
Synchronous Parsing of Syntactic and Semantic Structures

Bernd Bohnet
International Computer Science Institute

1947 Center Street
Berkeley 94704, California

bohnet@icsi.Berkeley.edu

Abstract

We describe in this paper an approach for synchronous parsing of syntactic and semantic dependency
structures that combines recent advances in the area to get avery high accuracy as well at the same
time very good parsing times. The time for parsing, the time for training and the values of the
memory footprint are to our knowledge the best results reported while the parsing accuracy are as
high as the highest results reported in the 2008 shared task.The corpora used in the shared task are
still different to the dependency structures of the Meaning-Text Theory. Therefore, we outline the
adaption of the approach to the dependency structures of theMeaning-Text Theory.

1 Introduction

Recently, dependency parsing made large advances. Reasonsfor this are influential work of some researches
and shared tasks for dependency parsing in the years 2006, 2007 (cf. (Buchholz and Marsi, 2006), (Nivre
et al., 2007)) and the shared tasks for joint parsing of dependency and semantic structures in the years 2008
and an upcoming one in 2009 (cf. (Surdeanu et al., 2008)). There are two main approaches to dependency
parsing: Maximum Spanning Tree (MST) based dependency parsing (Eisner, 1996; McDonald and Pereira,
2006) and transition based dependency parsing, cf. (Nivre and Nilsson, 2004). In this paper, we use the first
approach since we could better improve the parsing speed andthe MST based dependency parsing approach
has a slightly better accuracy. To our knowlege there are only a few MTT parser available and even less
attempts have been made to parse dependency trees of different representation levels with statistical trained
parser. One of the exceptions is a transition based parser, which was train on the Russian SYNTAGRUS

tree-bank, cf. (Nivre et al., 2008).

2 Parsing Algorithm

We adopted the second order MST parsing algorithm as outlined in Eisner (1996). This algorithm has a
higher accuracy compared to the first order parsing algorithm since it considers also siblings and grandchil-
dren of a node. Algorithm 1 shows the first order algorithm which is the basis for the second order parsing
algorithm. Eisner (1996) first order approach can compute a projective dependency tree within cubic time
(O(n3)). Therefore, the algorithm shown in Algorithm 1 has at mostthree nested loops.

Both algorithms are bottom up parsing algorithms based on dynamic programming similar to the CKY
chart parsing algorithm. The score for a dependency tree is the sum of all edge scores. The following
equation describes this formally.

c© 2008. Licensed under theCreative Commons Attribution-Noncommercial-Share Alike 3.0 Unported license
(http://creativecommons.org/licenses/by-nc-sa/3.0/). Some rights reserved.

score(S, t) =
∑

∀(i,j)∈E score(i, j)

The score of the sentenceS and a treet overS is defined as the sum of all edge scores where the words
of S arew0...w1. The tree consists of set of nodesN and set of edgesE = 〈N × N〉. The word indices
(0..n) are the elements of the node setN . The expression(i, j) ∈ E denotes an edge which is going from
the nodei to the nodej.

The parsing Algorithm 1 searches the tree with the best scorebottom up considering only the scores
of single edges. Therefore, it is call first order dependencyparsing algorithm. The score function in the
algorithm scores always a subtree and the algorithm search for the best combination of smaller trees in order
to build larger trees which maximize the overall score of thetree.

Algorithm 1: First Order Parsing Algorithm
// S ← w0...wn is the sentence with the wordswi

