Synchronous Parsing of Syntactic and Semantic Structures

Bernd Bohnet
International Computer Science Institute
1947 Center Street
Berkeley 94704, California
bohnet @ csi . Ber kel ey. edu

Abstract

We describe in this paper an approach for synchronous gewésyntactic and semantic dependency
structures that combines recent advances in the area tovgey high accuracy as well at the same
time very good parsing times. The time for parsing, the timetfaining and the values of the
memory footprint are to our knowledge the best results tegowhile the parsing accuracy are as
high as the highest results reported in the 2008 shared Téskcorpora used in the shared task are
still different to the dependency structures of the Meatliegt Theory. Therefore, we outline the
adaption of the approach to the dependency structures didlaming-Text Theory.

1 Introduction

Recently, dependency parsing made large advances. Rdasthis are influential work of some researches
and shared tasks for dependency parsing in the years 2008,(20 (Buchholz and Marsi, 2006), (Nivre
et al., 2007)) and the shared tasks for joint parsing of dégrecy and semantic structures in the years 2008
and an upcoming one in 2009 (cf. (Surdeanu et al., 2008))reTdére two main approaches to dependency
parsing: Maximum Spanning Tree (MST) based dependencynpdiSisner, 1996; McDonald and Pereira,
2006) and transition based dependency parsing, cf. (NivdeNilsson, 2004). In this paper, we use the first
approach since we could better improve the parsing speethamdST based dependency parsing approach
has a slightly better accuracy. To our knowlege there arg arfiew MTT parser available and even less
attempts have been made to parse dependency trees ofrttiffepeesentation levels with statistical trained
parser. One of the exceptions is a transition based parsichwas train on the RussianySTAGRUS
tree-bank, cf. (Nivre et al., 2008).

2 Parsing Algorithm

We adopted the second order MST parsing algorithm as odtimé&isner (1996). This algorithm has a
higher accuracy compared to the first order parsing alguriiimce it considers also siblings and grandchil-
dren of a node. Algorithm 1 shows the first order algorithmahhis the basis for the second order parsing
algorithm. Eisner (1996) first order approach can computeggtive dependency tree within cubic time
(O(n?)). Therefore, the algorithm shown in Algorithm 1 has at ntbste nested loops.

Both algorithms are bottom up parsing algorithms based avamijc programming similar to the CKY
chart parsing algorithm. The score for a dependency trekeistim of all edge scores. The following
equation describes this formally.

(© 2008. Licensed under theCreative Commons Attribution-Noncommercial-Share Alike 3.0 Unported license
(http://creativecommons.org/licenses/by-nc-sa/3®dme rights reserved.

score(S,1) = Yy ek score(i, j)

The score of the sentenéeand a tree over S is defined as the sum of all edge scores where the words
of S arewy...w;. The tree consists of set of noddsand set of edge& = (N x N). The word indices
(0..n) are the elements of the node $ét The expressiolfi, j) € E denotes an edge which is going from
the nodei to the nodej.

The parsing Algorithm 1 searches the tree with the best doott®m up considering only the scores
of single edges. Therefore, it is call first order dependquranging algorithm. The score function in the
algorithm scores always a subtree and the algorithm sear¢hd best combination of smaller trees in order
to build larger trees which maximize the overall score ofttke.

