
Ensemble Feature Selection for Multi-Stream Automatic Speech Recognition

by

David Gelbart

B.S. (University of British Columbia) 1999

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Engineering-Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Nelson Morgan, Chair
Professor Jerome Feldman
Professor Keith Johnson

Fall 2008

The dissertation of David Gelbart is approved.

Chair Date

Date

Date

University of California, Berkeley

Fall 2008

Abstract

Ensemble Feature Selection for Multi-Stream Automatic Speech Recognition

by

David Gelbart

Doctor of Philosophy in Engineering-Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Nelson Morgan, Chair

Multi-stream automatic speech recognition (ASR) systems consisting of an en-

semble of classifiers working together, each with its own feature vector, are popular

in the research literature. Published work on feature selection for such systems has

dealt with indivisible blocks of features. I break from this tradition by investigat-

ing feature selection at the level of individual features. I use the OGI ISOLET and

Numbers speech corpora, including noisy versions I created using a variety of noises

and signal-to-noise ratios. I have made these noisy versions available for use by other

researchers, along with my ASR and feature selection scripts.

I start with the random subspace method of ensemble feature selection, in which

each feature vector is simply chosen randomly from the feature pool. Using ISOLET,

I obtain performance improvements over baseline in almost every case where there

is a statistically significant performance difference, but there are many cases with no

such difference.

I then try hill-climbing, a wrapper approach that changes a single feature at a

time when the change improves a performance score. With ISOLET, hill-climbing

1

gives performance improvements in most cases for noisy data, but no improvement

for clean data. I then move to Numbers, for which much more data is available

to guide hill-climbing. When using either the clean or noisy Numbers data, hill-

climbing gives performance improvements over multi-stream baselines in almost all

cases, although it does not improve over the best single-stream baseline. For noisy

data, these performance improvements are present even for noise types that were

not seen during the hill-climbing process. In mismatched condition tests involving

mismatch between clean and noisy data, hill-climbing outperforms all baselines when

Opitz’s scoring formula is used. I find that this scoring formula, which blends single-

classifier accuracy and ensemble diversity, works better for me than ensemble accuracy

as a performance score for guiding hill-climbing.

Professor Nelson Morgan
Dissertation Committee Chair

2

Contents

Contents i

Acknowledgements v

1 Introduction 1

1.1 Motivation . 1

1.1.1 Multi-stream automatic speech recognition 1

1.1.2 Feature selection in multi-stream automatic speech recognition 3

1.2 Goals and Accomplishments . 5

1.3 Outline . 6

2 Background 8

2.1 Introduction . 8

2.2 Automatic speech recognition (ASR) 9

2.2.1 A brief introduction to ASR 9

2.2.2 Multi-stream ASR . 15

2.2.3 Why we use multi-layer perceptrons (MLPs) 16

2.2.4 How we perform stream combination 17

2.3 Feature selection . 17

2.3.1 Non-ensemble feature selection for ASR 18

2.3.2 Ensemble feature selection in ASR 23

2.3.3 Ensemble feature selection with individual features 24

3 Our benchmarks 27

3.1 Introduction . 28

i

3.2 How we make our noisy versions of copyrighted corpora available to
other researchers . 28

3.3 The OGI ISOLET corpus . 29

3.4 Our noisy version of the ISOLET corpus 30

3.5 Our ISOLET ASR system based on multi-layer perceptrons 31

3.6 Our ISOLET ASR system based on Gaussian mixture models 34

3.7 The OGI Numbers corpus . 34

3.8 Our noisy version of the Numbers corpus 35

3.9 Our Numbers ASR system based on multi-layer perceptrons 36

3.10 How our ASR systems compare to published results 38

3.10.1 ISOLET . 38

3.10.2 Numbers . 38

3.11 Summary . 39

4 Random subspace feature selection for the ISOLET task 40

4.1 Introduction . 41

4.2 Automatic speech recognition system 41

4.3 Feature extraction . 43

4.4 Experimental results and discussion 44

4.4.1 RSM vs. non-RSM performance compared for each feature pool 44

4.4.2 RSM vs. non-RSM performance compared across all feature
pools . 47

4.5 The feature vectors chosen by the random subspace method 51

4.6 Alternatives to our RSM implementation choices 52

4.7 Summary . 53

5 Hill-climbing feature selection for the ISOLET task 54

5.1 Introduction . 55

5.2 Automatic speech recognition system 55

5.3 Feature extraction . 56

5.4 Acoustic model size . 56

5.5 Hill-climbing procedure . 57

5.6 The time taken by hill-climbing . 61

ii

5.7 Results and discussion . 63

5.7.1 Hill-climbing results . 63

5.7.2 Additional baseline results . 65

5.7.3 Tuning fold results compared to evaluation fold results 66

5.7.4 The feature vectors chosen by hill-climbing 67

5.8 Summary . 67

6 Hill-climbing feature selection for the Numbers task 69

6.1 Introduction . 70

6.2 Acoustic model size . 71

6.3 Hill-climbing procedure . 73

6.4 The time taken by hill-climbing . 74

6.5 Results and discussion . 75

6.5.1 Hill-climbing results . 75

6.5.2 Additional baseline results . 77

6.5.3 Hill-climbing results compared to additional baselines 77

6.5.4 The feature vectors chosen by hill-climbing 79

6.5.5 Hill-climbing progress over time 79

6.5.6 Hill-climbing improved ensemble performance even for unseen
noises . 89

6.5.7 Testing the features chosen by hill climbing in heavily mis-
matched conditions . 90

6.5.8 How different are the different systems chosen by hill-climbing? 93

6.6 Summary . 96

7 Conclusions 98

7.1 Summary and contributions . 98

7.2 Possible future directions . 102

7.2.1 Different ensemble sizes . 102

7.2.2 A larger feature pool . 103

7.2.3 Doing less decoder parameter tuning 103

7.2.4 Different versions of the random subspace method 103

7.2.5 Generalizing the gains from hill-climbing 104

iii

7.2.6 Tuning α . 104

7.2.7 Alternative ways to score candidate ensembles 104

7.2.8 Genetic algorithms . 105

Bibliography 106

A Bunch size and MLP training 116

iv

Acknowledgements

This work would not have been possible without the direct and indirect aid I received

from so many others. I am very grateful for the constant personal support I received

from my family and friends. The graduation party I threw in Vancouver was one

way for me to say thank you. Intellectually my work owes a deep debt to my advisor,

Nelson Morgan, as well as Alexey Tsymbal, David Opitz, and Aldebaro Klautau. The

International Computer Science Institute has been a great environment for research

and I have been helped with technical problems more times than I can count. I would

like to particularly thank Barry Chen, Chuck Wooters, Andreas Stolcke, Adam Janin,

Arlo Faria, Luke Gottlieb, Stephane Dupont, Lara Docio, Guenter Hirsch, Werner

Hemmert, Marcus Holmberg, and Huan Wang. Finally, I want to express my thanks

for the financial support I received from the SmartKom and SmartWeb projects as

well as from Infineon Technologies.

v

Chapter 1

Introduction

Contents

1.1 Motivation . 1

1.1.1 Multi-stream automatic speech recognition 1

1.1.2 Feature selection in multi-stream automatic speech recog-

nition . 3

1.2 Goals and Accomplishments 5

1.3 Outline . 6

1.1 Motivation

1.1.1 Multi-stream automatic speech recognition

Automatic speech recognition (ASR), the automatic mapping of speech to the cor-

responding text, has progressed from isolated-word digit recognition in the 1950’s to

today’s speaker-independent, large-vocabulary continuous speech recognizers. How-

ever, there is still a painful gap between ASR accuracy and human speech recognition

1

performance [1], especially for more difficult speech types such as speech in noisy envi-

ronments [2], accented speech, and conversational speech. The performance gap exists

for speech without any semantic content, such as nonsense syllables [1]. This shows

that progress in ASR is possible without solving the natural language understanding

problem.

The standard approach to ASR uses hidden Markov models (HMMs) [3][4][5][6]

which model speech as a sequence of observations which are statistically related to a

sequence of hidden states. The hidden states usually represent linguistic phones (in

general or in particular contexts) or parts of phones. The probability of a particular

observation for a particular hidden state is determined by an acoustic modeling stage,

which is usually implemented with Gaussian mixture models (GMMs) or sometimes

with another technique such as a multi-layer perceptron (MLP). Each observation

represents a short frame of time.

The HMM does not directly model the speech waveform. Instead, the observations

it models are the output of a feature extraction process meant to reduce dimension-

ality and discard irrelevant variation. Feature extraction usually results in some kind

of smoothed representation of the short-term (i.e., frame level) speech spectrum. The

probabilities estimated by the HMM are used by a decoding (hypothesis search) stage

which searches for the most likely sentence, taking into account a dictionary of word

pronunciations and tables (referred to as a language model or a grammar) of word

transition probabilities. This architecture is illustrated in Figure 1.1.

There has been a wealth of productive research on multi-stream ASR systems.

The usual architecture of a multi-stream ASR system is a set of classifiers acting in

parallel on the same classification problem, producing parallel streams of classifier

output which are then combined. Figure 1.2 shows an example of a multi-stream

ASR system. Such an architecture is referred to as an ensemble of classifiers in the

2

dog cat

a

the

0.1

0.3

0.2

0.1

Feature
Extraction

Probability
Estimate

Decode

Speech Words

Pronunciation
Models

Grammar
Model

c a t

Figure 1.1. A typical ASR system. (This figure is from [7].)

pattern recognition literature [8][9][10]. In this thesis, the terms multi-stream and

ensemble will be used interchangeably. A popular approach to differentiating the

classifiers from each other in this type of ASR system is to provide a different feature

vector to each classifier. This approach will be our sole focus in this thesis.

1.1.2 Feature selection in multi-stream automatic speech

recognition

When there are S classifiers in an ensemble and a total of F features available,

defining the feature vectors for each classifier involves choosing S subsets of the full

set of F features. We will refer to the full set of F features as the feature pool. In the

pattern recognition literature, choosing the S subsets of the feature pool is known as

ensemble feature selection (EFS) [11][12].

Despite the popularity of multi-stream ASR systems in the research literature, we

are aware of no previously published work that tries to do EFS for ASR at the level

3

dog cat

a

the

0.1

0.3

0.2

0.1

Feature
Extraction

Probability
Estimate

Decode

Speech Words

Pronunciation
Models

Grammar
Model

c a t

Merge

Figure 1.2. A multi-stream ASR system with parallel feature extraction and acoustic
modeling stages. (This figure is from [7].)

of individual features. Instead, published work has dealt with indivisible blocks of

features rather than individual features [13][14][15][16][17][18][19], so that a feature

vector must contain either all the features in a block or none of them. Most often,

each block is the entire output of a feature extraction algorithm (for example, MFCC

features). In [14], delta features are treated independently of static features, but both

delta features and static features are dealt with as blocks. In multi-band approaches

[15][20], each block corresponds to a frequency band.

In this thesis, we pursue EFS for ASR at the level of individual features rather

than blocks. Doing EFS for individual features means that, for example, if our feature

pool contains MFCC and PLP features, then the feature vector of each classifier in

an ensemble may contain both some MFCC features and some PLP features, while

leaving out other features, and a feature may appear in the feature vectors of more

than one classifier. The search space of possibilities is far larger when doing EFS for

individual features instead of blocks, and thus it is no longer practical to explore the

search space using manual exploration or exhaustive comparisons as in past work.

Instead, we use algorithmic EFS strategies from the pattern recognition literature.

4

The first strategy we use is the random subspace method [21], in which EFS is

performed by simply choosing the features in each of the feature vectors at random

from the feature pool. RSM is a popular approach which was originally used with

decision trees and has also been used with nearest-neighbor classifiers [22], linear

discriminant analysis [23], and HMMs using GMM emission probabilities [24].

The second strategy we use is hill-climbing [25]. This is a guided, wrapper [26]

method in which initially chosen feature vectors are iteratively improved by adding or

removing a single feature at a time to or from a feature vector if the change improves

performance. The process is stopped when no more performance improvement can

be achieved by the algorithm.

1.2 Goals and Accomplishments

The primary goal of this thesis is to demonstrate that the performance of multi-

stream ASR systems can be improved using ensemble feature selection at the level of

individual features. Using the random subspace method for the OGI ISOLET task

with nine different feature pools, we obtain performance improvements over baseline

in almost every case where there is a statistically significant performance difference,

but there are many cases with no such difference.

We then try hill-climbing, with which we use only a single feature pool since it

is slower than the random subspace method. With ISOLET, for the noisy data hill-

climbing gives performance improvements over the starting system in most cases, and

the best hill-climbing system for the noisy data is better than the best baseline system,

but hill-climbing gives no improvement for the clean data. The results suggest that

performance may have been held back by the small amount of data used to guide the

hill-climbing process. Therefore, we next evaluate hill-climbing on the OGI Numbers

5

task, for which much more data is available to guide hill-climbing. When using either

the clean or noisy Numbers data, hill-climbing gives performance improvements over

multi-stream baselines in almost all cases, although it does not improve over the best

single-stream baseline. For noisy data, these performance improvements are present

even for those noise types that were not seen during the hill-climbing process. In

mismatched condition tests involving mismatch between clean and noisy data, hill-

climbing outperforms all baselines when Opitz’s scoring formula is used. We find that

this scoring formula, which blends single-classifier accuracy and ensemble diversity,

works better for us than ensemble accuracy as a performance score for guiding hill-

climbing.

The secondary goal of this thesis is to turn the data and code we create along

the way into online resources that can productively be reused by other researchers.

We created versions of the ISOLET and Numbers corpora that are degraded by

background noise, using various noises and signal-to-noise ratios, and we have made

it possible for other researchers to exactly reproduce these noisy corpora given copies

of the original corpora from OGI. We have also set up ASR systems for ISOLET and

Numbers which are built using open source components and are available to other

researchers. Our ensemble feature selection scripts are also available online.

1.3 Outline

In Chapter 2, we review ASR, multi-stream ASR, and feature selection in more

detail. In Chapter 3, we explain the corpora and tools we use for benchmarking

feature selection approaches: the ISOLET and Numbers tasks, our noisy versions of

those tasks, and our ASR systems. In Chapter 4, we present our experimental results

using RSM for ensemble feature selection for ISOLET. Then, we present our results

using hill-climbing feature selection for ISOLET in Chapter 5 and for Numbers in

6

Chapter 6. Finally, in Chapter 7 we give our overall summary and conclusions and

our thoughts on future work.

7

Chapter 2

Background

Contents

2.1 Introduction . 8

2.2 Automatic speech recognition (ASR) 9

2.2.1 A brief introduction to ASR 9

2.2.2 Multi-stream ASR . 15

2.2.3 Why we use multi-layer perceptrons (MLPs) 16

2.2.4 How we perform stream combination 17

2.3 Feature selection . 17

2.3.1 Non-ensemble feature selection for ASR 18

2.3.2 Ensemble feature selection in ASR 23

2.3.3 Ensemble feature selection with individual features 24

2.1 Introduction

In this chapter, we give an overview of the ideas in automatic speech recognition

and feature selection that provide the conceptual background to our work.