// lS = n + 1 is the sentence length
// N = 0...n the indices of the words
// E = N ×N set of edges
// C = (Cleft, Cright, E) the chart element whereCleft andCrightis a pointer to another chart element
// D = {0, 1} D represents the direction of the edge
// CO = N ×N ×D × C the chart with the open sub-trees
// CC = N ×N ×D × C the chart with the closed sub-trees
for j ← 1 to lS do

for s← 0 to lS do
t← s + j
if t > lS then break
for r = s to t-1do

if (score(CO [s][t][1]) <score(CC [s][r][1]) + score(CC [r + 1][t][0])) then
CO[s][t][1] ← (CC [s][r][1], CC [r + 1][t][0]),[s→t])

if (score(CO [s][t][0]) <score(CC [s][r][1]) + score(CC [r + 1][t][0])) then
CO[s][t][0] ← (CC [s][r][1], CC [r + 1][t][0]),[s←t])

end for
for r = s+1 to tdo

if (score(CC [s][t][1]) <score(O[s][r][1]) + score(C[r][t][1]))then
CC [s][t][1] ← (CC [s][r][1], CC [r][t][1]),[s→t])

end for
for r = s to t-1do

if (score(CC [s][t][0]) <score(CC [s][r][0]) + score(CO [r][t][0])) then
CC [s][t][0] ← (CC [s][r][1], CO[r][t][1]),[s←t])

end for
end for

end for

We compute the edge score (score(i, j)) as the scalar product of a feature vector representation ofeach
edge

−→
fS(i, j) with a weight vector−→w wherei, j are the indices of the words in a sentence. The feature

vectorfS might take into account not only the words with indicesi andj but also additional values such as
the words before and after the wordswi andwj. The following equation shows the score function.

score(i, j) =
−→
fS(i, j) ∗ −→w

Most of the features are built out of the properties from the words such as part-of-speech, morpho-
logic features, lemmas, and forms. For instance, some of thefeatures for the words 2 (bought) and 5
(computer) of the sentence below would be{VB+N, VB+N+Distance 3, buy+N, VB+computer,
buy+computer}. The features are frequently encoded as strings and mapped to a number. The number
becomes the index of the feature in the feature vector and weight vector. Therefore, a feature vector looks
like the following expressionfS(2, 5) = {0, 0, 0, 1, 0, 0, .., 0, 1, .., 1, ..1, ..} 1 and the weight vector looks

1A implementation of such a sparse vector has to store the values more efficient.

similar, e.g.w = {0.1258,−0.2554, 0, 0.333,−0.0125, ...}.

He1 bought2 a3 new4 computer5 which6 was7 very8 expensive9 .10

In order to compute the weight vector, we use a support vectormachine which has proven to be efficient
for dependency parsing. The support vector machine implements online large margin multi-class learning,
cf. (Crammer et al., 2003; McDonald et al., 2005). We providemore details in Section 3.

2.1 Second-Order Dependency Parsing

The first order dependency parsing algorithm takes only intoaccount the parent and one dependent. While
the second order algorithm uses information of the composition of the subtrees namely the edges of grand-
children and siblings. This improves the parsing accuracy since for instance an edge to a preposition has to
be followed mostly by an edge to a noun to complete the prepositional part and also coordination consist
always of more than one edge.

2.2 Labeled Dependency Parsing

Algorithm 1 builds an unlabeled dependency tree. However, all new dependency tree banks have trees with
labeled edges. The following two approaches are common to solve this problem: The first approach uses an
additional algorithm to label the edges in a post-processing step. The second approaches extends the parsing
algorithm and integrates the labeling algorithm into the parsing algorithm.

McDonald et al. (2006) use an additional algorithm. Their two stage model has a good computational
complexity since the labeling algorithm contributes againonly a cubic time complexity to the algorithm
(O(n3)) and keeps therefore the joint algorithm still cubic. Thissolution computes the edge labels for each
possible edge separate from the unlabeled dependency tree.The algorithm has three loops. The first two
loops iterate over the words of the sentence and they build a matrix which refer to all possible edgesi, j.
The third loop iterates over all possible labels and selectsthe highest scored label due to the score function
score(wi, label) + score(wj, label) and inserts the highest scored label into the matrix. The scores are
also used in the parsing algorithms and added to the edge scores which improves the overall parsing results
as well. In the first order parsing scenario, this procedure is sufficient since no combination of edges are
considered by the parsing algorithm. However, in the secondorder parsing scenario where more than one
edge are considered by the parsing algorithm, combinationsof two edges might be more accurate than two
single edges with the highest score.

