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ABSTRACT 2.1. Design of the development set

A set of 82 interview speakers (48 females and 34 males) from
“RE0S (both original and follow-up evaluation) was set asigd
additional training data. A development set was createdgutsie
remaining SREO8 data. For each original condition from SREO
an extended set was created by pairing every available nvattel
every available test sample (except where model trainirdytest
sample came from the same recording session). No additiooe
els were created, and only samples originally used fortgstiere
used for testing in the extended development set.

Here, we use the following notation for the trial conditions
trainDuration-testDuration.trainStyle-testStyle.trainChannel-testChannel,
where

The SRI speaker recognition system for the 2010 NIST speak
recognition evaluation (SRE) incorporates multiple suisys with

a variety of features and modeling techniques. We descrilte o
strategy for this year’s evaluation, from the use of speecbgni-
tion and speech segmentation to the individual system igiscrs

as well as the final combination. Our results show that undestm
conditions, the cepstral systems tend to perform the besthiat
other, non-cepstral systems have the most complementdrite
combination of several subsystems with the use of adeqigge s
information gives a 35% improvement on the standard telepho
condition. We also show that a constrained cepstral systsmdon

nasal syllables tends to be more robust to vocal effort bditias.
N ) e Duration: short (shrt) or long (long)
Index Terms— speaker recognition, prosody, high-level model- ) i )
ing, system fusion. e Style: telephone (tel) or interview (int)
e Channel: telephone (phn) or alternate microphone (mic)

For the shrt-shrt.tel-tel.phn-phn condition, the targiels were
1. INTRODUCTION restricted to be the target trials as defined by NIST. Triatstifie
short-long condition (not found in SRE08) were created bngis
The NIST SRE 2010 evaluation introduced several challenga& the |ong-|0ng condition and rep|acing the training datghva'ﬂong
pared to earlier SREs. In addition to the variability in sgegenre  sample from the same speaker using the same microphone Tabl
and microphones found in SREQ8, the SRE10 core evaluation co gives a summary of the created trials by condition, as wethas
dition included speech samples of varying lengths, andhef@@t  mapping to SRE10 conditions. This mapping, which in somesas
was introduced as a dimension of intrinsic variability. Mover, the  constituted an imperfect match, was used for to trainingldoation
decision cost function (DCF) was redefined to favor anewaipeg  parameters for SRE10 based on data from SRE08. Note that we
point aimed at lower false alarm (FA) rates. The new costtfianc  redefined “long” as an utterance of up to eight minutes ofiigev
(termed “newDCF” here) made each FA 1000 times more cosily th speech, to match the SRE10 condition, using the first eightites
a miss error. (We use “oldDCF" to refer to the SREO8 definifan  of the long samples in SRE0S.
which the cost ratio was only 10 to 1.) In order to achievelstab
results at very low false alarm rates, ettended evaluation set was
defined, containing an order of magnitude more trials tharotig-
inal set, or about 6 million. The large evaluation set in tartade  For both telephone and microphone recordings, utteraness w
efficient scoring methods a necessity. segmented into short segments containing mostly speeaty as
SRI submitted two systems to SRE10. SRis a static score- Speech/nonspeech Hidden Markov Model (HMM) decoder and var
level fusion of three cepstral Gaussian mixture model (GMyB-  ious duration constraints. For interview recordings, wedia more
tems, one system based on maximum likelihood linear reigress complex algorithm to suppress cross-talk from the inteveies
(MLLR) transforms, one prosodic system, and one word N-granfpeech. The algorithm incorporated elements from LPT'8200-
system. SRR is an enhanced system that adds a constrained cepst€#ssing [1], using the NIST-provided automatic speechgetition
GMM system, as well as a score combiner that uses signatisen (ASR) output for interviews. The steps were as follows.

ratkl)o gnd_ amount of detec;[sd spetech ?s S'.de |nf0trmat|(_)n£§éi 1. Segment the interviewee channel into speech segments ac-
submissions were among the best-performing systems in cording to the NIST ASR output.

2.2. Waveform preprocessing and segmentation

2. Segment the interviewee channel with speech/nonspeech
2. COMMONALITIES models trained on distant-microphone meeting speech (from
our NIST RT-07 evaluation system), and remove regions that

This section describes aspects of our system that were cartmadi have ASR output for the interviewer.

speakermodeling subsystems, as well as the system fugioneagh. 3. Intersect the segments from steps 1 and 2.