8

2.2 Automatic speech recognition (ASR)

2.2.1 A brief introduction to ASR

This section reviews some key concepts in automatic speech recognition (ASR),

drawing heavily on the presentation in [5]. For a deeper introduction, we recommend

the excellent tutorials [27][28][29][30][31][6] and textbooks [3][4][5] that are available.

We have placed a more complete list of tutorials and textbooks online at http:

//www.dev.voxforge.org/projects/Main/wiki/TheoryAndAlgorithms.

Classification in the simplest case

Consider a classification problem where we have an observation ~x and we want

to know what underlying class ck (k = 1, 2, ..., K) produced it. We can relate this to

speech recognition by imagining an isolated word speech recognition system in which

each class is one of the words to be recognized. The vector ~x represents a sound and

is usually referred to as a feature vector. The optimum error-minimizing classification

rule [5] is to choose the class k that maximizes p(ck|~x):

k = argmax
m

p(cm|~x) (2.1)

Using Bayes’ rule (also known as Bayes’ theorem: p(a|b) = p(b|a)p(a)/p(b)) we

can rewrite the classification rule as:

k = argmax
m

p(~x|cm)p(cm)/p(~x) (2.2)

p(cm|~x) and p(~x|cm) are commonly referred to as the posterior and the likelihood,

respectively. Since p(~x) is the same across classes it can be omitted from the equation.

Also, in a practical statistical pattern recognition setting, statistical model parameters

9

http://www.dev.voxforge.org/projects/Main/wiki/TheoryAndAlgorithms
http://www.dev.voxforge.org/projects/Main/wiki/TheoryAndAlgorithms

Θ are usually learned from training data. Omitting p(~x) and including the dependence

on Θ gives:

k = argmax
m

p(~x|cm, Θ)p(cm|Θ) (2.3)

p(~x|cm, Θ) explicitly depends on the acoustic signal, while p(cm|Θ) does not. This

leads us to split Θ into two models, the acoustic model ΘA and the language model

ΘL:

k = argmax
m

p(~x|cm, ΘA)p(cm|ΘL) (2.4)

The acoustic model ΘA represents the statistical relationship between the acoustic

vectors and the classes. In an isolated-word recognizer, the language model ΘL rep-

resents probabilities of particular words, and in a continuous speech recognizer it also

represents the probabilities of sequences of words. (The language model is sometimes

called a grammar.)

This separation of statistical modeling into acoustic modeling and language model-

ing is standard in speech recognition technology. This thesis focuses solely on acoustic

modeling.

In practice, speech recognition systems are usually based on some kind of subword

units, such as linguistic phones or parts of phones, rather than directly classifying

entire words. This allows for more efficient use of available training data, since the

same subword units can appear in more than one word, and also makes it easier to

model variation in word durations.

10

Acoustic modeling

As discussed above, the purpose of the acoustic model is to model the relationship

between feature vectors and the underlying classes through modeling the distribution

of the likelihood p(~x|cm, ΘA). This is challenging as there is an enormous amount of

variability in how a given word may sound, due to variation in speaker physiology,

speaking style, mood, accent, and other factors [32].

The most popular acoustic modeling approach is the Gaussian mixture model

(GMM). In the GMM approach, the distribution is modeled by a weighted mixture

of multivariate Gaussian distributions. Usually, the Gaussian distributions are re-

stricted to have a diagonal covariance matrix, in order to reduce the number of model

parameters. A separate GMM can be used for each subword unit being modeled, but

often state tying approaches are used in which GMM parameters are shared between

related subword units. This further reduces the total number of parameters and thus

reduces the amount of training data needed to obtain reliable parameter estimates.

An alternative acoustic modeling approach uses the multi-layer perceptron (MLP)

[33][34][35], which is a feedforward neural network with an input layer, one or more

hidden layers, and an output layer, as shown in Figure 2.1. The parameters of the

MLP are the node-to-node connection weights ωj and the node biases βk. The current

feature vector is fed in at the input layer, often with context provided as well by also

feeding in preceding and following feature vectors. Usually a single MLP is used to

model all classes, providing class posterior probabilities at the output layer. Given

an appropriate training procedure [33][34][35], an MLP that has an output node for

each class and is trained with binary class labels as targets (equal to 1 for the labeled

class of the current feature vector and 0 for the other classes) can be used to estimate

class posterior probabilities p(cm|~x).

Since a hidden Markov model relates classes to feature vectors through likelihoods,

11

ωa β
ωb

ωc

co
nt

ex
t

ou
tp

ut

in
pu

t
co

nt
ex

t

hidden

Figure 2.1. A multi-layer perceptron with a single hidden layer. (This figure is from
[7].)

the posterior probabilities calculated by the MLP are divided by class prior probabil-

ities p(cm) before decoding. To obtain likelihoods, Bayes’ rule actually also requires

multiplying by p(~x), but since p(~x) is the same across classes it can be omitted without

affecting the outcome of classification.

Sequence classification

To move from isolated-word recognition to recognition of continuous speech, or to

perform isolated-word recognition using models built from subword units, we need a

way to recognize sequences of classes. The standard means of doing so is the hidden

Markov model (HMM). An HMM models speech as a sequence of observations (feature

vectors) which are statistically related to a sequence of discrete hidden states (classes).

The term hidden is used because the states are not observed directly, but instead have

a probabilistic relationship with the observations which is represented by the acoustic

12

Figure 2.2. A hidden Markov model of the word “cat” for speech recognition. The
subscripts t and t−1 refer to the current time step and the previous time step. (This
figure is from [36].)

model. The HMM also represents state-to-state transition probabilities, which are

based on the language model, a word pronunciation dictionary, and a state duration

model.

Figure 2.2 shows an HMM for the word “cat” in which the states qt are phonemes.

As shown in the figure, it is possible for a state to transition to itself. By looping

back to the same state, state duration can be extended to more than one time step,

which allows the HMM to model variability in state durations.

To recognize speech, a decoder is used to search for the most probable sequence

of spoken words given the trained HMM. The term decoder comes from the use of

related techniques in communications technology to process error correcting codes.

The overall architecture is illustrated in Figure 1.1.

Feature extraction

Speech waveforms are very variable and high dimensional and so are impractical to

model directly with current acoustic modeling techniques. The main goal of ASR fea-

ture extraction is to reduce the amount of non-lexical variation, thus making acoustic

13

modeling less demanding, while at the same time preserving key lexical information.

The standard approach is to divide the waveform into overlapping, fixed-length frames

which are then converted into some kind of smoothed spectral representation. Frames

are commonly around 25 ms long with about 10 ms between the start of adjacent

frames.

The most popular ASR feature extraction methods are Mel-Frequency Cepstral

Coefficients (MFCC) and Perceptual Linear Prediction (PLP) [37]. Both start with

the power spectrum or magnitude spectrum of the current frame, and then reduce

the dimensionality by convolving the spectrum with a set of overlapping critical band

filters. These filters are wider at high frequencies, as with critical bands in human

hearing. In MFCC the log of the filter bank outputs is then taken. In PLP, the filter

bank outputs are weighted by an equal-loudness-perception curve based on human

hearing (in MFCC a related preemphasis step may be applied at the very beginning),

and the cube root is then taken. For MFCC, the next step is to apply a DCT to

produce cepstral coefficients, discarding the higher-order cepstral coefficients (which

correspond to finer details in the spectrum) in order to obtain a representation cor-

responding to a smoothed spectrum. For PLP, the next step is to perform linear pre-

diction (based on autocorrelation coefficients computed from the filter bank outputs)

and then calculate cepstral coefficients based on the linear prediction coefficients. The

resulting representation corresponds to a spectrum with a number of peaks depending

on the order of the linear prediction. This linear prediction approach to smoothing

tracks spectral peaks in the original spectrum more closely than spectral valleys.

The dynamics of speech carry a great deal of information, and it is popular to

augment MFCC and PLP feature vectors with time derivatives. Thus, a thirteen-

dimensional feature vector might be augmented with a thirteen-dimensional vector

containing the velocity of those features and another thirteen-dimensional vector con-

14

taining the acceleration. These three blocks of features are commonly referred to as

the static, delta, and delta-delta features respectively.

To add diversity to our feature pool, in this thesis we also make use of Mod-

ulation SpectroGram (MSG) features [38]. Slower temporal modulations in speech

are less influenced by reverberation, but have been found to carry substantial speech

information in experiments with human listeners. The key idea behind MSG is thus

to calculate features based on temporal modulations below 16 Hz in the outputs

of critical band filters. The modulation-filtered features are then processed by an

auditory-inspired automatic gain control mechanism. MSG features were designed

for reverberant speech but have been found useful for speech in background noise as

well.

2.2.2 Multi-stream ASR

Multi-stream systems (also known as ensembles) that have been successfully used

in ASR research include systems that combine word hypotheses [39][40][41][42][13][43],

systems that combine probabilities at the hidden Markov model (HMM) state level

[44][45], systems that combine HMM state probabilities at the phonetic segment

level [46][47], and systems that combine HMM state probabilities at the frame level

[14][48][15][49][50][20]. In this thesis, we will always combine HMM state probabil-

ities at the frame level, as illustrated in Figure 1.2. However, the feature selection

techniques we work with can be used with other combination styles.

Both the accuracy of individual classifiers in the ensemble and the diversity of

the overall ensemble contribute to ensemble performance. Diversity, or in other

words disagreement between members of the ensemble, is necessary for an ensem-

ble to perform better than its best individual member. A popular way of creating

diversity in ASR is to use a different feature vector with each classifier. Some such

15

systems [51][52][53][15][20] have split the spectrum into frequency bands and used

different classifiers for different bands. Other systems have combined different fea-

ture extraction methods, each of which could conceivably have been used on its own

[48][15][49][50][54], and this approach will be our focus in this thesis.

2.2.3 Why we use multi-layer perceptrons (MLPs)

In this thesis, we use a “hybrid connectionist” speech recognition approach [33][34],

in which MLPs are used for acoustic modeling within an HMM. In fact, Gaussian

mixture model based systems are more popular than MLP based systems. The reason

we chose MLPs is that they sometimes handle novel feature types better than GMMs

do. In work outside of this thesis, we explored this point using novel auditory-based

features [55]. In this thesis, our feature pool contains MFCC, PLP and MSG features.

MFCC and PLP actually have a solid track record in GMM systems, but in [56][57][58]

MSG features were found to perform better with MLPs than with GMMs, even when

decorrelation and Gaussianization techniques were tried in an effort to improve GMM

performance. Furthermore, it seemed possible to us that even the MFCC and PLP

features would become harder for the GMM to model once they were mixed together

into new feature vectors by the feature selection process.

Our results using MLPs are made more relevant to researchers using GMM-based

systems by past work on the “tandem” [59][60][49] approach, which can be used as a

bridge between these two paradigms. In the tandem approach, an MLP or an ensemble

of MLPs is used as a non-linear discriminant analysis stage prior to GMM acoustic

modeling. A number of successes with novel feature vectors have been reported using

the tandem approach [56][49][61][62].

16

2.2.4 How we perform stream combination

In this thesis, we combine the outputs of the MLPs in an ensemble by combining

posterior probabilities at the frame level. We do this by taking the geometric mean

of the posterior probabilities for each phone across MLPs. For numerical reasons, we

calculate this by taking an arithmetic mean of logarithmic probabilities. This is a

simple and effective method for stream combination [54][14]. There are other MLP

combination approaches, such as inverse entropy weighted combination [63][64] and

combination using Dempster-Shafer theory [50]. We did not try those since comparing

different combination techniques is not a focus of this thesis.

2.3 Feature selection

We use the term feature selection to refer to selecting a subset or subsets from a

set of features. The features are then used for classification by a machine learning

algorithm. Most commonly, feature selection is performed for a single classifier, but

this thesis focuses on ensemble feature selection in which a subset must be chosen for

each classifier in an ensemble.

It can be useful to view feature selection algorithms as being “wrappers” or “fil-

ters” [26]. A wrapper approach evaluates a feature subset under consideration by

simply measuring the classification performance of the learning algorithm using those

features. The name wrapper reflects the fact that the learning algorithm is used as

a black box component of the feature selection algorithm, meaning that the feature

selection algorithm does not incorporate knowledge of the model built by the learning

algorithm, other than its classification performance. A filter approach selects features

based on the data, without using the learning algorithm that will eventually be used

for classification. The name filter reflects how the feature selection algorithm is used

17

as a preprocessing step to filter out unwanted features prior to the use of the learning

algorithm.

From our perspective as ASR researchers, the advantage of a wrapper approach

is its natural connection to the classification task, but the disadvantage is the need

to repeatedly train and test acoustic models, which can be very time consuming.

Filter approaches appeal because of their potential for greater speed, but cleverness

is required to make them relevant to the ASR task that the features will eventually

be used for. Feature selection approaches for ASR can combine aspects of both

wrappers and filters by defining objective functions which incorporate knowledge of

the acoustic model but can be optimized without repeatedly training and testing new

acoustic models (see the discussion of [65][66] below).

Some of the literature on non-ensemble feature selection methods is surveyed in

[26][67][68]. We discuss ensemble feature selection literature further below.

2.3.1 Non-ensemble feature selection for ASR

The vast majority of past work on feature selection for ASR has dealt with non-

ensemble ASR systems. In order to put our work into context, in this section we

survey some of the published literature on non-ensemble feature selection for ASR.

The most commonly used approaches perform some kind of transform of the

features that makes feature selection straightforward in the transformed feature space.

Principal components analysis [69], also known as the Karhunen-Loève transform

(KLT), is one such approach. The PCA approach is a matrix transform which projects

the features into a new feature space determined by the eigenvectors of the feature

covariance matrix. When appropriate normalization is used, the eigenvalues represent

the amount of data variance accounted for by each dimension in the new feature space.

This leads to a simple feature selection approach: remove dimensions which represent

18

small amounts of variance. This approach has been used in ASR research for decades

[70].

The discrete-cosine transform (DCT) is a related technique. Under certain statis-

tical assumptions, it is an approximation to the KLT [71]. An implicit, DCT-based

feature selection operation (i.e., leaving higher-order cepstral coefficients out of the

final feature vector) is a standard step in the computation of MFCC features.

Linear discriminant analysis (LDA) [69][72][73], which is designed to preserve

information that is useful for class discrimination, is another popular transform ap-

proach. The LDA transform is chosen to maximize the ratio of a measure of between-

class variance to a measure of within-class variance. While LDA is often viewed

as a single, dimensionality-reducing transform operation, it can also be viewed as a

dimensionality-preserving transform followed by a feature selection step which, as for

PCA, is based on choosing the eigenvectors corresponding to the largest members of

a set of eigenvalues [72]. LDA has been criticized for embodying an assumption that

different classes have identical covariance statistics [72], and this has been addressed

by generalizing LDA to heteroscedastic discriminant analysis (HDA) [72][74].