Carreras (2007) as well as Johansson and Nugues (2008) combine edge labeling with the second order
parsing algorithm. This adds an additional loop over the edge labels to the parsing algorithm. The com-
plexity is therefore O(n4). This increases in our experiments the parsing accuracy from about 0.86 labeled
accuracy score to 0.88 what is a relative high improvement. We got the first value for our partly reimple-
mentation of the McDonald and Pereira (2006) parser and the second value for the parsing algorithm that
includes labels. For our experiments, we used the English dependency tree bank as provided in the CoNLL
shared task 2008.

2.3 Non-Projective Dependency Parsing

The dependency parsers developed in the last few years use two different techniques for non-projective
dependency parsing. The most common technique uses tree rewriting and was invented by Kahane et al.
(1998). This technique was taken up again by Nivre and Nilsson (2005) in Nivre‘s transition based de-
pendency parser which performed second best in the 2006 shared task which has therefore become well
known.

By using pseudo-projective dependency parsing, the training data for the parser is first projectivized by
applying a minimal number of lifting operations to the non-projective edges and encoding information about

these lifts in edge labels. After this operations, the treesare projective and therefore a projective dependency
parser can be applied. During the train, the parser learns also to built trees with the lifted edges and so
indirect to built non-projective dependency trees since after the projective dependency parsing the inverse
operations to the lifting are performed and by this operation the edges are moved downwards the tree and
non-projective trees are built.

McDonald and Pereira (2006) developed a technique to rearrange edges in the tree in a postprocessing
step after the projective parsing has taken place. They callthe algorithm approximation non-projective
dependency parsing. It searches first the highest scoring projective parse tree and then it rearranges edges
in the tree, in each step one, until the rearrangements does not anymore increase the score for the tree.
This technique is computationally expensive for trees witha large number of non-projective edges since it
considers to reattach all edges to any other node until no higher scoring trees can be found. Their argument
for the algorithm is that most edges in a tree even in languagewith lot of non-projective sentences, the
portion of non-projective edges are still small and therefore by starting with the highest scoring projective
tree, typically the highest scoring non-projective tree isonly a small number of transformations away from.

Threshold Labeled Accuracy Score (LAS) Unlabeled Accuracy Score (UAS)
projective 0.86711 0.90350
0.0 0.86653 0.90127
0.8 0.86727 0.90416
1.0 0.86852 0.90619
1.1 0.86880 0.90530
1.2 0.86790 0.90421

Table 1: Accuracy Scores of different thresholds for the approximation non-projective dependency parsing.

We found out in our experiments with the non-projective approximation algorithm that with a threshold
higher then about 0.7, the parsing accuracy even for Englishslightly improves. With a threshold of 1.1, we
got the best improvement. The results of this experiment aresummarized in Table 1. Since we opt for a high
labeled accuracy score, we selected a threshold of 1.1 also if the unlabeled score for 1.0 is higher.

3 Parsing Framework

One of the main goals of the paper is to show how such a parser can be implemented fast without loosing
accuracy. This is very important for the applications whichuse a parser. Parsing is in most cases only one
component of a Natural Language Processing application such as summarization, dialog system or machine
translation. Many applications have a tight time schedule and a parser can not take more than a second
or even only some milliseconds to parse a sentence. The same holds true for the memory footprint since
the parser has to share the memory with other components of a system or it has to run on a small device
which might provide only a very limited amount of memory. During the development of a parser, it is very
important as well that it does not take too long to train the parser since otherwise experiments take too long
and it becomes impossible to improve the parser in a give time.

3.1 Online Learning

As learning technique, we use Margin Infused Relaxed Algorithm (MIRA) as developed by Crammer et al.
(2003) and applied to dependency parsing by McDonald et al. (2005). The Algorithm in Figure 2 processes
one training instance on each iteration, and updates the parameters due to the currently processed instance.