Algorithm 1: First Order Parsing Algorithm

II'S «— wy...wy, is the sentence with the words
/l'ls =n + 1is the sentence length
/I N =0...n the indices of the words
Il E=N x N set of edges
Il C = (Cieyt, Crignet, E) the chart element whei@,. r+ andC';41:iS @ pointer to another chart element
Il D = {0, 1} D represents the direction of the edge
Il Co =N x N x D x C the chart with the open sub-trees
Il Cc =N x N x D x C the chart with the closed sub-trees
forj«<— 1tols do
for s« 0tols do
t—s+j
if t > ls then break
for r=stot-1do
if (scoreCol[s][tl[1]) <scoreCc[s][r][1]) + scoreCc|r + 1][t][0])) then
_ Colslitl[1] — (Colslir1], Celr + 1]t][0]),[s —t])
if (scoreCo[s][t][0]) <scoreCc[s][r][1]) + scoreCc|r + 1][t][0])) then
Col[s]Itl0] — (Ccls]r[1], Colr + 1][t][0]).[s t])
end for
for r=s+1totdo
if (scoreCc[s][tl[1]) <score(O[s][r][1]) + score(C[r][t][1]))}hen
Colslitl1] — (CclsIlrl, Colritl).[s —t)
end for
for r=stot-1do
if (scoreCc[s][t][0]) <scoreCc[s][r][0]) + scoreColr][t][0])) then
Cel[s]t0] — (Ccls]ir[i], Colrt[1l).[s)
end for
end for
end for

We compute the edge score:¢re(i, j)) as the scalar product of a feature vector representatieaaf
edgefé(z’,j) with a weight vectorw’ wherei, j are the indices of the words in a sentence. The feature
vector fg might take into account not only the words with indiéend; but also additional values such as
the words before and after the wordsandw,. The following equation shows the score function.

score(i,j) = fé(i,j) * W

Most of the features are built out of the properties from therds such as part-of-speech, morpho-
logic features, lemmas, and forms. For instance, some ofddeires for the words 2 (bought) and 5
(computer) of the sentence below would{PB+N, VB+N+Di st ance 3, buy+N, VB+conputer,
buy+comput er }. The features are frequently encoded as strings and mapedumber. The number
becomes the index of the feature in the feature vector anghtvgector. Therefore, a feature vector looks
like the following expressiorfs(2,5) = {0,0,0,1,0,0,..,0,1,..,1,..1,..} * and the weight vector looks

A implementation of such a sparse vector has to store thesahore efficient.

similar, e.g.w = {0.1258, —0.2554, 0,0.333, —0.0125, ...}.

He, bought a3 newy computes whichs was; verygs expensive .1

In order to compute the weight vector, we use a support vestmhine which has proven to be efficient
for dependency parsing. The support vector machine impigranline large margin multi-class learning,
cf. (Crammer et al., 2003; McDonald et al., 2005). We provite details in Section 3.

2.1 Second-Order Dependency Parsing

The first order dependency parsing algorithm takes onlyactmunt the parent and one dependent. While
the second order algorithm uses information of the comiposif the subtrees namely the edges of grand-
children and siblings. This improves the parsing accuraugesfor instance an edge to a preposition has to
be followed mostly by an edge to a nhoun to complete the prépnal part and also coordination consist
always of more than one edge.

2.2 Labeled Dependency Parsing

Algorithm 1 builds an unlabeled dependency tree. HoweWengay dependency tree banks have trees with
labeled edges. The following two approaches are commorite #us problem: The first approach uses an
additional algorithm to label the edges in a post-processiap. The second approaches extends the parsing
algorithm and integrates the labeling algorithm into thesimey algorithm.

McDonald et al. (2006) use an additional algorithm. Theio stage model has a good computational
complexity since the labeling algorithm contributes agaiiy a cubic time complexity to the algorithm
(O(n?)) and keeps therefore the joint algorithm still cubic. Téddution computes the edge labels for each
possible edge separate from the unlabeled dependencyTineealgorithm has three loops. The first two
loops iterate over the words of the sentence and they buil@ta>awhich refer to all possible edgeés;.
The third loop iterates over all possible labels and selietdighest scored label due to the score function
score(w;, label) 4+ score(wj, label) and inserts the highest scored label into the matrix. Theescare
also used in the parsing algorithms and added to the edgessadrich improves the overall parsing results
as well. In the first order parsing scenario, this procedsirguificient since no combination of edges are
considered by the parsing algorithm. However, in the seaoddr parsing scenario where more than one
edge are considered by the parsing algorithm, combinatibtwo edges might be more accurate than two
single edges with the highest score.