We are not aware of any other ASR feature selection techniques that approach

the popularity of PCA, DCT, LDA and HDA. However, a number of interesting ideas

have been proposed.

In the Feature-Finding Neural Network (FFNN) approach [62][75][76][77], a simple

linear perceptron classifier was used to evaluate the performance of many different

feature vectors in order to select a feature vector from a very large, parametrized pool

of possible feature vectors. The selected feature vector was then shown to perform

well when used with an MLP. Compared to trying out all the different feature vectors

with an MLP, the speedup from using a linear perceptron was immense since training

and testing the linear perceptron only requires a few matrix operations. The search

19

process started off with an initial feature vector of length L and then repeatedly (1)

identified the least useful feature in the current feature vector and (2) replaced the

least useful feature with a randomly chosen new feature from the pool. Identifying

the least useful feature was done by measuring classification accuracy for all the

possible feature vectors resulting from removing a single feature from the current

feature vector. The feature whose removal reduced accuracy the least was judged

the least useful. Source code for FFNN is available at [78]. We did not use FFNN

in our work, but it may have potential for use in ensemble feature selection if it can

be adapted for use with ensembles. There is published work on ensembles of linear

perceptrons (outside the ASR field) that might be relevant.

In Klautau’s approach [79], phonetic classification was divided into a large number

of binary classification problems, each of which was handled by its own linear support

vector machine. A very large feature pool was constructed using seven feature extrac-

tion algorithms (all of which can be carried out with tools that are freely available

online) and feature selection was performed separately for each binary problem. Two

different feature selection algorithms were tried, one based on mutual information be-

tween labels and features, and the other inspired by the use of AdaBoost for feature

selection in computer vision [80].

Kirchhoff et al. [65][66] started with 65 features and removed one feature at a

time until they reached the desired number of features, 39. At each step, they chose

the feature to be removed by considering all the possible feature vectors resulting

from removing a single feature, and picking the one that maximized a discriminative

objective function. The objective function measured between-class discrimination

using a formula based on summing (over frames) the distance between acoustic model

probabilities for the HMM state assumed to be correct (which was chosen using a

labeling created by forced alignment) and other HMM states. The acoustic models

for the reduced-dimensionality feature vectors were created by simply deleting the

20

appropriate dimensions from the model means and covariance matrices. This is an

interesting way to avoid spending time retraining models during feature selection,

and perhaps it could be extended to ensemble feature selection by using post-stream-

combination probabilities. They used Gaussian mixture models and it is not clear to

us whether there is any comparable way to avoid retraining in MLP-based ASR.

Su and Lee [81] used feature selection as part of their strategy to add a second,

discriminant classification stage to a conventional ASR system. They used a con-

ventional HMM to create a 45-dimensional feature vector where each element was an

averaged HMM state log-likelihood score. This vector was then used by a second stage

of classification, a discriminant word classifier. To improve accuracy, they reduced

the size of this feature vector by performing feature selection using a divergence mea-

sure designed to measure the usefulness of each feature for class discrimination. The

test data recognition accuracy, as a function of the number of features kept, peaked

at 13 features. This is much smaller than the feature vectors usually used in ASR.

Perhaps this was due to the unconventional nature of the features, but it might also

be because of the use of a small training set (900 words), which may have made the

curse of dimensionality a bigger factor than usual. A divergence-based approach was

also used in [82].

Valente and Wellekens [83] implemented feature selection by model selection in

the context of Gaussian mixture models. Perhaps this could be made into an en-

semble feature selection method by using post-stream-combination probabilities, as

in [44][45]. Valente and Wellekens assigned a relevancy to each feature, and their

results show that there can be considerable variation in relevancy between individ-

ual features calculated by the same feature extraction method (for example, between

different delta-MFCC features).

Kommer and Hirsbrunner [84] used a genetic algorithm wrapper approach for

21

feature selection from a pool of possible wavelet front ends. As with our work in

Chapters 5 and 6, this paper shows that wrapper approaches in speech recognition

are slow but not too slow to be feasible.

Missing feature approaches to ASR try to identify what features have been ren-

dered unreliable by noise (or other degradations) at a given point in time. Because the

selection is time dependent, this is not feature selection in the sense we use the term

in this thesis. These approaches are nonetheless interesting and they are surveyed in

[85].

Much of the published work on non-ensemble feature selection for ASR reports

little or no recognition accuracy gains from feature selection. In fact, many of these

papers state their goal as reducing storage and computation overhead by reducing the

number of features, rather than improving recognition accuracy. We speculate that

accuracy gains from feature selection are easier to achieve with an ensemble system

than with a non-ensemble system because in the ensemble case there are more factors

that can be exploited to improve the performance of the overall system: in addition to

the factors that apply in both cases, such as the curse of dimensionality [69], EFS is

also optimizing for the best combination of single-classifier accuracies and ensemble

diversity. This is only speculation, as we have not done a controlled experimental

comparison or a rigorous theoretical analysis.

Regarding accuracy gains, another relevant point is that few papers on single-

classifier feature selection for ASR have used more than 78 features. It would be

interesting to see how well those approaches perform with many more features in the

pool, as in [79][17][13]. Perhaps accuracy gains would be easier to achieve due to a

larger effect from the curse of dimensionality.

22

2.3.2 Ensemble feature selection in ASR

In this section, we review published work on ensemble feature selection for ASR.

As we discussed in Section 1.1.2, the published work we are aware of has performed

selection at the level of blocks of features rather than individual features.

Using three feature types in a multi-band system with four bands, Christensen et

al. [15] exhaustively tested all 34 = 81 possible placements of feature types in bands

to find out which performed the best. They then tested all possible combinations of

the three full-band feature streams.

Ellis and Bilmes [16] took an information theory approach, investigating the use-

fulness of conditional mutual information (CMI) as a guide to which streams will

be useful together in an ensemble. CMI between classifier outputs was used as a

measure of diversity (with a lower CMI meaning higher diversity), and was useful for

predicting which pairs of streams would combine well. They also investigated using

CMI between feature vectors as a guide to what combination method to use, but

found this to be less effective, perhaps because of the simplifications they used when

computing CMI.

Burget [17][13] defined dependent word error rate (DWER) as the number of

identical word recognition errors that are made by two systems, and used it as a

measure of diversity. He found that low DWER was an indicator of what systems

contributed well to an ensemble, and high DWER was an indicator of what systems

were better left out of the ensemble. Related work on “Identical-Incorrect” errors was

presented in Chapter 6 of [86]. In [13] Burget also investigated a number of other,

related diversity measures.

Li and Stern [44][45] designed a feature transformation (rather than feature se-

lection) approach for ensemble ASR. Starting from 120 features, they generated two

23

complementary feature streams with 39 features each by using matrix transformations

that maximized (for training data) the post-stream-combination normalized acoustic

likelihood of the most likely state sequence. They used a two-classifier ensemble, but

their approach could be generalized to larger ensembles.

2.3.3 Ensemble feature selection with individual features

Since the published work we know of on EFS for ASR has worked with blocks

of features rather than individual features, we turned to the general literature on

pattern recognition to find methods for EFS at the level of individual features. We

discuss some examples here. Our discussion is heavily influenced by [25], which gives

a more detailed survey.

In the random subspace method [21], EFS is performed by simply choosing the

features in each of the feature vectors at random from the feature pool. As originally

defined by Ho [21], the feature vectors all have the same length, but some other

authors [12][87][25] have chosen different lengths randomly for each feature vector. We

picked the random subspace method for initial experiments in this thesis because it is

simple, popular and has often been found effective. For details on our implementation,

see Section 4.1.

Opitz [12] proposed the GEFS (Genetic Ensemble Feature Selection) genetic al-

gorithm for ensemble feature selection. This is a wrapper method which he found

was usually able to improve performance over the random subspace method, which

he used for the initial assignment of features to classifiers. GEFS maintains a pop-

ulation of candidate feature vectors represented as variable-length strings of feature

indices. New members of the population are created from the existing strings by

crossover (breeding) and mutations. Classifiers are trained on the features specified

24

by each string in the population. Each string is then scored on its usefulness and the

least useful strings are pruned out of the population. The process then repeats.

An important difference between GEFS and other early work on genetic algo-

rithms for ensemble feature selection [88][89][90] is that GEFS scores a candidate

feature vector using a weighted combination of the accuracy of a single classifier

using those features and the contribution of that classifier to the diversity of the en-

semble of classifiers. This is Equation 5.1, which we discuss further in Section 5.5. In

contrast, candidate feature vectors were scored by single-classifier accuracy in [89][90]

and by ensemble accuracy in [88]. The authors of [88] mentioned that overfitting was

sometimes a problem and suggested the inclusion of a diversity term in the scoring

formula as a response.

Equation 5.1 is presumably still prone to overfitting of individual classifiers, but it

may have an advantage in that an ensemble of overfitted classifiers is not necessarily

an overfitted ensemble. In fact, some work [91][92][93][94] suggests that overfitting

of individual classifiers may actually help ensemble performance in some situations.

Tsymbal et al. [25] made several modifications to GEFS, but kept Equation 5.1 as

the scoring function.

Cunningham and Carney [95] proposed a hill-climbing wrapper algorithm for en-

semble feature selection. Their hill-climbing algorithm started with randomly chosen

feature vectors and then iteratively improved them by adding or removing a single

feature at a time to or from a feature vector if the change improved the performance

score. The process was stopped when no more performance score improvement could

be achieved by the algorithm. The performance score for a candidate feature vector

was the single-classifier accuracy for that feature vector. However, in their conclu-

sions Cunningham and Carney criticized this scoring function, since it does not take

into account the diversity of the ensemble, and they suggested that “any work with

25

classification ensembles should explicitly measure diversity in the ensemble and use

this measure to guide decisions on the constitution of the ensemble.” This theme was

explored further in [96]. Tsymbal et al. [87][25] modified the hill-climbing algorithm

from [95] to use Equation 5.1 to measure performance, and found that this indeed

improved the accuracy of the final ensemble.

In [25], Tsymbal et al. compared the performance of their genetic algorithm,

their hill-climbing algorithm, the random subspace method, and two other wrapper

EFS approaches (Ensemble Forward Sequential Selection and Ensemble Backward

Sequential Selection). This is the most comprehensive comparison of EFS methods

we are aware of. The best performance was obtained with the genetic algorithm and

the second best performance was obtained with the hill-climbing algorithm. Since

ASR corpora are much more time-consuming to work with than the small corpora

used in [25], we decided to investigate just one wrapper method in this thesis. We

picked hill-climbing, since it is simple and its performance in [25] was almost as good

as the more complex genetic algorithm approach. We try both ensemble accuracy

and Equation 5.1 as performance scores. For details on our implementation of hill-

climbing, see Section 5.5.

26

Chapter 3

Our benchmarks

Contents

3.1 Introduction . 28

3.2 How we make our noisy versions of copyrighted corpora

available to other researchers 28

3.3 The OGI ISOLET corpus 29

3.4 Our noisy version of the ISOLET corpus 30

3.5 Our ISOLET ASR system based on multi-layer percep-

trons . 31

3.6 Our ISOLET ASR system based on Gaussian mixture

models . 34

3.7 The OGI Numbers corpus 34

3.8 Our noisy version of the Numbers corpus 35

3.9 Our Numbers ASR system based on multi-layer percep-

trons . 36

3.10 How our ASR systems compare to published results . . 38

3.10.1 ISOLET . 38

27

3.10.2 Numbers . 38

3.11 Summary . 39

3.1 Introduction

In this chapter we explain the ASR benchmarks we created for our research. We

initially used the OGI ISOLET [97] corpus and then switched to the OGI Numbers

[98] corpus. We created noisy versions of these corpora using various noise types and

signal-to-noise ratios. These noisy versions are available to other researchers. We also

created ASR systems for these corpora. These ASR systems are not tied to ensemble

feature selection. They are based on open source components and are available to

other researchers. There are two ISOLET ASR systems, one based on multi-layer

perceptrons using the Quicknet toolkit [99] and the other based on Gaussian mixture

models using the HTK [100] toolkit. For Numbers, there is one ASR system based

on multi-layer perceptrons.

3.2 How we make our noisy versions of copy-

righted corpora available to other researchers

Due to OGI’s copyright on the ISOLET and Numbers corpora, we could not simply

place our noisy versions online. Instead, we placed scripts1 and noise recordings online

that others can use to exactly reproduce the noisy speech corpora given copies of

the original speech corpora which they have obtained from OGI. We were granted

1The scripts use the FaNT [101] noise-adding tool. FaNT’s author, Prof. Hans-Guenter Hirsch,
graciously added new features that we required.

28

permission to share the noise recordings online, but this approach would still have

worked if the noise recordings needed to be purchased separately.

Authors of ASR research papers dealing with additive noise or reverberation often

start with a publicly available, copyrighted corpus and then artificially add noise or

reverberation, resulting in a corpus that is no longer publicly available. Thus the

model of corpora sharing we followed for our noisy ISOLET and Numbers corpora

could be useful for other corpora as well.

3.3 The OGI ISOLET corpus

The ISOLET [97] corpus consists of recordings of the letters of the English al-

phabet, spoken as isolated words in a quiet environment, using a sampling rate of

16000 Hz with a Sennheiser HMD 224 microphone. (The HMD 224 is a close-talking

headset microphone, according to descriptions in various papers that use this corpus.)

The recordings contain about 1.25 hours of audio. There are a total of 7800 words in

the corpus, produced by 150 speakers each speaking each letter of the alphabet twice.

The ISOLET corpus comes divided into five parts each containing 1560 words. Our

ASR systems for ISOLET train on four of the five parts and test on the remaining

one part. There are five possible ways to do this, according to which of the five parts

is chosen for testing. Using four parts to train and one part to test, about 60 minutes

of audio is used for training and about 15 minutes of audio is used for testing. Some

of the audio consists of before-word and after-word pauses, leaving about 45 minutes

of speech for training and about 11 minutes of speech for testing.

29

3.4 Our noisy version of the ISOLET corpus

Since speech recognition in noisy environments is an area of current research

interest, we created a noisy version of the ISOLET corpus in which one of eight

different noise types was artificially added to each utterance at one of six different

A-weighted signal-to-noise ratios: no noise added, 20 dB, 15 dB, 10 dB, 5 dB, and

0 dB. We used A-weighting for the reasons discussed in [102]. We will refer to this

version of ISOLET as noisy and to the original ISOLET data as clean.

