the SNP system on all English
PhoneNgram || 12.09% | 0.5408 || 4.96% | 0.2358 trials of SRE04 alone and in combination with the cepstralNEM
GMM 7.73% | 0.31131] 4.96% | 0.2115 system. As expected, the SNP system performs relativelgriat
PhoneNgram+|| 6.47% | 0.2767 || 3.64% | 0.1443 the 8-side conversation training, where there is more data.
GMM (16%) | (11%) || (27%) | (32%)
SNP 1sideTrain 8side Train
EER | DCF EER | DCF

Table 4. The performance of the Phone N-gram system alone and
in combination with cepstral GMM. Results are reported dn al
English trials of SRE04 evaluation set.

SNP 12.65% 0.5177] 6.12% | 0.3169
GMM 7.73% | 0.3113 | 4.96% | 0.2115
SNP+GMM || 7.10% | 0.2943 [ 4.37% | 0.1777
B%) | (6%) || (12%) | (16%)

4.3. Sequential Non-Parametric (SNP) system

Table 5. The performance of the SNP system alone and in com-
bination with cepstral GMM. Results are on all English siaf
SREO04 evaluation set.

The SNP system uses a non-parametric technique, where no ex
plicit speaker models are built. The system performs spedde
tection by comparing a test segment directly to similaranses

of that segment in the training data [6]. Figure 2 shows tistesy
schematically.

The cepstral features employed by this system were identi-
cal to the ones used in the WordHMM system (MFCC C0-C19 The cepstral Gaussian mixture model (GMM) was developed by
plus deltas, with CMS). The system utilized ASR word align- our collaborators at SRI. The data was bandlimited to betwee
ments to compare phone-trigram regions in the test cortvensa  300-3300 Hz. 19 mel filters were used to compute 13 cepstral co
with every occurrence of the phone-trigram in the trainiog-c efficients (C1-C13), and their delta, double delta, anderielta
versation(s). Dynamic Time Warping (DTW) was used to align coefficients, producing a 52 dimensional feature vectorSGis
frame sequences of different lengths. Frame normalizetidean applied. The number of components of the GMM was chosen
distances were calculated between warped phone-trigrgions to be 2048. The background GMM was trained using data from

4.4. Cepstral GMM System



Fisher, SREO2, and SRE03. For channel normalization, featu
mapping [17] was applied using gender- and handset-depende
models that were adapted from the background model. The r
sulting features were mean and variance normalized overttbe
ance. Speaker models were adapted from the background GM
using MAP adaptation of the means of the Gaussian companen
Verification was performed using the 5-best Gaussian coemtsn
per frame selected with respect to the background modetscar
normalization, where the models were constructed from islecf
database, was applied to the final scores. Performancescytbi
tem on all English trials of SRE04 is reported in Tables 3-5.

5. SREO5 RESULTS & ANALYSIS

The constellation plots [10] in Figures 3 and 4 show the perfo
mance (EER vs. DCF) of various system combinations on all Er
glish trials of SREOS for the 1-side and 8-side training dbods,
respectively. The first group on the top right (group 1) deadhe
performance of each system alone. The second group dehetes
performance of each system combined with the GMM. The thir
group is the combination of all systems minus the noted syste
(e.g., “-G" is the system which excludes GMM, and is the cembi
nation of WordHMM, PhoneNgram, and SNP). This group of per:
formance points indicate the significance of the contridutf a
paraticular sub-system to the ensemble: the further a pofram
the origin, the more significant the contribution of the sylstem.
Finally, the point at the origin (group 4) is the combinatiminall
four systems.

-

b o -FI.-
al o g
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P
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W

(4): The ensemble of all four systems

R Ry az 03 [YRRT
R DCF {210}
1-side training results on all English trials of Eval05

Fig. 3. Constellation plot with results of all the systems for desi
Training condition on all English trials of SRE05. The labeh

the graph are: (W: WordHMM), (P: PhoneNgram), (S: SNP), and
(G: GMM).

Many observations can be made from these results. Common

CPW (1): Each

sl i -
& system
. alone

(2): Each system
+ GMM

% EER
'
(2]

(3} Leave-one-out: the
ensemble wio each system

- " (4} The ensemble of all four systems
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8-side training results on all English trials of Evalds

Fig. 4. Constellation plot with results of all the systems for 8esi
Training condition on all English trials of SREO5.

In the latter case, the composite is hurt at least as muchrbgve

ing the WordHMM or the PhoneNgram systems. It appears that in
the condition with more training data, the other systemsoper
well in the GMM’s absence by effectively utilizing long-tarin-
formation.
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Fig. 5. The DET plot with results of each system alone.

Figure 5 shows the DET curves for each system in groups 1.

to the 1-side and 8-side training case, we see that the aépstr As we noted in Section 4.2, the performance of the PhoneNgram

GMM is the best stand-alone system. Examining groups 2, we system improves more dramatically with increase of trajrata,

see that the combination of any system with the GMM produces from being ranked the worst system in the 1-side traininglit@n

a better system than the GMM (or any other system) alone.,Also to performing almost as well as the GMM system in the 8-side

it is reassuring to note that every system contributes taaomipg condition.

the final four-way combination results. Table 6 shows the EER and DCF and Figure 6 shows the
There are some notable differences in the performance of theDET curves of the GMM system, the fusion of the three “higher-

1-side and 8-side training cases. One is that leaving the GivM level” systems, and all four systems combined. We note trat f

of the combination in the 1-side training case degradesebalts the 1-side training condition, the combination of highevrdl sys-

drastically, whereas, this is not the case in the 8-sidaitrgicase. tems performs as well as the bag-of-frames cepstral GMMeByst
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