The inner loop iterates over all sentencesx of the training set while the outer loop repeats the traini times.
The algorithm returns an averaged weight vector and uses an auxiliary weight vectorv that accumulates the
values ofw after each iteration. At the end, the algorithm computes theaverage of all weight vectors by
dividing it by the number of training iterations and sentences. This helps to avoid overfitting, cf. (Collins,
2002).

Algorithm 2: MIRA
τ = {Sx, Tx}

X
x=1 // The set of training data consists of sentences and the corresponding dependency trees

−→w (0) = 0,−→v = 0
for n = 1 to N

for x = 1 to X
wi+1 = updatewi according to instance (Sx, Tx)
v = v + wi+1

i = i + 1
end for

end for
w = v/(N ∗X)

The update function computes the update to the weight vectorwi during the training so that wrong classi-
fied edges of the training instances are possibly classified correct. This is computed by increasing the weight
for the correct features and decreasing the weight for wrongfeatures of the vectors for the tree of the training
set
−→
fTx ∗ wi and the vector for the predicted dependency tree

−→
fT ′

x
∗ wi.

The update function tries to keep the change to the parametervectorwi as small as possible for correctly
classifying the current instance with a difference at leastas large as the loss of the incorrect classifications.
The update of the algorithm in Figure 2 can be formalized by following update function.

min ||w(i + 1)− w(i)||
s.t. score(Sx, Tx)− score(Sx, T ′

y) ≥ L(Tx, T ′x))

3.2 Selected Parsing Features

Table 2 and 3 give an overview of the selected features for thereimplementation of McDonald and Pereira
(2006) (System A) and the extended version with the integrated edge labels (System B), cf. Johansson and
Nugues (2008). Both parser versions shared the same code andtraining algorithm except from two parts:
the parsing algorithm itself which are only about 100 lines of code and the code which extract the features.
The reason for this is that the parsing accuracy of both algorithms are sensitive to the selected features. For
the parsing and training speed, most important is a fast feature extraction beside of a fast parsing algorithm.

3.3 Implementation Aspects

In this subsection, we provide some implementation detailsthat concern all the speed of the parser and
distinguish this implementation from others. The learningarchitecture determines the architecture of the
parser.

The training has three passes. The goal of the first two passesis to collect the set of possible features for
all elements of the training set. In the first pass, the feature extractor collects all attributes that the features
can contain since our goal is to determine the minimal description length for each attribute. The reason for
this is to save memory and computational time during the feature creation. For instance, when the feature
extractor builds features due to the patternlabel, h-pos, d-form2 then in the first pass the attributes
edge labels, part-of-speech tags (pos) and word forms are included into collection procedure. For each
category (labels, pos, etc.), the extractor builds a mapping to a number which is continuos from 1 to the
count of elements without duplicates. The following equation shows this formally.

We enumerate in the same way the feature patterns and obtain the functionffeature−type(value), e.g.
ffeature−type(label,h-pos,d-form)=7. Now, we can calculate the minimaldescription length in bits for each

2We combine all the elements (label, pos, form) of this feature pattern to a single feature (label+pos+form).

Standard Features Linear Features
Feature System Feature System Feature System
h-form A,B h-form, d-pos A,B h-pos, d-pos, h-pos + 1 A,B
h-pos A,B h-pos, d-form A,B h-pos, d-pos, h-pos - 1 A,B
d-form A,B h-form, d-form A,B h-pos, d-pos, d-pos + 1 A,B
d-pos A,B h-pos, d-pos A,B h-pos, d-pos, d-pos - 1 A,B
h-form,h-pos A,B h-form, d-form, h-pos A,B h-pos, d-pos, h-pos - 1, d-pos - 1 A,B
d-form,d-pos A,B h-form, d-form, d-pos A,B h-pos, d-pos, h-pos - 1, d-pos + 1 A,B

h-pos, d-pos, h-form A,B h-pos, d-pos, h-pos + 1, d-pos - 1 A,B
h-pos, d-pos, d-form A,B h-pos, d-pos, h-pos + 1, d-pos + 1A,B
h-pos, d-pos, h-form, d-form A,B h-pos - 1, d-pos, d-pos + 1 A

h-pos + 1, d-pos, d-pos - 1 A
h-pos - 1, h-pos, d-pos + 1 A
h-pos + 1, h-pos, d-pos - 1 A