4. Choose segmentation from step 3 if it comprises at le&4t 40
S. Kajarekar is now with Cisco Systems, Inc. of the original waveform duration; or, use output from step 1




Table 1. Development conditions, the number of trials, and the SRisihditions used as training data for the combiner.

| DEV Condition | #targettrials| # impostor trials| SRE10 condition§* means any value for that setting) |

long-long.int-int.mic-mic 9,774 319,956 long-long.int-int.mic-mic
long-shrt.int-int.mic-mic 32,248 1,054,592 long-shrt.int-*.mic-mic
long-shrt.int-tel.mic-phn 1,362 754,729 long-shrt.int-tel.mic-phn
shrt-long.int-int.mic-mic 10,234 336,437 shrt-long.int-int.mic-mic
shrt-shrt.int-int.mic-mic 33,743 1,108,882 shrt-shrt.*-*.mic-mic

shrt-shrt.int-tel.mic-phn 1,459 797,812 shrt-shrt.int-tel.mic-phn
shrt-shrt.tel-tel.phn-phn 1,108 1,453,237 shrt-shrt.tel-tel.phn-phn

if it comprises at least 40% of the original waveform; other- tion amount of speech and SNR of the signals. SNR was computed
wise, use output from step 2. on each session and thresholded at 15 dB to generate twodateg
5. Merge segments separated by no more than 0.5s and pad witQW" @nd “high” SNR. Similarly, the number of words in thession
0.04s at the start and end of the merged segments. was obtained by ASR and thre_sholdeq at 200 to generate twe cat
gories: “short” and “long” sessions. Finally, the categfoy each
trial was define as the cross-product of the word-count arfd &te-
gories for the training and test sessions, creating a tbid possible

Several of the speaker verification models described beftiedr ~ categories. A regularization parameter encouraged sratgory-
on word and sub-word recognition hypotheses obtained by.ASRIependent weights. After combination, the scores werenasditio
We used a fast version of SRI's conversational telephonegrée ~ be calibrated likelihood ratios. Therefore, a fixed thréghgiven by
tion system with modifications for the SRE data. With thismoet,  the theoretically optimal value for the target DCF, was usedake
the first recognition pass generated lattices using a bitgamuage ~ hard detection decisions.

Model (LM) and acoustic models based on MFCC features with

fMPE transforms, augmented with MLP phone posterior fesstur

The lattices were then rescored with a 4-gram LM. A seconagec 3. INDIVIDUAL SYSTEM DESCRIPTIONS

nition pass used speaker-adapted fMPE-PLP models, gengehkit

best lists that were then further rescored with pronurariedind du-  In this section we describe the component subsystems ainchthe
ration models. The acoustic models were trained on Switgttho sociated speaker modeling approaches.

and Fisher Phase 1 data (with additional text and web datarfer

guage model training). Extra weight was given to nonnatighé&r

training data to achieve more balanced performance on tisana 3.1. Cepstral GMM-JFA systems

speakers. The word error rate on the transcribed portiortheof

Mixer corpus was 23.0% for native speakers and 36.1% for non3.1.1. Standard cepstral system: cep

natives. Non-telephone (microphone) data was preprodestie

the ICSI/Qualcomm Aurora Wiener filter implementation, anen ~ The cepstral GMM system used a 300-3300 Hz bandwidth fron-
recognized with the telephone ASR system. The word err@r rattend, consisting of 24 Mel filters to compute 20 cepstral ficiehts

measured on SREO6 alternate microphone data (transciit@g@  and their delta and double delta coefficients, producing di@n-
was 28.8. sional feature vector. The resulting features were meawvariance

normalized over the utterance. The feature vectors wereefedd
by a 1024-component, gender-independent GMM. The backgrou
GMM was trained using data from the SRE04, SRE05, and SR08 de-
To deal with the extremely large trial set in SRE10, as welvik velopment data. We used a full Joint Factor Analysis mod&i)dn
the development set of similar size, all the systems desttiibSec-  which 600 eigenvoices were trained using SRE data from 2664 a
tion 3 used a dot-product-like approach for computing \eatfon 2005, and the Switchboard-Il corpus. By training two sulsesaep-
scores. We found that regardless of the number of traininigest-  arately on telephone and interview data, 500 eigenchanesésob-
ing utterances, performing the full matrix scoring (i.eepes from  tained. The diagonal term was trained with the same dataeskep
all models against all test utterances) was always faster.uke of ~ factors. Scores were normalized using gender-dependemiraT
optimized linear algebra libraries, such as BLAS, wasaaitto that