Carreras (2007) as well as Johansson and Nugues (2008) momthje labeling with the second order
parsing algorithm. This adds an additional loop over theeddgels to the parsing algorithm. The com-
plexity is therefore Q¢*). This increases in our experiments the parsing accuracy &bout 0.86 labeled
accuracy score to 0.88 what is a relative high improvemere.gd! the first value for our partly reimple-
mentation of the McDonald and Pereira (2006) parser andetbensl value for the parsing algorithm that
includes labels. For our experiments, we used the Englipkriiency tree bank as provided in the CoNLL
shared task 2008.

2.3 Non-Projective Dependency Parsing

The dependency parsers developed in the last few years wasdifferent techniques for non-projective
dependency parsing. The most common technique uses tre@mgvand was invented by Kahane et al.
(1998). This technique was taken up again by Nivre and Nilg2005) in Nivre's transition based de-
pendency parser which performed second best in the 2006dsiask which has therefore become well
known.

By using pseudo-projective dependency parsing, the trgidata for the parser is first projectivized by
applying a minimal number of lifting operations to the naiojpctive edges and encoding information about

these lifts in edge labels. After this operations, the tezegrojective and therefore a projective dependency
parser can be applied. During the train, the parser leaststal built trees with the lifted edges and so
indirect to built non-projective dependency trees sinderahe projective dependency parsing the inverse
operations to the lifting are performed and by this operatiee edges are moved downwards the tree and
non-projective trees are built.

McDonald and Pereira (2006) developed a technique to regeradges in the tree in a postprocessing
step after the projective parsing has taken place. Theytlvalblgorithm approximation non-projective
dependency parsing. It searches first the highest scorojgabive parse tree and then it rearranges edges
in the tree, in each step one, until the rearrangements datesngmore increase the score for the tree.
This technique is computationally expensive for trees &itarge number of non-projective edges since it
considers to reattach all edges to any other node until rfeehigcoring trees can be found. Their argument
for the algorithm is that most edges in a tree even in languetfe lot of non-projective sentences, the
portion of non-projective edges are still small and theneetoy starting with the highest scoring projective
tree, typically the highest scoring non-projective treerily a small number of transformations away from.

[Threshold| Labeled Accuracy Score (LAS) Unlabeled Accuracy Score (UAS))

projective | 0.86711 0.90350
0.0 0.86653 0.90127
0.8 0.86727 0.90416
1.0 0.86852 0.90619
11 0.86880 0.90530
12 0.86790 0.90421

Table 1: Accuracy Scores of different thresholds for theragimation non-projective dependency parsing.

We found out in our experiments with the non-projective appnation algorithm that with a threshold
higher then about 0.7, the parsing accuracy even for Englightly improves. With a threshold of 1.1, we
got the best improvement. The results of this experiment@amamarized in Table 1. Since we opt for a high
labeled accuracy score, we selected a threshold of 1.1fdls®unlabeled score for 1.0 is higher.

3 Parsing Framework

One of the main goals of the paper is to show how such a paredseanplemented fast without loosing
accuracy. This is very important for the applications whicle a parser. Parsing is in most cases only one
component of a Natural Language Processing applicatidm asisummarization, dialog system or machine
translation. Many applications have a tight time schedulg @ parser can not take more than a second
or even only some milliseconds to parse a sentence. The salce thue for the memory footprint since
the parser has to share the memory with other componentsyatens or it has to run on a small device
which might provide only a very limited amount of memory. gy the development of a parser, it is very
important as well that it does not take too long to train thesgasince otherwise experiments take too long
and it becomes impossible to improve the parser in a give time

3.1 OnlineLearning

As learning technique, we use Margin Infused Relaxed Atgori(MIRA) as developed by Crammer et al.
(2003) and applied to dependency parsing by McDonald e2@0%). The Algorithm in Figure 2 processes
one training instance on each iteration, and updates ttzen@ders due to the currently processed instance.