The noise types, taken from the RSG-10 [103] collection, were pink noise, speech

babble, two types of car factory noise, car interior noise, Leopard military vehicle

noise, fighter jet cockpit noise, and naval vessel operations room noise. (RSG-10 is

the same collection that provided the noises for the NOISEX-92 corpus. Some of the

ASR literature apparently refers to these noises under the name NOISEX-92 rather

than RSG-10.) Three of the noise types were used for all five parts of ISOLET, and

the remaining five noise types were used for one part each. This means that for each

of the five different divisions of ISOLET into training and test data that we use, there

are three matched noise types that are found in both the training and test data, one

noise type found only in the test data, and four noise types found only in the training

data.

The noises were added to ISOLET utterances starting at random starting points

within the noise recordings. A different random starting point was picked for each

ISOLET utterance (the noise recordings are much longer than the individual ISOLET

utterances). The scripts we provide to allow other researchers to recreate our noisy

ISOLET corpus replicate the same random starting points.

The way we designed the noisy version of the ISOLET corpus (using various

noises at various SNRs, with both matched and mismatched noise types) was heavily

influenced by the popular Aurora 2 ASR benchmark [104]. Unlike Aurora 2, with

30

ISOLET it is easy to make a distinction between development data used to tweak

system parameters and evaluation data used to report final results, since there are five

possible ways to divide the corpus into training and test data and one of the five can

be used as development data. Making this distinction was important to us because

in our work with the hill-climbing ensemble feature selection algorithm we had to

separate the development data we used to guide hill-climbing from the evaluation

data that we reported our final results on, since otherwise our experimental results

might have been considerably biased [105].

Scripts and noise recordings that others can use to make their own copy

of the noisy version of ISOLET, as well as some additional details about the

noisy version, can be found at http://www.icsi.berkeley.edu/Speech/papers/

eurospeech05-onset/isolet. Our noisy version of the ISOLET corpus has been

used in work outside of this thesis [55][106].

3.5 Our ISOLET ASR system based on multi-layer

perceptrons

We created scripts and configuration files for performing speech recognition on the

ISOLET corpus (both the original and our noisy version) with multi-layer perceptrons

using the Quicknet toolkit [99] and the noway decoder [107].

There are five parts to the ISOLET corpus, and thus five different ways to divide

the corpus into four training parts and one testing part. When we report experimental

results on ISOLET, we will refer to each of these possible divisions of the data as a

fold of the data, with fold 1 referring to the division in which the first of the five

parts is used for testing, fold 2 referring to the division in which the second of the

31

http://www.icsi.berkeley.edu/Speech/papers/eurospeech05-onset/isolet
http://www.icsi.berkeley.edu/Speech/papers/eurospeech05-onset/isolet

five parts is used for testing, and so on. Thus training and testing can be run five

times, increasing the effective amount of test data.

We reserved fold 1 as development data for tuning decoder parameters (and for

guiding hill-climbing in our ensemble feature selection experiments) and used folds

2-5 as evaluation data for reporting performance results. Thus our development data

results are for 1560 test words and our evaluation data results are for 6240 test words.

Fold 1 was used to tune three parameters of the decoder (the acoustic model/language

model match factor, duration scale factor, and phone exit transition probability scale

factor) using a grid search.

An MLP with I input units, H hidden units, and O output units has (I + O) ∗H

weights and H+O biases, for a total of (I+O)∗H+H+O acoustic model parameters.

In this thesis, we always presented the MLPs with five frames of feature context (two

previous frames, one current frame, and two future frames) so the number of MLP

input units was always five times the length of the input feature vector. For example,

for a 39-dimensional MFCC feature vector, there were 5 ∗ 39 = 195 input units.

The number of MLP output units was set at 28, corresponding to 28 phones in the

ISOLET corpus (including a silence “phone”).

Our scripts reserve about 10% of the training data as a cross-validation set for

early stopping to guard against overfitting during training.

The scripts support using an ensemble of MLPs, using a different feature vector

for each MLP. The ensemble is combined by taking the geometric mean of posterior

probabilities across streams (see Section 2.2.4).

Our scripts perform decoding using the noway decoder [107], which is open source

and available online [99]. Each phone P is represented by NP left-to-right HMM

states (with no skips), where NP is set to determine the minimum phone duration.

The emission probability estimates for all states of a phone were tied to the same

32

monophone (and these probabilities were taken to be the scaled likelihoods obtained

by dividing the MLP-estimated phone posterior probabilities by phone prior probabil-

ities). After we completed the experiments in this thesis, we noticed we could improve

the recognition accuracy of our scripts by making a change to how we handled dura-

tion modeling. For more information on this, see the README DURATION file we

have included in the documentation for our scripts.

For the results in this thesis, we ran this ASR system using Quicknet version 3.11

and noway version 2.9. So that our MLP trainings would be as consistent as possible,

we always used the same version (Pentium 4 SSE2) of the Quicknet training tool

qnstrn for our trainings.

We also created scripts that can be used to test whether ASR performance differ-

ences are statistically significant, using McNemar’s test. We chose McNemar’s test

because of the suggestion in [108], a classic paper on significance testing in ASR re-

search, to use McNemar’s test for ASR experiments on corpora containing isolated

words.

The scripts, configuration files, and documentation for our MLP-based ISO-

LET ASR system can be downloaded at http://www.icsi.berkeley.edu/speech/

papers/eurospeech05-onset/isolet. A README file is included which gives some

additional details about the ASR system and provides a tutorial with examples of

how to use the scripts. This ASR system has been used in work outside of this thesis

[55].

33

http://www.icsi.berkeley.edu/speech/papers/eurospeech05-onset/isolet
http://www.icsi.berkeley.edu/speech/papers/eurospeech05-onset/isolet

3.6 Our ISOLET ASR system based on Gaussian

mixture models

We have also made an ASR system available for our clean and noisy ISOLET

corpora which use Gaussian mixture models (GMMs) for acoustic modeling. This

was built using the popular HTK [100] toolkit. It was originally created by Montri

Karnjanadecha and enhancements were made by Chuck Wooters, Prof. Hans-Guenter

Hirsch, and ourselves.

The GMM-based system can be downloaded at http://www.icsi.berkeley.

edu/speech/papers/eurospeech05-onset/isolet. It is not used in this thesis. In

[55], we compared the performance of the MLP-based system and the GMM-based

system for several feature types, using our noisy ISOLET corpus. The GMM-based

system is also being used in [106].

3.7 The OGI Numbers corpus

The Numbers corpus [98] consists of strings of spoken numbers collected over

telephone connections. The sampling rate is 8000 Hz. Some researchers use the name

Numbers95 rather than Numbers; this is more common when referring to an earlier

version of the corpus.

We began using the Numbers corpus because we wanted a corpus that was larger

than ISOLET. We used version 1.3 of the corpus, which was released in 2002 and

was also used in [109] and [110]. Our research group previously made heavy use

[7][86][38][36] of earlier versions of the corpus. We switched to version 1.3 since it is

much larger.

The authors of [109] selected the utterances containing only the 30 most frequent

34

http://www.icsi.berkeley.edu/speech/papers/eurospeech05-onset/isolet
http://www.icsi.berkeley.edu/speech/papers/eurospeech05-onset/isolet

words, excluded utterances containing truncated words, and divided the remaining

utterances into 3
5

training set, 1
5

“validation” set, and 1
5

“test” set. We did the same

thing, using the same utterance lists that were used in [109], which the authors shared

with us. These three sets respectively contain about 6 hours, 2 hours and 2 hours

of audio. We used [109]’s “validation” set as development data and their “test” set

as evaluation data (see Section 3.4). For the rest of this chapter and in following

chapters, we will refer to those two sets as the development set and evaluation set.

Past users of the Numbers corpus in our research group often added 100ms of

padding to the start and end of the audio files (for example, to provide more time for

filter warmup in feature extraction). For simplicity, we did not do this.

3.8 Our noisy version of the Numbers corpus

As with ISOLET, we created a noisy version of the Numbers corpus using noises

from the RSG-10 [103] collection. Since the Numbers data was collected over tele-

phone channels and the noises were not, we used FaNT to apply the MIRS telephony

filter from the ITU Software Tools Library [111][112] to the noises before adding them

to Numbers data. Our intent was to make the noises more like noises that had been

collected over telephone channels. We then added one of each of ten different noise

types to each utterance at one of six different non-frequency-weighted signal-to-noise

ratios: no noise added, 20 dB, 15 dB, 10 dB, 5 dB, and 0 dB. (We did not use fre-

quency weighting in the SNR calculation because the audio was already filtered to

telephony bandwidth.) We will refer to this version of Numbers as noisy and to the

original Numbers data as clean.

The noises used with the training set were speech babble, factory floor noise type

1, car interior noise, F-16 cockpit noise, factory floor noise type 2, and Buccaneer

35

cockpit noise at 190 knots. The noises used with the development set were speech

babble, factory floor noise type 1, car interior noise, F-16 cockpit noise, M109 tank

noise, and Buccaneer cockpit noise at 450 knots. The noises used with the evaluation

set were speech babble, factory floor noise type 1, car interior noise, F-16 cockpit

noise, destroyer operations room noise, and Leopard military vehicle noise. So the

first four noise types were used for all three sets (training, development, evaluation)

and the other noise types were only used in one set. That means that there is a

mix of matched noise types (found in both the training set and the test sets) and

mismatched noise types (only found in one set).

As with our noisy version of ISOLET, the design of our noisy version of Numbers

is heavily influenced by the Aurora 2 benchmark [104], but unlike Aurora 2 there is

a distinction between development and evaluation data.

For scripts and noise recordings that others can use to make their own copy of the

noisy version of Numbers, as well as some additional details about the noisy ver-

sion, see http://www.icsi.berkeley.edu/Speech/papers/gelbart-ms/numbers.

An earlier version of our noisy Numbers corpus, based on version 1.0 of the Numbers

corpus rather than version 1.3, was used in [113].

3.9 Our Numbers ASR system based on multi-

layer perceptrons

As we did for ISOLET, we created scripts and configuration files for performing

speech recognition on the Numbers corpus (both the original and our noisy version)

using MLPs, based on the Quicknet and noway tools. The scripts are very similar to

the scripts we created for ISOLET, so in the following discussion we will focus only

on the differences. Thus we recommend you read Section 3.5 before this section.

36

http://www.icsi.berkeley.edu/Speech/papers/gelbart-ms/numbers

When creating our noisy Numbers corpus, we used the utterance lists from [109],

so that the noisy corpus can be easily used by other people who are using those

same utterance lists. There were 10441 training set utterances, 3582 development set

utterances, and 3620 evaluation set utterances. But when creating our ASR system

for Numbers, we removed additional utterances due to transcription errors or other

problems noticed by ourselves or by the authors of [110], who supplied us with the

utterance lists they used. Thus our ASR system uses 10231 training set utterances,

3515 development set utterances, and 3548 evaluation set utterances.

Our ASR scripts use the cross-validation (CV) portion of the training set (about

10% of the training data) both as CV data for early stopping during the MLP training

process and as a test set for tuning decoder options using a grid search. We chose to

tune decoder options on the CV data since that was done by users of earlier versions

of the Numbers corpus in our research group [7][38]. Since exploring points on the

decoder parameter tuning grid runs much more slowly for Numbers than for ISOLET,

for Numbers we use a much coarser grid, which might put novel feature vectors at

some disadvantage.

The number of MLP output units was 28, corresponding to 28 phones (including

a silence “phone”). Coincidentally, our ISOLET MLP-based ASR system also had 28

output units. For decoding, we used a trigram language model.

For the results in this thesis, we ran our Numbers ASR system using Quicknet

version 3.20 and noway version 2.9. For consistency, we always used the same version

(Pentium 4 SSE2) of the Quicknet training tool.

We also created scripts for statistical significance testing of ASR performance

differences using a matched pairs sign test. We have placed an explanation of the

matched pairs sign test in the README file that accompanies the scripts.

Our Numbers ASR system can be downloaded at http://www.icsi.berkeley.

37

http://www.icsi.berkeley.edu/speech/papers/gelbart-ms/numbers
http://www.icsi.berkeley.edu/speech/papers/gelbart-ms/numbers

edu/speech/papers/gelbart-ms/numbers. A README file is included which gives

additional details about the ASR system and provides a tutorial for using the scripts.

3.10 How our ASR systems compare to published

results

3.10.1 ISOLET

Using a GMM-based ASR system, Karnjanadecha and Zahorian [114] reported

4.1% WER (word error rate) on the clean ISOLET corpus using MFCC features and

2.3% WER using their novel DCSC features. WER was averaged over folds 1-5. The

other published ISOLET results that we are aware of fall within this range.

Our best baseline result using our own MLP-based ASR system was 2.9% WER

(averaged over folds 2-5) using a feature vector of MFCC, PLP and MSG features con-

catenated together in Table 4.4. Thus our baseline system performance is comparable

to previously published results.

3.10.2 Numbers

The best result we know of on the clean Numbers corpus is 2.0% WER. This is an

unpublished result achieved recently in our research group by Arlo Faria using version

1.0 of the corpus. (Table 4 in [109] compares ASR performance between version 1.0

and version 1.3.)

Faria used the SRI DECIPHER recognizer with cross-word triphones. Each state

was represented with 16 full covariance Gaussians, and states were tied using decision-

tree clustering. The front end used PLP and MFCC features in a tandem (see Sec-

38

http://www.icsi.berkeley.edu/speech/papers/gelbart-ms/numbers
http://www.icsi.berkeley.edu/speech/papers/gelbart-ms/numbers

tion 2.2.3) approach: PLP features were used as input to an MLP classifier, and the

outputs of the MLP were then reduced to 21 dimensions using PCA and concate-

nated with MFCC features to form a 60-dimensional feature vector for the main ASR

system. Three speaker-level normalization techniques (cepstral mean normalization,

cepstral variance normalization and vocal tract length normalization) were used, and

recognition was performed in a single pass without maximum likelihood or maximum

a posteriori speaker adaptation.

Our best baseline result using our own ASR system is 4.5% WER on the Numbers

1.3 evaluation set using MFCC, PLP, and MSG features concatenated together into

one feature vector (see Table 6.3 and the note on performance in Appendix A). This

is much worse than Faria’s WER, but comparable to the best published results we

are aware of for the Numbers corpus. For example, [109] reports 5.1% WER on the

Numbers 1.3 evaluation set using MFCC features with a GMM-based ASR system

and [115] reports 4.5% WER for Numbers 1.0 with a GMM-based ASR system using

cepstral mean normalization, cepstral variance normalization and vocal tract length

normalization.

3.11 Summary

To pursue our research agenda, we created noisy versions of the ISOLET and

Numbers corpora, which other researchers can recreate by using our scripts to repeat

the noise-adding process. We also set up ISOLET and Numbers ASR systems which

are available for use by other researchers. The word error rates for these systems

are comparable to typical published results and thus these systems provide a credible

framework for ASR research.