Grandchild Features Sibling Features
Feature System Feature System
h-form, d-pos, g-pos A d-form, s-form⊕ dir(d,s)⊕dist(d,s) A
h-form, d-pos, g-pos, dir(h,d) A d-pos, s-form⊕ dir(d,s)⊕dist(d,s) A

d-pos, s-form⊕ dir(d,s)+⊕ dist(d,s) A
d-pos, s-pos⊕dir(d,s)⊕dist(d,s) A

h-pos, d-pos, g-pos, dir(h,d), dir(d,g)B h-pos, d-pos, s-pos, dir(h,d), dir(d,s)⊕dist(h,s) B
h-form, g-form, dir(h,d), dir(d,g) B h-form, s-form, dir(h,d), dir(d,s)⊕dist(h,s) B
d-form, g-form, dir(h,d), dir(d,g) B d-form, s-form, dir(h,d), dir(d,s)⊕dist(h,s) B
h-pos, g-form, dir(h,d), dir(d,g) B h-pos, s-form, dir(h,d), dir(d,s)⊕dist(h,s) B
d-pos, g-form, dir(h,d), dir(d,g) B d-pos, s-form, dir(h,d), dir(d,s)⊕dist(h,s) B
h-form, g-pos, dir(h,d), dir(d,g) B h-form, s-pos, dir(h,d), dir(d,s)⊕dist(h,s) B
d-form, g-pos, dir(h,d), dir(d,g) B d-form, s-pos, dir(h,d), dir(d,s)⊕dist(h,s) B

Table 2: Selected Features. h stands for head, d for dependent, g for grandchild, and s for sibling. System
A builds additional features by adding thedirection and a feature that has additional thedistance plus the
direction. The direction is left if the dependent is left of the head otherwise right. The distance is the number
of words between the head and the dependent, if≤5, 6 if >5 and 11 if>10. In some cases, we could also
improve system B by adding this features as well. In this cases, we list this explicit. System B has always
the edge label included in the features which is not indicated in order to make to compare easier.⊕ means
that an additional feature is build with the previous part plus the next part.

fattribute(value) → N , e.g. let beflabels(value)→ {(punc,0),(sbj,1),(obj,2),(mod,3) ..} thenflabel(sbj) = 1 3

of the attributes with the following equation:

bits(attribute) = ceil(log2(max(Nattribute)))

In the second pass, the extractor builds the features for alltraining examples which occur in the train set
but not for all combination, i.e., the extractor builds feature for all in the training set contained edges. In
other words, only for the positive examples and not for the negative cases that do not occur. However, these
features of thewrong edges could improve the parser accuracy since the parser considers also this edges
during the creation of the parse tree. This would lead to a much larger number of features. Therefore, most
of the implementation do not consider these features.

We create the features with a function that maps iterativelythe attributes of a feature to a number repre-
sented with 64 bit and then enumerates and maps these numbersto 32 bit numbers to save even more mem-
ory. This is computed by the equationl(value, start, valueprevious) = lastprevious + (value << start).
The expressionnumber<<nmeans shift the binary representation of the number by n-bits to the left. For in-
stance, letmod,N be the set of attribute of the feature patternlabel, h-pos, bits(labels)=7,bits(pos)=6,
bits(feature-type)=6,flabels(mod)= 3 (11b), fpos(N)=6(110b), andffeature−type(label + h − pos)=8