The inner loop iterates over all sentenaesf the training set while the outer loop repeats the tidimes.
The algorithm returns an averaged weight vector and usesxiliaay weight vectorv that accumulates the
values ofw after each iteration. At the end, the algorithm computesat@age of all weight vectors by
dividing it by the number of training iterations and sen&sncThis helps to avoid overfitting, cf. (Collins,
2002).

Algorithm 2: MIRA

T = {8, T }2—; Il The set of training data consists of sentences and thesmnding dependency trees
@ =0,7 =0
forn=1to N
for x=1to X
w'*! = updatew® according to instances(,, T%)
v=uv+wt!
i=1+1
end for
end for
w=v/(N=*X)

The update function computes the update to the weight veétduring the training so that wrong classi-
fied edges of the training instances are possibly classifieéct. This is computed by increasing the weight
for the correct features and decreasing the weight for wfeatyires of the vectors for the tree of the training
setfr, * w* and the vector for the predicted dependency figex w'’.

The update function tries to keep the change to the parameteorw’ as small as possible for correctly
classifying the current instance with a difference at leadiarge as the loss of the incorrect classifications.
The update of the algorithm in Figure 2 can be formalized fipfiong update function.

min |Jw(i 4+ 1) — w(i)||
s.t. score(Sy, Ty) — score(Sy, T,)) > L(T, T'r))

3.2 Sdected Parsing Features

Table 2 and 3 give an overview of the selected features foreingplementation of McDonald and Pereira
(2006) (System A) and the extended version with the integratige labels (System B), cf. Johansson and
Nugues (2008). Both parser versions shared the same codeanidg algorithm except from two parts:
the parsing algorithm itself which are only about 100 linésaxle and the code which extract the features.
The reason for this is that the parsing accuracy of both dlgos are sensitive to the selected features. For
the parsing and training speed, most important is a fastife&xtraction beside of a fast parsing algorithm.

3.3 Implementation Aspects

In this subsection, we provide some implementation deth#és$ concern all the speed of the parser and
distinguish this implementation from others. The learnamghitecture determines the architecture of the
parser.

The training has three passes. The goal of the first two p#&ssesollect the set of possible features for
all elements of the training set. In the first pass, the fea¢utractor collects all attributes that the features
can contain since our goal is to determine the minimal dpgsori length for each attribute. The reason for
this is to save memory and computational time during theufeatreation. For instance, when the feature
extractor builds features due to the patteabel , h- pos, d- f or n? then in the first pass the attributes
edge labels, part-of-speech tags (pos) and word forms ahedied into collection procedure. For each
category (labels, pos, etc.), the extractor builds a mapfmna number which is continuos from 1 to the
count of elements without duplicates. The following equashows this formally.

We enumerate in the same way the feature patterns and ob&#unction fcarure—type (value), €.9.

[feature—type(I2b€l,h-pos,d-form)=7. Now, we can calculate the miniategcription length in bits for each

2\We combine all the elements (label, pos, form) of this feapattern to a single feature (label+pos+form).

Standard Features Linear Features
Feature System| Feature System| Feature System
h-form A,B h-form, d-pos A,B h-pos, d-pos, h-pos + 1 A,B
h-pos A,B h-pos, d-form A,B h-pos, d-pos, h-pos - 1 A,B
d-form A,B h-form, d-form A,B h-pos, d-pos, d-pos + 1 A,B
d-pos AB h-pos, d-pos AB h-pos, d-pos, d-pos - 1 AB
h-form,h-pos A,B h-form, d-form, h-pos A,B h-pos, d-pos, h-pos - 1, d-pos -1 A,B
d-form,d-pos A,B h-form, d-form, d-pos A,B h-pos, d-pos, h-pos - 1, d-pos + [L A,B
h-pos, d-pos, h-form A,B h-pos, d-pos, h-pos + 1, d-pos - [L A,B
h-pos, d-pos, d-form A,B h-pos, d-pos, h-pos + 1, d-pos +|1A,B
h-pos, d-pos, h-form, d-form A,B h-pos - 1, d-pos, d-pos + 1 A
h-pos + 1, d-pos, d-pos - 1 A
h-pos - 1, h-pos, d-pos + 1 A
h-pos + 1, h-pos, d-pos - 1 A
Grandchild Features Sibling Features
Feature System| Feature System
h-form, d-pos, g-pos A d-form, s-forme dir(d,s)@dist(d,s)
h-form, d-pos, g-pos, dir(h,d) A d-pos, s-formp dir(d,s)ddist(d,s)