end. All systems based on the JFA paradigm used the fashlilasl

computation described in [2]. The support vector machindM  3.1.2. Nasal syllable constrained cepstral system: nasals

systems all used a linear kernel, which can be evaluated & a d

product by appending the model hyperplane offset to thefipypee ~ The SRI submission contained a single (_:onstrained ceps}_ml
vector, and a constant 1 to the test feature vector. tem [4] that uses features computed as in 3.1.1 but restricte

frames occurring in syllables that contained the recoghjz@one

[n] or [ng]. Syllables were based on an automatic maximursetn
based cross-word syllabification of ASR output. The resglti
The combination of systems was performed using linearfiogis-  frames comprised about 18% of the total speech-alignedesam
gression separately for each condition, as given in Table &ddi-  used in the standard system. UBM, JFA parameters, and score
tion, the SRI2 system use the method proposed in [3] to use sidenormalization techniques were the same as for the starmiprd
information, specifically to compensate for score biases agic-  system.

2.3. Speech recognition system

2.4. Scoring mechanism

2.5. System combination



Table 2. Results of the SRI submission and subsystems on the reaugdre conditions of NIST SRE 2010 extended set. Resultsieza gs
newDCF/oldDCF

# Condition cep plp foc mllr ngram | nasals| pros SRIL1 | SRIL2
1 Int SameMic 43/.09| .67/.16 | .50/.10| .58/.26 | 1./.93 | .67/.27| 1./.60 | .36/.06 | .33/.05
2 Int DiffMic 51/.13| .71/.24| .61/.17| .68/.35| 1./.95 | .81/41| 1./.71 | .44/.10| .42/.10
3 Int Tel A47/14| 61/.21| .61/.18| .54/.26 | 1./.95 | .84/.38| 1./.74 | .30/.10| .28/.08
4 Int Mic .39/.11| 51/.17| .46/.13| .50/.23 | 1./.94 | .67/.28 | 1./.56 | .24/.07| .22/.07
5 Tel Tel A7/14| 47/.14| 57/.16| .47/.18| 1./90 | .73/.32| .99/.62 | .31/.09| .29/.08

6 Tel High Vocal Effort || .83/.26 | .80/.24 | .86/.30| .99/.32| 1./91 | .91/48| 1..88 || .72/.17| .71/.17
7 Mic High Vocal Effort || .90/.24 | .88/.33 | .87/.28 | .88/.35| .99/.87 | .86/.40| 1./91 || .87/.23| .81/.21
8 Tel Low Vocal Effort .45/.11 | 53/.13| .62/.15| .65/.17| 1./90 | .76/.33| .99/.65| .33/.07 | .32/.07
9 Mic Low Vocal Effort || .27/.06 | .39/.11| .33/.07 | .31/.11| 1./89 | .67/.19| .95/.38| .17/.05| .17/.04

3.1.3. Class-dependent cepstrum: foc SREOQ8 data reserved for training. The 9000 most frequerd Wibr
grams and trigrams from the training data were includedatsifes.

This second MFCC-based system differed with respec#pdy its No score normalization was applied.

use of gender-dependent UBM models, eigenvoices, andaigen

nels, and by eliminating the JFA diagonal term. Anotheredéhce

was that the ZTnorm process was condition-dependent, inghse

that normalization data was matched to the target testingdition.