Label Features
Feature System Feature System
label, pos⊕ child⊕ dir(h,d) A label, pos, pos + 1⊕ child⊕ dir(h,d) A
label, pos, pos-1, pos-2⊕ child⊕ dir(h,d) A label, pos, pos -1, pos-2, pos+1⊕ child⊕ dir(h,d) A
label, pos, pos-2,⊕ child⊕ dir(h,d) A label, pos, pos +2,⊕ child⊕ dir(h,d) A
label, pos, pos-1⊕ child⊕ dir(h,d) A label, pos, pos+1⊕ child⊕ dir(h,d) A
label, pos, pos+1, pos-1⊕ child⊕ dir(h,d) A label, form⊕ child⊕ dir(h,d) A

Table 3: System A uses a boolean flagchild to indicate that it is the head or dependent and adds these feature
once for the head and once for the dependent.⊕ means that an additional feature is build with the previous
part plus the next part.

(1000b). Then the value for the feature type is computed byl(8, 0, 0) = 8 (1000b) and start=bits(feature-
type)=6; l(3,6,8)= 1000b + (11b<<6) = 1000b + 11000000b = 11001000b =200 and start=6+bits(label)=12;
l(12, 6, 200)= 11001000b + (11b<<12)= 11001000b + 11000000000000 = 11000011001000b.

The following list shows an overview of the most important implementation details that improve the
speed:

1. We use as feature vector within the support vector machineonly a list of the features without any
additional (double floating point) value.

2. We store the feature vectors forf(label, wi, wj), f(label, wi, wj , wg), f(label, wi, wj , ws) etc. in a
compressed file. The reason for storing vectors in a file is that it is faster to compute the values once
and then to load them in each of the training iterations (6-10times).

3. We zip the file with the option for fast compression and decompression. The reason for this is that
otherwise the IO to the hard disk drive becomes the bottleneck.

4. After the training, we store only the parameters of the support vector machine which are not zero.

McDonald and Pereira (2006) System A Johansson and Nugues (2008)System B
Type 2nd order 2nd order 2nd order integrated labels 2nd order integrated labels
training time 70 hours 4 hours 60 hours 14 hours
memory usage 7 GB 1.5 GB not reported 3 GB
parsing time 2 seconds 0.05 seconds 1.49 seconds 0.6 seconds
memory usage 1.5 GB 700 MB not reported 1 GB
LAS 0.86 0.87 0.88 0.88

Table 4: Performance Comparison

Table 4 gives an overview of different parsing systems and their performance and memory usage. We use
the training and development set of the 2008 shared task and for the speed comparison a 2.8 Ghz Mac Pro
and the values reported in Johansson and Nugues (2008) basedon 3.2 Ghz Mac Pro.

4 Semantic Role Labeling

Semantic Role Labeling (SRL) as well as Dependency Parsing has been topics of CoNLL shared tasks, cf.
(Carreras and Màrques, 2004; Carreras and Màrquez, 2005). The first two shared task 2004 and 2005 used
phrase structures trees as input to the semantic role labeler while the last shard task (2008) and the upcoming
CoNNL shared task (2009) uses dependency trees. We use a pipeline architecture for semantic role labeling.
The components of the pipeline are predicate identification(PI), argument identification (AI), argument
classification (AC), and word sense disambiguation (WSD). For training and testing, we use the English

corpus of the shared task 2008. The corpus is in addition to dependency trees annotated with predicates and
semantic roles of the NomBank and PropBank, cf. (Meyers et al., 2004;?).

Algorithm 3:Attribute Identification

// Sx ← w0...wn is the sentence x with the wordswi

// Px ← p0...pm is the set of predicatespj of sentence x
Ax

j is the set of arguments of predicate j in sentence x.
for all pj ∈ Px

for all wi ∈ Sx

if score(pj , wi)≥ 0 then Ax
j ← Ax

j ∪ {i}

In order to identify the predicates, we look up the lemmas in the PropBank and NomBank. For all other
components, we use the same learning technique and architecture as for the dependency parser. We use the
same technique because we want to be able to use the scores of the components to rerank other results and
the used support vector machine allows a very large number offeatures that standard decision trees, neural
nets, etc. can not handel.