d-pos, s-formp dir(d,s)+@ dist(d,s)

d-pos, s-pospdir(d,s)ypdist(d,s)

h-pos, d-pos, s-pos, dir(h,d), dir(dsyist(h,s)
h-form, s-form, dir(h,d), dir(d,spdist(h,s)
d-form, s-form, dir(h,d), dir(d,spdist(h,s)
h-pos, s-form, dir(h,d), dir(d,s)dist(h,s)
d-pos, s-form, dir(h,d), dir(d,s)dist(h,s)
h-form, s-pos, dir(h,d), dir(d,s)dist(h,s)
d-form, s-pos, dir(h,d), dir(d,s)dist(h,s)

h-pos, d-pos, g-pos, dir(h,d), dir(d,q)
h-form, g-form, dir(h,d), dir(d,g)
d-form, g-form, dir(h,d), dir(d,g)
h-pos, g-form, dir(h,d), dir(d,g)
d-pos, g-form, dir(h,d), dir(d,g)
h-form, g-pos, dir(h,d), dir(d,g)
d-form, g-pos, dir(h,d), dir(d,g)

00| 0| 0| UO| 0| Oo| 0| 3>| 3>| 2> >

00| 00| 00| 0| 0| Co| 00

Table 2: Selected Features. h stands for head, d for depemgfem grandchild, and s for sibling. System
A builds additional features by adding thée ection and a feature that has additional thigtance plus the
direction. The direction is left if the dependent is leftlnéthead otherwise right. The distance is the number
of words between the head and the dependent5if6 if >5 and 11 if>>10. In some cases, we could also
improve system B by adding this features as well. In this gase list this explicit. System B has always
the edge label included in the features which is not indet&teorder to make to compare easier.means
that an additional feature is build with the previous pauspghe next part.

Tattrivute(value) — N, e.g. let befiapers (value) — {(punc,0),(sbj,1),(0bj,2),(mod,3)}.then figper (sbj) = 1 3

of the attributes with the following equation:

bits(attribute) = ceil(loga(max(Nattrivute)))

In the second pass, the extractor builds the features ftnaating examples which occur in the train set
but not for all combination, i.e., the extractor builds featfor all in the training set contained edges. In
other words, only for the positive examples and not for thgatige cases that do not occur. However, these
features of thevrong edges could improve the parser accuracy since the parser cossalsn this edges
during the creation of the parse tree. This would lead to amfargjer number of features. Therefore, most
of the implementation do not consider these features.

We create the features with a function that maps iteratitleyattributes of a feature to a number repre-
sented with 64 bit and then enumerates and maps these nutmB2rbit numbers to save even more mem-
ory. This is computed by the equatidfvalue, start, valueprevious) = lastprevious + (value << start).
The expressionunber <<n means shift the binary representation of the number bystdihe left. Forin-
stance, letnod,N be the set of attribute of the feature patteabel , h- pos, bits(labels)=7 bits(pos)=6,
bits(feature-type)=6, fiapers(MOd)= 3 (11b), f0s(N)=6(110b), andffeqture—type(label + h — pos)=8

Label Features
Feature System| Feature System |
label, pos® child ¢ dir(h,d) label, pos, pos + & child & dir(h,d)

label, pos, pos-1, pos<2 child & dir(h,d) label, pos, pos -1, pos-2, pos#ichild & dir(h,d)
label, pos, pos-2% child & dir(h,d) label, pos, pos +2p child & dir(h,d)

label, pos, pos-1 child & dir(h,d) label, pos, pos+® child @ dir(h,d)

label, pos, pos+1, pos<t child @ dir(h,d) label, formd child & dir(h,d)

| > > > >
| > > > >

Table 3: System A uses a boolean ftégld to indicate that it is the head or dependent and adds thesedea
once for the head and once for the dependenmeans that an additional feature is build with the previous
part plus the next part.