39

Chapter 4

Random subspace feature selection

for the ISOLET task

Contents

4.1 Introduction . 41

4.2 Automatic speech recognition system 41

4.3 Feature extraction . 43

4.4 Experimental results and discussion 44

4.4.1 RSM vs. non-RSM performance compared for each feature

pool . 44

4.4.2 RSM vs. non-RSM performance compared across all feature

pools . 47

4.5 The feature vectors chosen by the random subspace

method . 51

4.6 Alternatives to our RSM implementation choices 52

4.7 Summary . 53

40

4.1 Introduction

In this chapter, we use the random subspace method (RSM) [21] for EFS, which

we discussed briefly in Section 2.3.3. In RSM, EFS is performed by simply choosing

the features in each of the feature vectors at random from the feature pool. Multi-

stream ASR systems typically use a small number of classifiers, but RSM tends to be

performed using a large number of classifiers. For example, in [21] RSM was used to

create ensembles of 50-100 decision trees, and in [24] it was used to create ensembles

of 25 HMMs. We chose to use 25 MLPs in our RSM ensembles in this chapter. Our

implementation of RSM allows the same feature to occur in more than one feature

vector, but does not allow the same feature to occur more than once in the same

feature vector. We fixed the length of all 25 feature vectors at 39, which is a common

length for ASR feature vectors. (MFCC and PLP, the two most common feature

extraction methods in ASR research, are usually used to generate 36 or 39 features.)

Throughout this chapter, we use a two-tailed McNemar’s test to judge statistical

significance (see Section 3.5), and we use a probability of the null hypothesis of 0.05

as the threshold for statistical significance. In order to simplify the presentation of

results, we only state whether or not differences were significant, without providing

the P values.

4.2 Automatic speech recognition system

To measure RSM performance, we used the MLP-based ISOLET ASR system that

we described in Section 3.5. Our ISOLET ASR scripts reserve fold 1 as a tuning set

for tuning decoder parameters. We repeated this tuning process whenever we made

a change to feature vectors (e.g., changing between PLP and MFCC), MLP topology

(i.e., changing the number of input or hidden units), or the training condition (i.e.,

41

changing between clean and noisy training). In our experiments for the clean train

and noisy test condition, we used decoder parameters determined by tuning on clean

ISOLET. Because we used fold 1 for decoder parameter tuning, we used folds 2-5

for evaluation of ASR system performance and we report word error rates (WERs)

averaged over folds 2-5.

We always used 25 streams and 39 features per stream in our RSM systems, with

the MLP for each stream having 800 hidden units. Thus, based on the formula given

in Section 3.5, our RSM systems had 4,480,700 acoustic model parameters (MLP

weights and biases) each. As an experimental control, for all the non-RSM systems

examined in this chapter, we chose the number of MLP hidden units so that the

total number of acoustic model parameters would also be approximately 4,480,700.

In the ensemble non-RSM systems, we chose the number of hidden units for each

MLP in the ensemble so that the number of acoustic model parameters per MLP was

approximately equal and the total number of acoustic model parameters (added up

across all MLPs) was approximately 4,480,700. We will refer to the non-RSM systems

as “baseline” systems.

While our RSM systems had a fairly small number of parameters per MLP due to

the 25 MLPs in the ensemble, for the baseline systems 4,480,700 is a large number of

parameters for the amount of training data that we used. While we employed early

stopping in the neural network training to guard against overfitting, that technique is

imperfect so the large number of parameters may have resulted in suboptimal baseline

performance in some cases.

42

4.3 Feature extraction

Our MFCC feature type was 39 Mel-Frequency Cepstral Coefficient features (13

static features, 13 delta features, and 13 double-delta features). We calculated MFCC

features using the HCopy tool from Cambridge’s HTK package [100]. The features

were calculated using a 25 ms analysis window length. Deltas and double-deltas

were calculated over five frames, which is the HTK default. (After the ISOLET

experiments in this thesis were completed, we noticed that we could improve MFCC

performance on the ISOLET task by using the HTK ZMEANSOURCE option. For

more information on this, see the README MFCC file in our recognition testbed:

http://www.icsi.berkeley.edu/Speech/papers/gelbart-ms/hybrid-testbed.)

Our PLP feature type was 39 Perceptual Linear Prediction [37] features (13 static

features, 13 deltas, and 13 double-deltas). We calculated PLP features using the

feacalc tool from the ICSI SPRACHcore [99] package. The features were calculated

using a 25 ms analysis window length. Deltas and double-deltas were calculated over

nine frames, which is the feacalc default.

Our MSG feature type was 36 Modulation SpectroGram [38] features. To calculate

these features we always used the “‘msg3” calculation mode offered by the msgcalc

tool from the SPRACHcore package, with a 25 ms analysis window length.

We also used PLP and MFCC features that were calculated using a 15 ms or 35

ms analysis window length instead of 25 ms. The use of multiple window lengths was

motivated by the observation that using a single window length forces a particular

trade-off between spectral resolution and temporal resolution [46][47][116][117].

We used a window step at 10 ms for all features, so that all our features were

extracted 100 times per second. We did not use any additional robustness techniques

43

http://www.icsi.berkeley.edu/Speech/papers/gelbart-ms/hybrid-testbed

such as cepstral mean normalization or noise removal [61], although MSG does include

a type of automatic gain control.

The scripts we used to invoke MFCC, PLP, and MSG feature extraction are

included in the downloadable ISOLET script archive described in Section 3.5.

When we identify feature pools in our tables of results, analysis window lengths

given at the end of a line listing feature extraction methods apply to all of the methods.

For example, “MFCC and PLP (15 ms)” means a pool containing MFCC and PLP

features, both calculated using a 15 ms analysis window length, for a total of 78

features. “MFCC and PLP (15, 25, and 35 ms)” means a pool containing MFCC

and PLP features, both calculated using 15, 25, and 35 ms analysis window lengths,

for a total of 234 features. In the baseline systems using geometric mean posterior

combination, each feature type in the pool is given its own MLP. The 39 MFCC

features, the 39 PLP features, and the 36 MSG features are each considered a feature

type. Features calculated with a particular analysis window length are considered a

distinct feature type from features calculated with other lengths.

Because RSM selects features in a single step, it is very quick and thus in this

chapter we were able to examine RSM performance for nine feature pools.

4.4 Experimental results and discussion

4.4.1 RSM vs. non-RSM performance compared for each

feature pool

Table 4.4 in the next section gives complete word error rate (WER) results for

our experiments. Since that table is lengthy, we have used Tables 4.1, 4.2, and 4.3 to

summarize how RSM and non-RSM performance compare to each other for each of

44

our nine feature pools. When we use RSM, there are always 39 features per stream.

Thus we cannot meaningfully use RSM if only 39 or fewer features are available.

Therefore, the single feature types in the first seven rows of Table 4.4 do not count as

part of our nine feature pools and they are not included in Tables 4.1, 4.2, and 4.3.

For each feature pool and train/test condition, Table 4.1 compares the RSM sys-

tem to the geometric mean posterior combination baseline system (in which a separate

MLP is used for each feature type), Table 4.2 compares the RSM system to the fea-

ture concatenation baseline system (in which all features in the pool are concatenated

into a single feature vector used by a single MLP), and Table 4.3 compares the RSM

system to the best performing of the two types of baseline system.

In these three tables, we see that in both the clean train and clean test condition

and the noisy train and noisy test condition RSM performed better than baseline

in all cases for which there was a statistically significant difference in performance

between the RSM system and the baseline system. In the clean train and clean test

condition, it was easier for RSM to improve on the posterior combination baseline

(which it improved on for five of nine pools) than the feature concatenation baseline

(which it improved on for two of nine pools).

RSM obtained the greatest number of improvements in the clean train and noisy

test condition. In that condition, RSM performed better than the feature concatena-

tion baseline for all seven pools for which there was a statistically significant difference

in performance, and better than the posterior combination baseline for eight pools.

RSM performed worse than the posterior combination baseline for the PLP and MSG

pool.

We received this anonymous review comment after submitting a conference paper

based on some of the work in this chapter: “People in my group have tried using

randomized features on large state-of-the-art Switchboard type systems, with no suc-

45

Feature pool Clean train Noisy train Clean train,
and test and test noisy test

MFCC and PLP C A (5.2%) A (2.9%)
MFCC and PLP (15, 25, and 35 ms) A (12.9%) C A (9.7%)

MFCC, PLP and MSG C C A (2.8%)
MFCC and MSG A (12.0%) C A (2.2%)
PLP and MSG C C B (5.3%)

MFCC (15, 25, and 35 ms) A (14.4%) A (8.6%) A (8.2%)
PLP (15, 25, and 35 ms) A (17.8%) A (5.3%) A (9.3%)
MFCC and PLP (15 ms) C C A (3.0%)
MFCC and PLP (35 ms) A (9.6%) A (3.2%) A (4.6%)

Table 4.1. RSM compared to geometric mean posterior combination baselines for
particular feature pools. Analysis window lengths given in parentheses as part of the
feature pool name apply to all features in the pool. For example, for the “MFCC
and PLP (15, 25, and 35 ms)” feature pool there are six feature types (MFCC and
PLP each calculated for three analysis window lengths). The symbol A indicates that
the RSM system was better than the baseline system and this was statistically sig-
nificant; relative WER improvement follows in parentheses. The symbol B indicates
the baseline system was better than the RSM system and this was statistically sig-
nificant; relative WER improvement follows in parentheses. The symbol C indicates
the difference between the RSM system and the baseline system was not statistically
significant.

Feature pool Clean train Noisy train Clean train,
and test and test noisy test

MFCC and PLP C C C
MFCC and PLP (15, 25, and 35 ms) C C A (4.1%)

MFCC, PLP and MSG C A (5.2%) A (7.0%)
MFCC and MSG C A (15.7%) A (12.9%)
PLP and MSG C A (5.6%) A (4.7%)

MFCC (15, 25, and 35 ms) A (12.9%) A (5.7%) A (3.5%)
PLP (15, 25, and 35 ms) A (27.6%) A (7.4%) A (8.6%)
MFCC and PLP (15 ms) C C C
MFCC and PLP (35 ms) C C A (4.1%)

Table 4.2. RSM compared to feature concatenation baselines for particular feature
pools.

cess... selecting features randomly from the MFCC/PLP feature sets, and combining

the recognition results either through ROVER [see [39]] or confusion network combi-

46

Feature pool Clean train Noisy train Clean train,
and test and test noisy test

MFCC and PLP C C C
MFCC and PLP (15, 25, and 35 ms) C C A (4.1%)

MFCC, PLP and MSG C C A (2.8%)
MFCC and MSG C C A (2.2%)
PLP and MSG C C B (5.3%)

MFCC (15, 25, and 35 ms) A (12.9%) A (5.7%) A (3.5%)
PLP (15, 25, and 35 ms) A (17.8%) A (5.3%) A (8.6%)
MFCC and PLP (15 ms) C C C
MFCC and PLP (35 ms) C C A (4.1%)

Table 4.3. RSM compared to the best baselines for particular feature pools. Baseline
systems used either feature concatenation or geometric mean posterior combination;
the baseline system considered in the table is the best of these two (i.e., the one with
the lowest WER) for the given feature pool and train-test condition. (If the two
combination methods were tied for the best performance, one was arbitrarily chosen
for comparison with RSM.)

nation [see [40]] simply [did] not work.” Like the tables in this chapter, this comment

suggests that the effectiveness of RSM can depend greatly on the feature pool. How-

ever, another plausible interpretation of this comment is simply that it was harder

to improve on a large, state-of-the-art baseline system than it was to improve on the

simpler baselines used in this chapter.

4.4.2 RSM vs. non-RSM performance compared across all

feature pools

Table 4.4 below gives complete WER results for this chapter. Double horizontal

lines separate results for different feature pools.

System type Clean train Noisy train Clean train,

and test and test noisy test

Table 4.4 continues on next page

47

Table 4.4 continued from previous page

MFCC 4.5 17.6 57.8

PLP 4.0 17.2 55.0

MSG 5.5 16.5 38.0

MFCC (15 ms window) 4.7 18.3 55.5

MFCC (35 ms window) 3.8 17.4 56.6

PLP (15 ms window) 4.9 17.6 56.5

PLP (35 ms window) 3.6 17.1 54.7

Pool: MFCC and PLP

RSM 3.2 15.9 52.3

All features concatenated 3.3 16.5 51.8

One MLP per feature type 3.2 16.8 53.8

Pool: MFCC and PLP

(15, 25, and 35 ms windows)

RSM 2.9 15.7 48.8

All features concatenated 3.0 15.8 50.9

One MLP per feature type 3.3 16.2 54.0

Pool: MFCC, PLP, and MSG

RSM 3.1 13.8 45.0

All features concatenated 2.9 14.6 48.4

One MLP per feature type 3.0 14.1 46.3

Pool: MFCC and MSG

Table 4.4 continues on next page

48

Table 4.4 continued from previous page

RSM 3.0 13.2 43.5

All features concatenated 3.2 15.7 49.9

One MLP per feature type 3.5 13.6 44.5

Pool: PLP and MSG

RSM 3.2 13.5 45.0

All features concatenated 3.4 14.3 47.2

One MLP per feature type 3.2 13.8 42.6

Pool: MFCC

(15, 25, and 35 ms windows)

RSM 3.2 16.0 50.4

All features concatenated 3.7 17.0 52.2

One MLP per feature type 3.8 17.5 54.8

Pool: PLP

(15, 25, and 35 ms windows)

RSM 3.1 16.2 49.0

All features concatenated 4.3 17.5 53.6

One MLP per feature type 3.8 17.1 54.1

Pool: MFCC and PLP

(15 ms windows)

RSM 3.5 16.5 52.6

All features concatenated 3.6 16.7 52.1

One MLP per feature type 3.7 16.8 54.2

Pool: MFCC and PLP

(35 ms windows)

Table 4.4 continues on next page

49

Table 4.4 continued from previous page

RSM 3.2 15.9 51.7

All features concatenated 3.4 15.5 54.0

One MLP per feature type 3.5 16.4 54.2

Table 4.4: This table gives the complete word error rate (WER) results for our

experiments, averaged over folds 2-5. The first seven rows give results for baseline

systems using just one feature type each. Later rows give RSM and baseline results

for feature pools containing more than one feature type. Double horizontal lines are

used to group together systems which use the same feature pool. Feature calculation

window lengths are 25 ms unless otherwise stated. “All features concatenated” means

a baseline system for which a single MLP was used with every feature in the pool.

“One MLP per feature type” means a baseline system for which an ensemble of MLPs

was used with a separate MLP for each feature type in the pool. For example, for the

pool containing MFCC and PLP feature calculated using 15, 25 and 35 ms windows,

the ensemble contains six MLPs, each one using MFCC or PLP features calculated

using a particular window length.

We now refer to Table 4.4 to consider what RSM and non-RSM approaches gave

the lowest WERs of all, without restricting comparisons to particular feature pools.

In the clean train and clean test condition, the best RSM system used the pool of

MFCC and PLP features calculated at 15, 25, and 35 ms analysis window lengths,

and the best baseline system used feature concatenation with MFCC, PLP, and MSG

features. Both systems had a 2.9% WER.