Algorithm 3 identifies the arguments of each predicate. Its two loops iterate over the predicates and over
the words of a sentence in the case that the score function is large or equal to zero the argument is added to
the set of arguments of the predicate in question.

The argument classification algorithm labels each argumentidentified in the previous step with a semantic
role label. The argument classification algorithm selects with a beam search algorithm the combination of
arguments with the highest score. The algorithm allows onlyone core argument of the same type such (A0
to A5).

The last component of our pipeline is the word sense disambiguation. We put this against the intuition
at the end of our pipeline since experiments showed that other components could not profit from disam-
biguated word senses but on the other hand the word sense disambiguation could profit from the argument
identification and argument classification. In order to disambiguate, we iterate over the words in the corpus
that have more than one sense and take the sense with the highest score. Due to space restrictions, we can
not list all the features that we used in our systems. A lot of good combinations can be found in Che et al.
(2008).

The accuracy and scores of our system are only a bit lower thanthe best reported results (80.4) on the
development data of the 2008 shared task, cf. Johansson and Nugues (2008). The Attribute Identification
component has a accuracy of 91.6 and the attribute classification applied on the output of the AI a F1
score of 77.5 Since we consider at this stage that all word sense have the first sense 01, the Word Sense
Disambiguation can improve the results to 79.2. The averagetime to execute the SRL pipeline on a sentence
is less than 0.15 seconds.

5 Application to the Meaning-Text Theory

The above technique could be directly applied to a MTT corpus. The dependency trees converted from the
phrase structure annotation of the Penn Treebank have become much more similar to the surface syntactic
trees for instance the coordinations are no longer flat and attached to the conjunction. In a lot of cases, only
the edge labels are different. Therefore, the described techniques could be applied to a corpus annotated
with MTT surface syntactic dependency trees.

The mapping of surface syntactic dependency trees to deep syntactic dependency trees can be addressed
with similar techniques. In this step the main task is to leave out the function words, to introduce lexical
functions and to label the edges with deep syntactic dependency labels.

The semantic graphs of the MTT are mostly comparable to the PropBank annotation. The exceptions are
the communicative structures which is missing and predicates which form lexical functions are represent
different on the semantic stratum.

We hope that MTT Corpora annotated with dependency representation of all levels become available:
surface syntactic structures, deep syntactic structures and semantic representations including the commu-
nicative structure (Mel’čuk, 2001). We are sure that this would be one of the most valuable linguistic
resource. One of the most recent initiative towards this direction is a corpus for Spanish, cf. (Mille et al.,
2009).

6 Conclusion

In this paper, we have described an algorithm for synchronous parsing of syntactic and semantic structures.
Our implementation has scores that are comparable good as the best so far reported results. Moreover, the
implementations and techniques introduced in this paper provide a much better parsing and training times.
Also the memory footprint are lower so that the parsers can betrained on standard computer and used on
devices which have less memory.

We integrated the synchronous parser into the Meaning-TextDevelopment Environment (Mate) (Bohnet
et al., 2000) which can be trained now on MTT corpora so that itis possible to obtain surface syntactic
dependency trees and the semantic actants with the above technique when trained on a corpus annotated
with MTT structures. This can help also to set up corpora in a boots trap approach.

References

Bohnet, B., A. Langjahr, and L. Wanner. 2000. A Development Environment for an MTT-Based Sentence Generator.
In Proceedings of the First International Natural Language Generation Conference.

Buchholz, S. and E. Marsi. 2006. Conll-x shared task on multilingual dependency parsing. InIn Proc. of CoNLL,
pages 149–164.

Carreras, X. and L. Màrques. 2004. Introduction to the conll-2004 shared task: Semantic role labeling. InProceedings
of CoNLL-2004, pages 89–97. Boston, MA, USA.

Carreras, X. and L. Màrquez. 2005. Introduction to the CoNLL-2005 shared task: Semantic role labeling. In
Proceedings of the Ninth Conference on Computational Natural Language Learning (CoNLL-2005), pages 152–
164, Ann Arbor, Michigan, June. Association for Computational Linguistics.