(1000b). Then the value for the feature type is computed ®y0,0) = 8 (1000b) and startts(feature-
type)=6; 1(3,6,8)= 1000b + (1Xb<6) = 1000b + 11000000b = 11001000b =200 and stari#sflabel)=12;
[(12,6,200)= 11001000b + (114<12)=11001000b + 11000000000000 = 11000011001000b.

The following list shows an overview of the most importantplementation details that improve the
speed:

1. We use as feature vector within the support vector maaohirhe a list of the features without any
additional (double floating point) value.

2. We store the feature vectors ftlabel, w;, w;), f(label, w;, w;,wy), f(label,w;, w;, ws) €tc. in a
compressed file. The reason for storing vectors in a file is that it is fastecompute the values once
and then to load them in each of the training iterations (@+h@s).

3. We zip the file with the option for fast compression and dgme@ssion. The reason for this is that
otherwise the 10 to the hard disk drive becomes the bottlenec

4. After the training, we store only the parameters of thepsuapvector machine which are not zero.

McDonald and Pereira (2006) System A Johansson and Nugues (2008)System B
Type 2nd order 2nd order 2nd order integrated labels | 2nd order integrated labels
training time | 70 hours 4 hours 60 hours 14 hours
memory usage 7 GB 1.5GB not reported 3GB
parsing time | 2 seconds 0.05 secondg 1.49 seconds 0.6 seconds
memory usagg 1.5 GB 700 MB not reported 1GB
LAS 0.86 0.87 0.88 0.88

Table 4: Performance Comparison

Table 4 gives an overview of different parsing systems aat flerformance and memory usage. We use
the training and development set of the 2008 shared taskantld speed comparison a 2.8 Ghz Mac Pro
and the values reported in Johansson and Nugues (2008) ima8e2l Ghz Mac Pro.

4 Semantic Role Labeling

Semantic Role Labeling (SRL) as well as Dependency Pargindben topics of CoNLL shared tasks, cf.
(Carreras and Marques, 2004; Carreras and Marquez, 208B)first two shared task 2004 and 2005 used
phrase structures trees as input to the semantic role tabbile the last shard task (2008) and the upcoming
CoNNL shared task (2009) uses dependency trees. We usdiagigehitecture for semantic role labeling.
The components of the pipeline are predicate identificaffl), argument identification (Al), argument
classification (AC), and word sense disambiguation (WSIDJ.tRaining and testing, we use the English

corpus of the shared task 2008. The corpus is in additiongert#ency trees annotated with predicates and
semantic roles of the NomBank and PropBank, cf. (Meyers.e2@04;?).

Algorithm 3:Attribute Identification

/'S, — wq...w,, is the sentence x with the words
Il P, — py...pm is the set of predicatgs; of sentence x
A7 is the set of arguments of predicate j in sentence x.
for all p; € P,
for all w; € S;
if scorep;, w;)> 0 then AT — A% U {i}

In order to identify the predicates, we look up the lemmash@RropBank and NomBank. For all other
components, we use the same learning technique and atahites for the dependency parser. We use the
same technique because we want to be able to use the scohesocafthiponents to rerank other results and
the used support vector machine allows a very large numbleatiires that standard decision trees, neural
nets, etc. can not handel.

Algorithm 3 identifies the arguments of each predicate.wtslbops iterate over the predicates and over
the words of a sentence in the case that the score functiargis br equal to zero the argument is added to
the set of arguments of the predicate in question.