50

In the noisy train and noisy test condition, the best RSM system used the pool of

MFCC and MSG features (13.2% WER), and the best baseline system used geometric

mean posterior combination with the same features (13.6% WER). The performance

difference between these two systems was not statistically significant.

In the clean train and noisy test condition, the best RSM system used the pool of

MFCC and MSG features (43.5% WER) and the best baseline system used only MSG

features (38.0% WER). The performance difference between these two systems was

statistically significant. (Since the 38.0% WER system uses only one feature type, it

is not included in Table 4.3. The lowest baseline WER using more than one feature

type was 42.6% using geometric mean posterior combination with the pool of PLP

and MSG features, and the difference between that and the 43.5% WER RSM system

was also statistically significant.)

4.5 The feature vectors chosen by the random sub-

space method

To download lists of the feature vectors chosen by RSM, or the script we

used to create those lists, see http://www.icsi.berkeley.edu/speech/papers/

gelbart-ms/rsm.

For eight of the nine feature pools, every feature in the pool was part of at least

one of the 25 streams. For the remaining pool (the pool of MFCC and PLP features

calculated at 15, 25, and 35 ms analysis window lengths), RSM utilized 231 out of

234 features.

51

http://www.icsi.berkeley.edu/speech/papers/gelbart-ms/rsm
http://www.icsi.berkeley.edu/speech/papers/gelbart-ms/rsm

4.6 Alternatives to our RSM implementation

choices

In this section we discuss two alternative ways to implement RSM which may be

worth exploring in future work.

Every feature vector in our RSM ensembles in this chapter contained 39 features.

We chose this size because it is common in ASR, but we did not compare performance

to other sizes. In Ho’s work on RSM performance with ensembles of decision trees

[21] she found that setting feature vector length to half the size of the feature pool

worked well.

Furthermore, in both [21] and our own work the feature vector length was the

same for different classifiers in the same RSM ensemble. However, some other authors

[12][87][25] have chosen the length of each feature vector in the ensemble randomly

instead. By fixing the feature vector length, we avoided the possibility of classifiers

that had very low accuracies due to being assigned very few features. There are

comments in the literature that support this philosophy. The authors of [43] wrote

that “previous [ASR] work has shown that the combination of independent systems

with very different error rates often yields no gain, and so it is desirable to combine

independent systems with comparable error rates”, and the author of [7] noted that

a very poorly performing member of an ASR ensemble may drag down ensemble per-

formance. On the other hand, the ASR systems referred to in [43][7] were different

from ours. For example, perhaps a wider error rate spread is workable with 25 clas-

sifiers in the ensemble, which is many more than are typically used in multi-stream

ASR. And the authors of [25] felt that varying feature vector lengths can provide

useful additional diversity. So whether our approach was optimal is an experimental

question which we have left open.

52

4.7 Summary

Tables 4.1, 4.2, and 4.3 showed that when we compared RSM and baseline perfor-

mance for particular feature pools and train/test conditions, RSM was better than the

baseline in all but one of the cases where there was a statistically significant perfor-

mance difference. However, for many other cases, there was no statistically significant

difference between RSM and the baseline. In Section 4.4.2, we saw that when com-

paring the best RSM system to the best baseline systems without restricting ourselves

to particular feature pools, RSM did not give a statistically significant performance

improvement over baseline in any of the three train and test data conditions.

So we have demonstrated that RSM can improve ASR ensemble performance, but

also that in many cases it does not. In Section 4.6, we discussed alternative ways to

implement RSM which could be explored in further work. However, after reviewing

our RSM results, we decided instead to follow the RSM experiments in this chapter by

moving from random selection to a guided selection algorithm, hill-climbing, which we

use with the ISOLET corpus in Chapter 5 and (in our most successful experiments)

for the Numbers corpus in Chapter 6.

53

Chapter 5

Hill-climbing feature selection for

the ISOLET task

Contents

5.1 Introduction . 55

5.2 Automatic speech recognition system 55

5.3 Feature extraction . 56

5.4 Acoustic model size . 56

5.5 Hill-climbing procedure . 57

5.6 The time taken by hill-climbing 61

5.7 Results and discussion . 63

5.7.1 Hill-climbing results . 63

5.7.2 Additional baseline results 65

5.7.3 Tuning fold results compared to evaluation fold results . . . 66

5.7.4 The feature vectors chosen by hill-climbing 67

5.8 Summary . 67

54

5.1 Introduction

In this chapter we try a guided, wrapper (see Section 2.3) approach to feature

selection. We use the hill-climbing algorithm, which we discussed earlier in Section

2.3.3. As we did for the random subspace method, we evaluate the hill-climbing

algorithm using our publicly available benchmark based on the OGI ISOLET corpus,

which we described in detail in Chapter 3. We have some successes, but our best

results with hill-climbing come after this chapter when we switch to the Numbers

corpus, a larger corpus for which more data is available to guide hill-climbing.

Since multi-stream ASR systems typically use a small number of classifiers, in our

hill-climbing experiments we use three MLPs per ensemble.

As in Chapter 4, in this chapter we use a two-tailed McNemar’s test to judge

statistical significance (see Section 3.5), and we use a probability of the null hypothesis

of 0.05 as the threshold for statistical significance. When we judge a difference to be

statistically significant, we provide the P value since this allows the reader to use a

different threshold for significance if they choose.

5.2 Automatic speech recognition system

As in our experiments with the random subspace method in Chapter 4, in this

chapter we used the MLP-based ISOLET ASR system that we described in Section

3.5. We used fold 1 for decoder parameter tuning and folds 2-5 for evaluation of ASR

system performance. We will refer to fold 1 as the “tuning fold” and folds 2-5 as

the “evaluation folds”. As in Chapter 4, we repeated the decoder parameter tuning

process whenever we made changes to feature vectors, MLP topology, or the training

condition.

55

5.3 Feature extraction

Since it is iterative, hill-climbing is much slower than the random subspace

method, and so in our hill-climbing experiments we used only a single feature pool,

rather than the nine pools we used in Chapter 4.

Our feature pool consisted of MFCC, PLP and MSG features calculated using a 25

ms analysis window length. Thus the size of our feature pool was 39 + 39 + 36 = 114

features. See Section 4.3 for details, including a note about how MFCC performance

could have been improved using the ZMEANSOURCE option.

5.4 Acoustic model size

Based on Table 5.1, which shows word error rates (WERs) on the tuning fold for

various MLP hidden layer sizes, we decided that 1600 hidden units was a reasonable

choice for a single-MLP MFCC or PLP system1. Such a system has about 358,400

acoustic model parameters (MLP weights and biases). To control acoustic model

size, for each experiment in this chapter (outside of Table 5.1) we chose the number

of MLP hidden units so that the total number of acoustic model parameters in the

ASR system was roughly 358,400. For a system with more than one MLP, this total

was the sum of the number of parameters for all the MLPs, and the number of hidden

units for each MLP was chosen so that the number of parameters for each MLP was

approximately equal. When feature vector sizes were changed during hill-climbing,

we adjusted hidden layer sizes to satisfy these requirements.

The number of acoustic model parameters for an MLP is (I +O) ∗H +H +O, as

explained in Section 3.5. For our ISOLET testbed, O was 28, our MFCC and PLP

1In fact, that Table suggests that 1400 hidden units might have been a slightly better choice, but
there is not much difference. We chose 1600 for comparability with some past results that are not
included here.

56

feature vectors had 39 features and our MSG feature vector had 36 features. Thus,

our single-MLP MFCC or PLP system had 1600 hidden units, and our single-MLP

MSG system had 1715 hidden units. When we concatenated MFCC, PLP and MSG

features into a single feature vector, we used a single-MLP system with 598 hidden

units. And our three-MLP MFCC, PLP, and MSG systems used 533 hidden units for

the MFCC and PLP MLPs and 572 hidden units for the MSG MLP.

Number of Clean train Noisy train
hidden units and test and test

MFCC PLP Mean MFCC PLP Mean
600 3.8 3.6 3.7 18.1 17.8 18.0
700 3.6 2.8 3.2 18.5 17.5 18.0
800 3.3 2.8 3.1 18.3 17.9 18.1
900 3.3 3.2 3.3 17.9 17.5 17.7
1000 3.3 2.9 3.1 18.3 17.6 18.0
1100 3.0 2.9 3.0 18.3 17.7 18.0
1200 2.9 2.9 2.9 18.1 17.6 17.9
1300 3.0 3.0 3.0 18.7 17.0 17.9
1400 2.9 2.9 2.9 18.1 16.6 17.4
1500 3.0 3.4 3.2 18.3 17.3 17.8
1600 3.0 2.7 2.9 18.2 17.1 17.7
1700 3.0 2.7 2.9 18.3 17.9 18.1
1800 2.9 3.0 3.0 18.5 17.1 17.8

Table 5.1. The table shows word error rates (WERs) calculated on the tuning fold
(fold 1) for single-MLP systems using either MFCC or PLP features, as a function
of hidden layer size. Since these WERs are reported on the tuning fold, they are low
compared to results in other tables.

5.5 Hill-climbing procedure

The hill-climbing EFS algorithm was defined under the name EFS SBC in

[87], and later used in [25]. Below, we provide a pseudocode listing for our

HILL CLIMBING procedure and the helper procedure CALCULATE SCORE. The

57

pseudocode listing is inspired by the listing in [87], but has been modified to match

our implementation. Pseudocode lines starting with a triangle symbol are comments.

There are differences between EFS SBC as defined in [87] and our implementation

of hill-climbing. First, EFS SBC assumes the use of simple (naive) Bayesian classifica-

tion, while we use a hidden Markov model approach based on MLPs. Second, in half

of our experiments we scored candidate feature vectors by ensemble word recognition

accuracy (or ensemble WER, which is equivalent except that decreases, rather than

increases, are improvements), rather than using the fitnesss function defined below

in Equation 5.1, which was used in [87]. Third, for EFS SBC the initial assignment

of features to classifiers is always performed by the random subspace method (RSM)

[21]. We used RSM for this in half of our experiments, but in the other half we

started each classifier off using a particular feature extraction algorithm (one MLP

using MFCC, another using PLP, and a third using MSG). And when we used RSM,

we determined the number of features per classifier ahead of time, so that the initial

MLP topology (the number of inputs, hidden units, and output units) would be the

same whether or not we initialized by RSM. When our initial three feature vectors

were respectively MFCC, PLP and MSG, there were 39 features for each of the first

two MLPs and 36 features for the third MLP. So when our initial feature vectors were

chosen by RSM we also used 39 features for the first two MLPs and 36 features for the

third MLP. In the implementation of RSM in [87][25], on the other hand, the length

of feature vectors was chosen randomly. (See Section 4.6 for further discussion.)

58

Hill Climbing(FS, S,N, α)

1 � FS: the set of feature vectors (already initialized)

2 � S: the number of feature vectors in FS

3 � N: the number of features in the feature pool

4

5 � Perform hill-climbing for each stream in turn

6 for s← 1 to S

7 do

8 � Initialize this stream’s score.

9 score← Calculate Score(FS, s, α)

10 repeat

11 improvement← false

12 for i← 1 to N

13 do

14 � If feature i is in stream s, remove it.

15 � If feature i is not in stream s, add it.

16 Switch(i, FS[s])

17 newScore← Calculate Score(FS, s, α)

18 � If the change improved the score

19 if newScore > score

20 then

21 score← newScore

22 improvement← true

23 else

24 � Undo the change.

25 Switch(i, FS[s])

26 until improvement = false

59

Calculate Score(FS, s, α)

1 if using α

2 then

3 score← Stream accuracy(FS[s]) + α ∗Diversity(s, FS)

4 else

5 score← Ensemble accuracy(FS)

6

7 return score

In half our hill-climbing experiments, we use the following formula to score can-

didate feature vectors:

fitnesss = accs + α ∗ divs (5.1)

This formula, which we discussed in Section 2.3.3, combines an individual classi-

fier’s accuracy and its contribution to the diversity of the ensemble. When we used

this formula, we set accs to the single-stream word recognition accuracy for stream s,

and set divs to stream s’s contribution to word level ensemble diversity. We calculated

both accuracy and diversity as percentages between 0% and 100%. We calculated divs

by calculating the pairwise diversity between stream s and each other stream, and

then averaging the pairwise diversities. We defined pairwise diversity as the number

of word hypotheses that differ divided by the total number of words. We calculated

pairwise diversity by calculating the WER of one system using the other system’s

output as if it were the ground truth transcript. (If the WER changed depending on

which of the two outputs we used as a transcript, we took the minimum of the two

WERs. This never happened with ISOLET due to the simplicity of WER scoring

for isolated words, but it happened sometimes with the Numbers connected speech

corpus used in the next chapter.)

60

The α parameter provides an adjustable trade-off between accuracy and diversity.

We always used the same value for α (α = 1), and we based this on published

results [87] that did not involve speech recognition, so it might be possible to improve

performance further by changing the value of α.

Our diversity measure divs is a word-level rather than frame-level diversity mea-

sure, even though we combine MLPs at the frame level when we do ensemble recog-

nition. We think this is reasonable, though not perhaps not ideal, because we expect

that when different MLPs make different errors at the word level there tends to be

useful diversity at the frame level as well.

The scripts we used for hill-climbing can be downloaded at http://www.icsi.

berkeley.edu/speech/papers/gelbart-ms/isolet-hillclimb.

5.6 The time taken by hill-climbing

The hill-climbing procedure, being a wrapper method (see Section 2.3), requires

the calculation of word error rates at every step, and this makes it quite time con-

suming. To help with this, we parallelized the process.

The key idea behind the parallelization, which was suggested to us by Alexey

Tsymbal, is to look ahead beyond the current feature when making a pass over

the feature pool, using the prediction that the current feature will not be switched.

“‘Switched”, here, means changed from being included in the feature vector to not

being included, or vice versa. For instance, we could compute the score for switch-

ing feature n in parallel with computing the score for switching feature n + 1, if we

compute the latter score using the prediction that feature n will not be switched.

If the prediction turned out to be wrong, we would have to recompute the score for

switching feature n+1. We could additionally compute the score for switching feature

61

http://www.icsi.berkeley.edu/speech/papers/gelbart-ms/isolet-hillclimb
http://www.icsi.berkeley.edu/speech/papers/gelbart-ms/isolet-hillclimb

n + 2 on the assumption that both feature n and feature n + 1 will not be switched,

and so on. This parallelization strategy is an example of the speculative execution

[118] technique used in computer architecture.