Carreras, Xavier. 2007. Experiments with a Higher-Order Projective Dependency Parser. InProceedings of the
EMNLP-CoNLL 2007 Shared Task.

Che, Wanxiang, Zhenghua Li, Yuxuan Hu, Yongqiang Li, Bing Qin, Ting Liu, and Sheng Li. 2008. A Cascaded
Syntactic and Semantic Dependency Parsing System. InCoNLL 2008: Twelfth Conference on Computational
Natural Language Learning, pages 238–242, Manchester, England. Coling.

Collins, M. 2002. Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with
Perceptron Algorithms. InEMNLP.

Crammer, K., O. Dekel, S. Shalev-Shwartz, and Y. Singer. 2003. Online Passive-Aggressive Algorithms. InSixteenth
Annual Conference on Neural Information Processing Systems (NIPS).

Eisner, J. 1996. Three New Probabilistic Models for Dependency Parsing: An Exploration. InProceedings of the
16th International Conference on Computational Linguistics (COLING-96), pages 340–345, Copenhaen.

Johansson, R. and P. Nugues. 2008. Dependency-based syntactic–semantic analysis with PropBank and NomBank.
In Proceedings of the Shared Task Session of CoNLL-2008, Manchester, UK.

Kahane, S., A. Nasr, and O. Rambow. 1998. Pseudo-projectivity: A polynomially parsable non-projective dependency
grammar. InCOLING-ACL, pages 646–652.

McDonald, R. and F. Pereira. 2006. Online Learning of Approximate Dependency Parsing Algorithms. InIn Proc. of
EACL, pages 81–88.

McDonald, R., K. Crammer, and F. Pereira. 2005. Online Large-margin Training of Dependency Parsers. InProc.
ACL, pages 91–98.

McDonald, R., K. Lerman, F. Pereiraand, K. Crammer, and F. Pereira. 2006. Multilingual Dependency Parsing with a
Two-Stage Discriminative Parser. InTenth Conference on Computational Natural Language Learning (CoNLL-X),
pages 91–98.

Mel’čuk, I.A. 2001. Communicative Organization in Natural Language : The Semantic-Communicative Structure of
Sentences. John Benjamins Publishing, Philadelphia.

Meyers, A., R. Reeves, C. Macleod, R. Szekely, V. Zielinska,B. Young, and R. Grishman. 2004. The nombank
project: An interim report. In Meyers, A., editor,HLT-NAACL 2004 Workshop: Frontiers in Corpus Annotation,
pages 24–31, Boston, Massachusetts, USA, May 2 - May 7. Association for Computational Linguistics.

Mille, S., V. Vidal, A. Burga, and L. Wanner. 2009. Creating an MTT Tree Bank of Spanish. InProceedings ot the
Fourth International Conference on Meaning-Text Theory, Montréal.

Nivre, J., Hall J. and J. Nilsson. 2004. Memory-Based Dependency Parsing. pages 49–56, Boston, Massachusetts.

Nivre, J. and J. Nilsson. 2005. Pseudo-Projective Dependency Parsing. InIn Proceedings of the 43rd Annual Meeting
of the Association for Computational Linguistics, pages 99–106.

Nivre, J., J. Hall, S. Kübler, R. McDonald, J. Nilsson, S. Riedel, and D. Yuret. 2007. The conll 2007 shared task
on dependency parsing. InProc. of the CoNLL 2007 Shared Task. Joint Conf. on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), June.

Nivre, Joakim, Igor M. Boguslavsky, and Leonid L. Iomdin. 2008. Parsing theSYNTAGRUS Treebank of Russian.
In Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008), pages 641–648,
Manchester.

Surdeanu, M., R. Johansson, A. Meyers, L. Màrquez, and J. Nivre. 2008. The CoNLL-2008 shared task on joint
parsing of syntactic and semantic dependencies. InProceedings of the 12th Conference on Computational Natural
Language Learning (CoNLL-2008).