The argument classification algorithm labels each arguidentified in the previous step with a semantic
role label. The argument classification algorithm seledth & beam search algorithm the combination of
arguments with the highest score. The algorithm allows onky core argument of the same type such (A0
to Ab).

The last component of our pipeline is the word sense disambimn. We put this against the intuition
at the end of our pipeline since experiments showed thatr athmponents could not profit from disam-
biguated word senses but on the other hand the word sengehiigeation could profit from the argument
identification and argument classification. In order to mlibyuate, we iterate over the words in the corpus
that have more than one sense and take the sense with thetrsgbee. Due to space restrictions, we can
not list all the features that we used in our systems. A lotaafdgcombinations can be found in Che et al.
(2008).

The accuracy and scores of our system are only a bit lowertti@best reported results (80.4) on the
development data of the 2008 shared task, cf. Johansson @gukBl (2008). The Attribute Identification
component has a accuracy of 91.6 and the attribute clagiificapplied on the output of the Al a F1
score of 77.5 Since we consider at this stage that all wordeshave the first sense 01, the Word Sense
Disambiguation can improve the results to 79.2. The aveiageto execute the SRL pipeline on a sentence
is less than 0.15 seconds.

5 Application to the Meaning-Text Theory

The above technique could be directly applied to a MTT carfie dependency trees converted from the
phrase structure annotation of the Penn Treebank have leecnroh more similar to the surface syntactic
trees for instance the coordinations are no longer flat aadlatd to the conjunction. In a lot of cases, only
the edge labels are different. Therefore, the describdthigaes could be applied to a corpus annotated
with MTT surface syntactic dependency trees.

The mapping of surface syntactic dependency trees to devacsic dependency trees can be addressed
with similar techniques. In this step the main task is to éeaut the function words, to introduce lexical
functions and to label the edges with deep syntactic depeydabels.

The semantic graphs of the MTT are mostly comparable to thpBamk annotation. The exceptions are
the communicative structures which is missing and predscathich form lexical functions are represent
different on the semantic stratum.

We hope that MTT Corpora annotated with dependency repiagsam of all levels become available:
surface syntactic structures, deep syntactic structurdssamantic representations including the commu-
nicative structure (Mel'¢uk, 2001). We are sure that thisuld be one of the most valuable linguistic
resource. One of the most recent initiative towards thigatiion is a corpus for Spanish, cf. (Mille et al.,
2009).

6 Conclusion

In this paper, we have described an algorithm for synchrempausing of syntactic and semantic structures.
Our implementation has scores that are comparable good deth so far reported results. Moreover, the
implementations and techniques introduced in this papmrige a much better parsing and training times.
Also the memory footprint are lower so that the parsers cataieed on standard computer and used on
devices which have less memory.

We integrated the synchronous parser into the MeaningDexelopment Environment (Mate) (Bohnet
et al., 2000) which can be trained now on MTT corpora so that ffossible to obtain surface syntactic
dependency trees and the semantic actants with the abdwiigee when trained on a corpus annotated
with MTT structures. This can help also to set up corpora in@dbtrap approach.

References

Bohnet, B., A. Langjahr, and L. Wanner. 2000. A Developmeantibnment for an MTT-Based Sentence Generator.
In Proceedings of the First International Natural Language Generation Conference.

Buchholz, S. and E. Marsi. 2006. Conll-x shared task on tingtial dependency parsing. In Proc. of CoNLL,
pages 149-164.

Carreras, X. and L. Marques. 2004. Introduction to theledd04 shared task: Semantic role labelingPoceedings
of CoNLL-2004, pages 89-97. Boston, MA, USA.

Carreras, X. and L. Marquez. 2005. Introduction to the CbNIOO5 shared task: Semantic role labeling. In
Proceedings of the Ninth Conference on Computational Natural Language Learning (CoNLL-2005), pages 152—
164, Ann Arbor, Michigan, June. Association for ComputasiblLinguistics.