We chose to use just a single step of speculative execution, computing the score

for switching feature n in parallel with computing the score for switching feature

n+1. Specifically, we ran the MLP training for feature n+1 in parallel with decoder

parameter tuning for feature n. So the time taken by a single inner loop iteration

of the hill-climbing algorithm was roughly the maximum of MLP training time and

decoder tuning time (plus some overhead), except for the times when we recomputed a

score because the prediction used for speculative execution was wrong. The number of

wrong guesses corresponds to the number of changes made to feature vectors, which is

shown in Table 5.2. We further sped up the decoder parameter tuning by parallelizing

the grid search across 12 cores. This reduced the time taken by a tuning so it was

similar to the time taken by an MLP training. For MLP training we used only a

single core, since MLP training time was not a major bottleneck.

The time taken to run hill-climbing varied between experiments, ranging roughly

from four days to eight days. The processors used were mainly AMD Opteron 875s at

2.2 GHz and Intel Xeons at 2.8 GHz or 3.0 GHz. The experiments that used Equation

5.1 to score performance took the longest, because using that scoring function led to

more changes being made to feature vectors.

Decoder parameter tuning was very time consuming and we could have sped up

hill-climbing by doing less of it. The hill climbing procedure has three nested loops, as

shown in the HILL CLIMBING pseudocode listing above. The inner loop examines

whether switching a particular feature would improve performance for the current

stream. The middle loop repeats the inner loop over and over for the current stream

until the inner loop stops making changes. And the outermost loop invokes the middle

62

loop once for each stream. We did decoder parameter tuning in the inner loop but

we could have moved it to the middle or outer loop, or done it only at the start and

end of the hill-climbing process. It would be interesting to know how much effect

this would have had on the performance of new feature vectors that were tried during

hill-climbing.

5.7 Results and discussion

5.7.1 Hill-climbing results

Table 5.2 shows our hill-climbing results. Results are averaged over the evaluation

folds (folds 2-5). We exclude the tuning fold (fold 1) from the table since it was used

as development data to guide the hill-climbing process (see Section 3.4).

For the noisy data, hill-climbing improved WER compared to the initial ensemble

that hill-climbing started with in three out of four cases, and the improvement was

statistically significant each time (P = 0.004 in row (b) of the table, P = 0.02 in

row (c), and P = 0.0006 in row (d)). In row (a), hill-climbing worsened WER from

14.3% to 14.5% but this change was not statistically significant. For the clean data,

in three out of four experiments hill-climbing worsened WER, and in one experiment

hill-climbing improved WER, but the change in WER due to hill-climbing was not

statistically significant in any of the four experiments. Thus, the only statistically

significant effect of hill-climbing was to improve performance, never to worsen it.

There was no statistically significant difference in final WER between the two

scoring approaches used to guide hill-climbing (ensemble WER and Equation 5.1) in

the clean case where RSM was not used, the clean case where RSM was used, or

the noisy case where RSM was used. This was despite the fact that guiding hill-

63

climbing using Equation 5.1 resulted in many more feature vector changes during

the hill climbing process. There was, however, a statistically significant difference

(P = 0.001) in the noisy case where RSM was not used, with Equation 5.1 resulting

in a 13.6% final ensemble WER compared to 14.5% using the other scoring approach.

Whether or not we chose the initial feature vectors for hill-climbing randomly

made a statistically significant difference to final WER in the clean case when we

used ensemble WER to guide hill-climbing (random initialization raised final WER

from 3.0% to 3.4%, P = 0.02) and the noisy case when we used Equation 5.1 to

guide hill-climbing (random initialization raised final WER from 13.6% to 14.4%,

P = 0.01). (There was no statistically significant difference in the other two cases.)

Thus performance was better when we did not choose the initial feature vectors

randomly.

Experiment Clean train and test Noisy train and test
Changes Initial Final Changes Initial Final

WER WER WER WER
(a) HC 4 3.1 3.0 7 14.3 14.5
(b) HC, 5 3.2 3.4 11 15.3 14.5

RSM initialization
(c) HC using α = 1 14 3.1 3.3 22 14.3 13.6
(d) HC using α = 1, 20 3.2 3.4 18 15.3 14.4
RSM initialization

Table 5.2. This table shows hill-climbing results on the ISOLET corpus. The
“Changes” columns give the number of features changed (added to or deleted from
a feature vector) during hill-climbing. The “Initial WER” columns give the initial
ensemble (i.e., three MLPs) word error rate on the evaluation folds before the hill-
climbing algorithm has made any changes to the feature vectors. The “Final WER”
columns give the ensemble word error rate on the evaluation folds once hill climbing
has finished. If a value is given for α it means that the score used to guide hill-
climbing was the accuracy and diversity formula defined in Equation 5.1, calculated
on the tuning fold. Otherwise, the score used to guide hill-climbing was the ensemble
WER on the tuning fold. “RSM” means that initial feature vectors prior to the start
of hill-climbing were chosen randomly. Otherwise, the initial feature vectors were
respectively MFCC, PLP and MSG.

64

5.7.2 Additional baseline results

Table 5.3 shows additional baseline results for the ISOLET corpus. In both the

clean and noisy cases, the lowest WER is in row (e), which is the three-MLP system

using MFCC, PLP and MSG features. In the clean case, there is no statistically

significant difference between the system in row (e) and the system with the second

lowest WER in row (f) or the system with the third lowest WER in row (d). However,

there is a statistically significant difference between the system with the fourth lowest

WER in row (b) and the system in row (e) (P = 0.01). In the noisy case, the

system with the second lowest WER is the system in row (d) which uses MFCC, PLP

and MSG feature concatenated into a single feature vector. There is a statistically

significant difference between the system in row (e) and the system in row (d) (P =

0.004).

For noisy data, the best performance of a system chosen by hill-climbing was

13.6% WER in row (c) of Table 5.2, which is a statistically significant improvement

over the system in row (e) of Table 5.3 (P = 0.02). For both clean and noisy data,

there were no other statistically significant differences in performance between the

system in row (e) of Table 5.3 and the systems chosen by hill-climbing.

In the previous chapter, we found a 25-MLP RSM ensemble using the MFCC,

PLP and MSG feature pool had a 3.1% WER on clean data and a 13.8% WER on

noisy data. In Table 5.3, the three-MLP RSM ensemble has a 3.2% WER on clean

data and a 15.3% WER on noisy data. In the noisy case, the performance difference

is statistically significant (P < 10−8). This is consistent with the experiments with

different RSM ensemble sizes using decision trees in [21], in which 25-classifier ensem-

bles generally outperformed three-classifier ensembles. In our case, the comparison is

complicated by the different number of acoustic model parameters in the two systems

as well as the role of random chance in the feature assignment. In [21] the effect of

65

random chance was reduced by providing results for many data sets and ensemble

sizes.

Experiment Clean train Noisy train
and test and test

(a) MFCC 4.1 17.6
(b) PLP 3.6 17.4
(c) MSG 5.6 16.4

(d) All features concatenated 3.4 15.2
(e) MFCC, PLP, MSG (three MLPs) 3.1 14.3

(f) RSM (three MLPs) 3.2 15.3

Table 5.3. This table shows baseline results on the ISOLET corpus. The results
shown are word error rates (WERs) on the evaluation folds. The number of hidden
units (HUs) for each MLP was chosen as explained in Section 5.4. In row (d), all
features in the feature pool are concatenated into a single feature vector. In row
(e), there are three MLPs respectively using 39 MFCC features (533 HUs), 39 PLP
features (533 HUs), and 36 MSG features (572 HUs). Row (e) corresponds to the
“Initial WER” column in Table 5.2 for the experiments without RSM initialization.
In row (f), there are three MLPs, using randomly chosen feature vectors with the
same number of features and hidden units as in row (e). Row (f) corresponds to the
“Initial WER” column in Table 5.2 for the experiments with RSM initialization.

5.7.3 Tuning fold results compared to evaluation fold results

Table 5.4 shows hill-climbing results on the tuning fold. Compared to the initial

system that hill-climbing started with, hill-climbing lowered tuning fold WER in seven

out of eight experiments. This is much better than the results on the evaluation folds

in Table 5.2. Would we have been able to predict from Table 5.4 for what cases

hill-climbing would improve performance on the evaluation folds? It doesn’t seem

so. In fact, we might have mistakenly predicted that hill-climbing would improve

performance more for the clean data than for the noisy data, because the relative

reductions in tuning fold WER in Table 5.4 range from 14%-28% for the clean data,

but only from 0%-10% for the noisy data.

66

Experiment Clean train and test Noisy train and test
Initial WER Final WER Initial WER Final WER

(a) HC 2.6 2.1 14.6 13.5
(b) HC, 2.8 2.0 14.9 13.5

RSM initialization
(c) HC using α = 1 2.6 2.2 14.6 13.2
(d) HC using α = 1, 2.8 2.4 14.9 14.9
RSM initialization

Table 5.4. Ensemble WERs for the tuning fold. The table rows are the same as in
Table 5.2.

5.7.4 The feature vectors chosen by hill-climbing

To view diagrams showing the initial and final feature vectors in each hill-climbing

experiment, visit http://www.icsi.berkeley.edu/speech/papers/gelbart-ms/

isolet-hillclimb. You can also download the lists of initial and final features

in plain text from that location.

5.8 Summary

Comparing the systems chosen by hill-climbing to the initial systems that hill-

climbing started from, the only statistically significant effect of hill-climbing on the

evaluation folds was to improve performance, never to worsen it (Table 5.2). These

improvements were present for three out of the four hill-climbing experiments with

noisy data, which was encouraging. Furthermore, for noisy data the best system cho-

sen by hill-climbing outperformed all of the baseline systems in Table 5.3. However,

for clean data hill-climbing gave no statistically significant improvements on the eval-

uation folds, despite the fact that on the tuning fold hill-climbing resulted in relative

reductions in WER between 14%-28% for clean data.

Overall, non-random choice of the initial feature vectors for hill-climbing per-

67

http://www.icsi.berkeley.edu/speech/papers/gelbart-ms/isolet-hillclimb
http://www.icsi.berkeley.edu/speech/papers/gelbart-ms/isolet-hillclimb

formed better (in terms of final ensemble WER on the evaluation folds) than ran-

dom initialization, and guiding hill-climbing with Equation 5.1 performed better than

guiding it using ensemble WER.

Because we achieved substantial gains on the tuning fold that did not generalize

to the evaluation folds, we suspect that hill-climbing performance was limited by the

fact that the tuning fold used to guide hill-climbing contained a quite small amount of

speech. Thus, in the next chapter, we switch from ISOLET to the Numbers corpus,

which allows us to use much more speech to guide the hill-climbing process. With

the Numbers corpus, hill-climbing improves over the initial system it starts from in

almost all cases.

Since we are moving on to try hill-climbing with the Numbers task in the next

chapter, we kept this chapter brief. We will explore the Numbers task results in

more detail, because the Numbers task is more realistic (i.e., more similar to typical

commercially deployed ASR applications and large-scale research ASR systems), due

to its larger training set size. For example, for the Numbers task we will provide plots

of hill-climbing progress over time and we will examine hill-climbing performance in

mismatched conditions.

68

Chapter 6

Hill-climbing feature selection for

the Numbers task

Contents

6.1 Introduction . 70

6.2 Acoustic model size . 71

6.3 Hill-climbing procedure . 73

6.4 The time taken by hill-climbing 74

6.5 Results and discussion . 75

6.5.1 Hill-climbing results . 75

6.5.2 Additional baseline results 77

6.5.3 Hill-climbing results compared to additional baselines . . . 77

6.5.4 The feature vectors chosen by hill-climbing 79

6.5.5 Hill-climbing progress over time 79

6.5.6 Hill-climbing improved ensemble performance even for un-

seen noises . 89

69

6.5.7 Testing the features chosen by hill climbing in heavily mis-

matched conditions . 90

6.5.8 How different are the different systems chosen by hill-

climbing? . 93

6.6 Summary . 96

6.1 Introduction

The hypothesis driving our work is that ensemble performance in ASR can be

improved through ensemble feature selection. In our experiments with hill-climbing

using the ISOLET corpus, hill-climbing usually improved ensemble performance for

noisy data, but for clean data it had no statistically significant effect. One possible

reason is that we used very little data to score candidate feature vectors during hill-

climbing. The ISOLET tuning fold contained about 15 minutes of audio. Using

so little data to guide hill-climbing may have reduced the hill-climbing algorithm’s

ability to find performance gains that generalize well to evaluation data that was not

used during the hill-climbing process.

Therefore, in this chapter we evaluate hill-climbing using our publicly available

benchmark based on the much larger OGI Numbers corpus. We described this bench-

mark in detail in Chapter 3. In the rest of this chapter we will refer to the Numbers

“validation” set as the “development” set, since we use it as test data for guiding the

hill-climbing process, and the Numbers “test” set as the “evaluation” set, since we

use it as held-out data for final performance evaluations. The Numbers development

set, which we used to score candidate feature vectors during hill-climbing, contains

about two hours of audio.

As with ISOLET in Chapter 5, our feature pool contained MFCC, PLP, and MSG

70

features calculated using a 25 ms analysis window length. We calculated MFCC

features using the HTK ZMEANSOURCE option, which removes the mean of each

frame of the input waveform. We used 28 MSG features, compared to 36 MSG

features for ISOLET. The number of features was reduced because the sampling rate

of the Numbers sampling rate data is 8000 Hz, rather than 16000 Hz as for ISOLET.

This reduction is an automatic feature of the MSG calculation tools. Regardless of

the feature type, we always presented MLPs with five frames of feature context.

After our experiments were complete, we noticed that we had used a suboptimal

bunch size for MLP training. Details about this are given in Appendix A.

Throughout this chapter, we use a two-tailed matched pairs sign test to judge

whether differences between two systems are statistically significant (see Section 3.9).

We use a probability of the null hypothesis P of 0.05 as the threshold for significance.

6.2 Acoustic model size

We chose the number of acoustic model parameters we used in our Numbers

experiments by measuring MFCC and PLP performance on the development set. We

decided that 3600 hidden units was a reasonable choice for a single-stream MFCC

or PLP system, based on Table 6.1. (That table actually suggests that 2400, 2800,

3200, or 4000 hidden units might have been a better choice. The decision to use 3600

hidden units was based on an earlier version of the table that was unaffected by the

bunch size issue described in Appendix A.)

A single-stream system using 39 MFCC or PLP features with 3600 hidden units

has about 806,400 acoustic model parameters (i.e., MLP weights and biases). There-

fore, for the experiments in this chapter we chose the number of MLP hidden units

so that the total number of acoustic model parameters in each system was about

71

806,400. For systems with more than one MLP, the number of hidden units for each

MLP was chosen so that the number of acoustic model parameters in each MLP was

approximately equal.

For the Numbers corpus, our MFCC and PLP feature vectors had 39 features

and our MSG feature vector had 28 features. Thus, following the formulas given in

Section 3.5, our single-MLP MFCC and PLP systems had 3600 hidden units each

and our single-MLP MSG systems had 4772 hidden units. Concatenating the MFCC,

PLP and MSG features into a single feature vector results in a single-MLP system

with 1442 hidden units. And our three-MLP MFCC, PLP, and MSG systems used

1200 hidden units for the MFCC and PLP MLPs and 1590 hidden units for the MSG

MLP.