For example, for the long-shrt.int-tel.mic-phn conditidnorm used

only short telephone data, while Znorm used only intervieatad

This approach proved useful in all conditions except fortt#idel 3.4. Prosodic systempros
condition, for which it seemed that the more data, the bétere-

sult. Condition-dependent eigenvoices and eigenchaigasis no

gains. The prosodic system was composed of a total of 10 individysd s
tems combined at the score level with fixed weights. All indiial
3.1.4. Class-dependent PLP-SAT cepstrum: plp systems used the same type of feature: the coefficients dfetpe

endre polynomial approximation of order 5 of the pitch andrgg
This system used the exact same setufoes However, the input  signals over a certain region, plus the duration of the refa The
features were generated by the PLP frontend of the ASR systerregion definition varied across systems. Additionally, smystems
After 13 PLP feature were computed, the first, second, ard thi modeled sequences of two consecutive feature vectors §igh B-
derivatives were appended, and the following normalirstiand  dividual system was modeled in a gender-dependent way UEig
transformations were applied: vocal tract normalizatioigan and  with 50 channel factors and 100 speaker factors. The thgierre
variance normalization; LDA; MLLT (from 52 dimensions t0)39  definitions are: (1) Energy-valley regions: defined by thikeyain
and a feature transform estimated by constrained MLLR, ed irs  the energy profile restricted to voiced regions; (2) Sy#atelgions:
speaker-adaptive training (SAT). These feature normiiza used  defined by automatic syllabification of the phone alignmeits
gender-dependent reference models and transformatidvesfrdn-  duced by our speech recognizer; (3) Uniform regions: defoved

tend was optimized for telephone ASR. speech regions to shift by a fixed amount of frames (15) and be o
a fixed frame length (30). The Uniform regions definition was i
3.2. MLLR-SVM system: mllr spired by the work in [8]. For the firsttwo regions, four systewere

created: System (1) for the features over the nonpausene§imi-
The MLLR-SVM system used the speaker adaptation transformgrams); System (2) for the concatenated features of twgamrtive,
from the speech recognition system as features for spe@kifir v nonpause regions (ff bigrams); System (3) for the duratf@npmuse
cation. A total of 16 affine 39x40 transforms were used to magoncatenated with the features of the following nonpaugiene(pf
the Gaussian mean vectors from speaker-independent tkespea bigrams); and System (4) for the features of a nonpausenegin-
dependent speech models; eight transforms each were &stima catenated with the duration of the following pause (fp bigs For
relative to the male and female recognition models, resmdygt  the Uniform regions definition, we found that Systems (3) éd
The within-speaker variance was estimated on SRE04 tefepho added nothing to the overall combination; hence, only Sgystél)
data, SREO5 microphone data, SRE08 and SRE10 sample ddta, aand (2) were used for these regions. The 10 systems were gethbi
SREOQ8 speakers designated for training. The impostor (vackd) by giving a weight of 1.0 to the unigrams and the ff bigramg] an
data for SVM training was from SREO6 telephone and microghon weight of 0.5 to the pf and fp bigrams. The weights for theadyli
sessions, as well as from SREOQ8 data designated for traifiog  region scores were set to half of those weights. These weigbte
more details on MLLR-SVM modeling, see [5]. obtained by first training a combiner using logistic regiessand
then performing a very rough exploration of manual weighéd ted
to similar results. Pitch and energy features signals faheamn-
versation side were obtained using thet _f O code from the freely
This system used the relative frequencies of word N-grama as available Snack toolkit [9]. The waveforms were preproeessith
sparse feature vector, and SVMs as speaker models. The-impas bandpass filter (250-3500 Hz) to make the spectral confait o
tor/background data was drawn from SRE04 and SREO5, plushannels similar to that of the telephone bandwidth.

3.3. Word N-gram SVM system:ngram



421 cep mllr nasal foc .298 cep mlir plp foc
.514 X 468 X
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Fig. 1. N-best combination system results on Condition (from left

5. CONCLUSIONS

The SRI submissions for NIST SRE 2010 were composed of sev-
eral subsystems using both low- and high-level featuressidgaved
that the GMM/JFA based systems tended to perform best fot mos
test conditions. A PLP-based system, using a telephonekpe&tR
frontend, tended to outperform the classic MFCC systemedta-t
phone data. The MLLR-SVM system had very good performance
in terms of newDCF (relative to oldDCF) and gave excellerihga

in combination with the frame-based cepstral systems. Hsaln
syllable constrained cepstral system was especially Lsafuhe
high-vocal effort conditions, and even outperformed thendard
JFA system in one condition. We also found that using SNR and
word count as side information (in addition to the evaluationdi-
tion) for the combiner yielded gains over a static combiner.
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