Carreras, Xavier. 2007. Experiments with a Higher-Ordejdetive Dependency Parser. Rioceedings of the
EMNLP-CoNLL 2007 Shared Task.

Che, Wanxiang, Zhenghua Li, Yuxuan Hu, Yonggiang Li, BingyQfing Liu, and Sheng Li. 2008. A Cascaded
Syntactic and Semantic Dependency Parsing SystemCoNiL 2008: Twelfth Conference on Computational
Natural Language Learning, pages 238-242, Manchester, England. Coling.

Collins, M. 2002. Discriminative Training Methods for Hield Markov Models: Theory and Experiments with
Perceptron Algorithms. IEMNLP.

Crammer, K., O. Dekel, S. Shalev-Shwartz, and Y. Singer32@nhline Passive-Aggressive Algorithms. Sixteenth
Annual Conference on Neural Information Processing Systems (NIPS).

Eisner, J. 1996. Three New Probabilistic Models for Depeagid’arsing: An Exploration. IRfroceedings of the
16th International Conference on Computational Linguistics (COLING-96), pages 340-345, Copenhaen.

Johansson, R. and P. Nugues. 2008. Dependency-basedtisysamantic analysis with PropBank and NomBank.
In Proceedings of the Shared Task Session of CoNLL-2008, Manchester, UK.

Kahane, S., A. Nasr, and O. Rambow. 1998. Pseudo-projgctivpolynomially parsable non-projective dependency
grammar. INCOLING-ACL, pages 646—-652.

McDonald, R. and F. Pereira. 2006. Online Learning of Apprate Dependency Parsing Algorithms.InProc. of
EACL, pages 81-88.

McDonald, R., K. Crammer, and F. Pereira. 2005. Online Langegin Training of Dependency Parsers. Firoc.
ACL, pages 91-98.

McDonald, R., K. Lerman, F. Pereiraand, K. Crammer, and FeiRe 2006. Multilingual Dependency Parsing with a
Two-Stage Discriminative Parser. Tanth Conference on Computational Natural Language Learning (CoNLL-X),
pages 91-98.

Mel’€uk, I.A. 2001. Communicative Organization in Natural Language : The Semantic-Communicative Sructure of
Sentences. John Benjamins Publishing, Philadelphia.

Meyers, A., R. Reeves, C. Macleod, R. Szekely, V. ZielindkaYoung, and R. Grishman. 2004. The nombank
project: An interim report. In Meyers, A., editddLT-NAACL 2004 Workshop: Frontiers in Corpus Annotation,
pages 24-31, Boston, Massachusetts, USA, May 2 - May 7. Agsmcfor Computational Linguistics.

Mille, S., V. Vidal, A. Burga, and L. Wanner. 2009. CreatingTT Tree Bank of Spanish. IRroceedings ot the
Fourth International Conference on Meaning-Text Theory, Montréal.

Nivre, J., Hall J. and J. Nilsson. 2004. Memory-Based Depang Parsing. pages 49-56, Boston, Massachusetts.

Nivre, J. and J. Nilsson. 2005. Pseudo-Projective Depeayd@arsing. Irin Proceedings of the 43rd Annual Meeting
of the Association for Computational Linguistics, pages 99-106.

Nivre, J., J. Hall, S. Kubler, R. McDonald, J. Nilsson, Seél, and D. Yuret. 2007. The conll 2007 shared task
on dependency parsing. Froc. of the CoNLL 2007 Shared Task. Joint Conf. on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), June.

Nivre, Joakim, lgor M. Boguslavsky, and Leonid L. lomdin. Parsing thesYNTAGRUS Treebank of Russian.
In Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008), pages 641—-648,
Manchester.

Surdeanu, M., R. Johansson, A. Meyers, L. Marquez, andwieNi2008. The CoNLL-2008 shared task on joint
parsing of syntactic and semantic dependencieRrdneedings of the 12th Conference on Computational Natural
Language Learning (CoNLL-2008).