Number of Clean train Noisy train
hidden units and test and test

MFCC PLP Mean MFCC PLP Mean
800 6.6 5.5 6.1 21.1 16.8 19.0
1200 6.5 5.3 5.9 20.3 16.5 18.4
1600 6.1 5.3 5.7 20.7 16.4 18.6
2000 6.2 5.2 5.7 19.8 17.2 18.5
2400 6.1 5.3 5.7 19.7 16.3 18.0
2800 6.0 5.2 5.6 20.0 16.2 18.1
3200 6.3 5.0 5.7 20.2 16.4 18.3
3600 6.3 5.2 5.8 20.3 16.4 18.4
4000 6.2 5.2 5.7 19.7 16.2 18.0
4400 6.0 5.3 5.7 19.7 17.1 18.4
4800 6.2 5.2 5.7 20.1 16.3 18.2
5200 6.4 5.1 5.8 19.8 16.2 18.0

Table 6.1. The table shows development set WER as a function of hidden layer size
for single-MLP systems using MFCC or PLP.

72

6.3 Hill-climbing procedure

We used the same hill-climbing procedure that we used for ISOLET (as described

in Section 5.5), apart from a few changes which are explained below.

When we did not initialize the feature vectors randomly, hill-climbing started with

MFCC for the first MLP, PLP for the second MLP and MSG for the third MLP. Thus

there were 39 features for each of the first two MLPs and 28 features for the third

MLP. When we initialized randomly (i.e., using RSM), we also used 39 features for

the first two MLPs and 28 features for the third MLP. Due to the reduction in the

length of the MSG feature vector, we chose fresh random feature vectors for all three

MLPs, rather than using the same random feature vectors as we did for ISOLET.

For ISOLET, we used the tuning fold both for decoder parameter tuning and for

scoring candidate feature vectors during hill-climbing. For Numbers, we used the

cross-validation part of the training set for decoder parameter tuning, and used the

development set for scoring candidate feature vectors. We repeated decoder parameter

tuning whenever we made a change to feature vectors (e.g., changing between PLP

and MFCC), MLP topology (i.e., changing the number of input or hidden units),

or the training condition (i.e., changing between clean and noisy training). In our

experiments in the clean train and noisy test condition, we used decoder parameters

determined by tuning on clean data.

The scripts we used for Numbers hill-climbing can be downloaded at http://www.

icsi.berkeley.edu/speech/papers/gelbart-ms/numbers-hillclimb.

73

http://www.icsi.berkeley.edu/speech/papers/gelbart-ms/numbers-hillclimb
http://www.icsi.berkeley.edu/speech/papers/gelbart-ms/numbers-hillclimb

6.4 The time taken by hill-climbing

We parallelized our Numbers hill-climbing experiments using speculative execu-

tion, as we did for ISOLET. While running decoder parameter tuning and develop-

ment set testing for the current feature being considered, we ran MLP training for the

next feature to be considered in parallel. The time taken by a single iteration of the

hill-climbing algorithm’s inner loop was thus roughly the maximum of MLP training

time on one hand and decoder tuning and development set decoding time on the

other hand, plus some overhead. Sometimes trainings had to be repeated because the

feature vector for the next iteration was guessed wrong by the speculative execution

heuristic. As with ISOLET, the number of wrong guesses corresponds to the number

of changes made to feature vectors, which is shown in Table 6.2.

Since our experiments were lengthy, we ran them using the Amazon EC2 grid

computing service, which allows machines to be rented on an hourly basis. We ran

each experiment (i.e., we determined each of the eight EFS “Final WER” values in

Table 6.2) using two Amazon EC2 virtual machines with four cores each. (This was

before EC2 offered eight-core virtual machines.) The speed of each virtual machine

core was about 2 “EC2 Compute Units”, where according to Amazon “One EC2

Compute Unit provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron

or 2007 Xeon processor”.

We used one virtual machine for MLP training and forward pass, and the other

one for decoding. Communication between the two virtual machines was handled by

using standard Unix networking tools (ssh and scp). Parallelization of MLP training

over four cores was handled using the multi-threaded training capabilities built into

the Quicknet library. Parallelization of decoding over four cores was handled by

dividing up decoding work into pieces. For decoder parameter tuning, each piece

74

corresponding to different values of those parameters. For validation set testing, each

piece corresponded to a different set of utterances within the validation set.

The time taken to run hill-climbing varied between experiments, ranging from 14

days to 40 days. The experiments on clean data took 14-23 days and the experiments

on noisy data took 31-40 days. Of the experiments on clean data, those using ensemble

WER to guide hill-climbing took 14-17 days and those using Equation 5.1 to guide

hill-climbing took 22-23 days. For noisy data, the experiments using ensemble WER

took 31-34 days and those using Equation 5.1 took 38-40 days. Decoder parameter

tuning took much more time (roughly 80% more, on average) for noisy data than

for clean data. As we discussed in Section 5.6, decoder parameter tuning was very

time consuming, and reducing the amount of decoder tuning would be an interesting

trade-off.

6.5 Results and discussion

6.5.1 Hill-climbing results

Table 6.2 shows our hill-climbing results. In all eight hill-climbing experiments,

evaluation set WER was lower for the final ensemble chosen by hill-climbing than

for the initial ensemble that hill-climbing started with. The average relative WER

reduction due to hill-climbing was 6.7% for the clean data and 9.7% for the noisy data.

In seven out of eight cases, the improvement was statistically significant: P < 10−5

for the four noisy data experiments and P < 0.006 for the clean data experiments

in row (a), (c) and (d). Thus, hill-climbing was indeed more successful for Numbers

than it was for ISOLET. For the clean data experiment in row (b), the improvement

was not statistically significant.

75

Experiment Clean train and test Noisy train and test
Changes Initial Final Changes Initial Final

WER WER WER WER
(a) Hill-climbing (HC) 4 4.9 4.6 5 15.7 14.8

(b) HC, 2 4.8 4.6 17 17.2 14.8
RSM initialization
(c) HC using α = 1 14 4.9 4.5 20 15.7 14.8
(d) HC using α = 1, 17 4.8 4.4 15 17.2 14.9
RSM initialization

Table 6.2. This table shows hill-climbing results on the Numbers corpus. The
“Changes” columns give the number of features changed (added to or deleted from a
feature vector) during hill-climbing. The “Initial WER” columns give the initial en-
semble (i.e., three MLPs) word error rate on the evaluation set before the hill-climbing
algorithm has made any changes to the feature vectors. The “Final WER” columns
give the ensemble word error rate on the evaluation set once hill climbing has finished.
If a value is given for α it means that the score used to guide hill-climbing was the
formula defined in Equation 5.1, calculated on the development set. Otherwise, the
score used to guide hill-climbing was the ensemble WER on the development set.
“RSM” means that initial feature vectors prior to the start of hill-climbing were cho-
sen randomly. Otherwise, the initial feature vectors were respectively MFCC, PLP
and MSG.

There was no statistically significant difference in final evaluation set WER in

Table 6.2 between the two scoring formulas used to guide hill-climbing (ensemble

WER and Equation 5.1) for the clean case where RSM was not used, the noisy

case where RSM was not used, or the noisy case where RSM was used. There was,

however, a statistically significant difference (P = 0.01) in the clean case where RSM

was used, with Equation 5.1 resulting in a 4.4% final ensemble WER compared to

4.6% for the other approach. It is interesting that there was no difference in the other

cases, considering that there tended to be many more feature vector changes when

Equation 5.1 was used (see Table 6.2).

For a given scoring formula used to guide hill-climbing (ensemble WER or Equa-

tion 5.1), it made essentially no difference to the recognition accuracy of the final

ensemble in Table 6.2 whether or not we chose the initial feature vectors for hill-

76

climbing randomly. When we used ensemble WER to guide hill-climbing, the final

evaluation set WERs were the same for the two initialization approaches (row (a)

or row (b) in Table 6.2). When we used Equation 5.1 to guide hill-climbing, there

were slight difference in final evaluation set WER depending on which initialization

approach we used (row (c) or row (d) in Table 6.2), but these differences were not

statistically significant.

6.5.2 Additional baseline results

Table 6.3 shows additional baseline results for the Numbers corpus. In both the

clean and noisy cases, the lowest WER is in row (d) and comes from using all features

in the feature pool concatenated together into a single feature vector. In the clean

case, the system with the second lowest WER is the system in row (f) which uses

three randomly chosen streams. In the noisy case, the system with the second lowest

WER is the system in row (e) which uses MFCC, PLP and MSG streams. In both

the clean and noisy cases, there is a statistically significant difference between the

system with the lowest WER in row (d) and the system with the second lowest WER

(P = 0.01 in the clean case and P < 10−6 in the noisy case).

6.5.3 Hill-climbing results compared to additional baselines

Comparing Tables 6.3 and 6.2, we see that system that used all features con-

catenated into one feature vector has word recognition accuracy similar to the final

ensembles chosen by hill-climbing. In fact, for the results in Tables 6.3 and 6.2 there

is no statistically significant accuracy difference between that baseline and any of the

ensembles chosen by hill-climbing. However, we will see below in Section 6.5.7 that

this baseline performs worse than the ensembles chosen by hill-climbing when we mix

clean training data with noisy test data.

77

Experiment Clean train Noisy train
and test and test

(a) MFCC 6.5 21.4
(b) PLP 5.0 17.5
(c) MSG 7.3 16.3

(d) All features concatenated 4.5 14.7
(e) MFCC, PLP, MSG (three MLPs) 4.9 15.7

(f) RSM (three MLPs) 4.8 17.2

Table 6.3. This table shows baseline results on the Numbers corpus. The results
shown are word error rates (WERs) on the evaluation set. The number of hidden
units (HUs) for each MLP was chosen as explained in Section 6.2. In row (d), all
features in the feature pool are concatenated into a single feature vector. In row
(e), there are three MLPs respectively using 39 MFCC features (1200 HUs), 39 PLP
features (1200 HUs), and 28 MSG features (1590 HUs). Row (e) corresponds to the
“Initial WER” column in Table 6.2 for the experiments without RSM initialization.
In row (f), there are three MLPs, using randomly chosen feature vectors with the
same number of features and hidden units as in row (e). Row (f) corresponds to the
“Initial WER” column in Table 6.2 for the experiments with RSM initialization.

All the other baselines in Table 6.3 had worse WERs than all the ensembles

chosen by hill-climbing, for both clean and noisy data. For the noisy data, these

differences were statistically significant in every case (P < 10−4). For the clean

data, the differences were statistically significant in every case when comparing the

hill-climbing ensembles to the single-stream baselines that used one of MFCC, PLP

or MSG (P < 0.003) or to the three-stream baseline using MFCC, PLP and MSG

streams (P < 0.006 for the hill-climbing ensembles in rows (a), (c) and (d) of Table

6.2; P = 0.04 for the hill-climbing ensemble in row (b)). When comparing to the

three-stream baseline using randomly chosen features, the difference was statistically

significant for clean data in three out of four cases (P = 0.03 for the hill-climbing

ensemble in row (a), P = 0.04 for the hill-climbing ensemble in row (c), and P =

0.0001 for the hill-climbing ensemble in row (d)).

The fact that the baseline that used all features concatenated together often per-

formed equivalently to the much more slow and complicated hill-climbing approach

78

should be looked at in perspective. In Table 6.3, that baseline outperformed our en-

semble baselines. Thus, in this case a single-classifier feature concatenation approach

without hill-climbing outperforms an ensemble approach without hill-climbing, and

this puts hill-climbing at a disadvantage from the start. There are situations in ASR

where an ensemble approach outperforms a single-classifier feature concatenation ap-

proach (as in [14]), and presumably hill-climbing would be more useful there.

Also, we did not try feature selection for the single-classifier case. However, as

we discussed in section 2.3.1, we speculate that improving performance by feature

selection in the single-classifier case would be harder than in the ensemble case.

6.5.4 The feature vectors chosen by hill-climbing

To view diagrams showing the initial and final feature vectors in each hill-climbing

experiment, visit http://www.icsi.berkeley.edu/speech/papers/gelbart-ms/

numbers-hillclimb. You can also download the lists of initial and final features

in plain text from that location.

6.5.5 Hill-climbing progress over time

Figures 6.1-6.8 show the progress of the hill-climbing algorithm over time for each

experiment. Points labeled as “Initial” in the figures correspond to the initial feature

vectors before any changes were made. The other points correspond to changes made

to feature vectors and are labeled according to what stream was changed.

For experiments where we used ensemble WER to guide the hill-climbing process,

the figures show ensemble WER on the development set and ensemble WER on

the evaluation set. For experiments where we used Equation 5.1 to guide the hill-

climbing process, the figures show Equation 5.1 for the development set, development

79

http://www.icsi.berkeley.edu/speech/papers/gelbart-ms/numbers-hillclimb
http://www.icsi.berkeley.edu/speech/papers/gelbart-ms/numbers-hillclimb

set ensemble word recognition accuracy, and evaluation set ensemble word recognition

accuracy. We plot ensemble word recognition accuracy instead of ensemble WER in

this case because the former is easier to plot on the same graph as Equation 5.1.

Word recognition accuracy is simply 100% minus the WER.

The values of Equation 5.1 labeled “Initial” in the figures were calculated for

stream 1 using the initial feature vectors for each stream. Since the value of Equation

5.1 depends on the current stream (since the equation is based on that stream’s

accuracy and its contribution to ensemble diversity), it’s possible for it to get worse

when the hill-climbing algorithm moves from one stream to the next.

Based on these plots, we conclude that hill-climbing performance on the Numbers

evaluation set was not significantly lowered by overfitting [105][119][120] [121] to the

development set during the hill-climbing process. In the experiments where we used

development set WER to guide EFS, this can be seen by comparing development set

WER to evaluation set WER in Figures 6.1-6.4. In Figures 6.1, 6.3 and 6.4, the final

evaluation set WER once EFS is finished is equal to the lowest evaluation set WER in

the figure. In Figure 6.2, the final evaluation set WER is greater than the minimum,

but the difference is very small and is not statistically significant. In the experiments

where we used Equation 5.1 to guide EFS, the plots are more difficult to interpret

because the trajectory of word accuracy is much less monotonic. But because of the

roughly similar ways that evaluation set word accuracy and development set word

accuracy change over time, we do not think overfitting to the development set was a

significant issue.

80

Figure 6.1. Progress of the hill-climbing algorithm over time for the clean Numbers
data. The initial three streams were respectively MFCC, PLP and MSG. Candidate
feature vectors were scored by ensemble WER on the development set. No changes
were made to stream 3.

81

Figure 6.2. Progress of the hill-climbing algorithm over time for the noisy Numbers
data. The initial three streams were respectively MFCC, PLP and MSG. Candidate
feature vectors were scored by ensemble WER on the development set.

82

Figure 6.3. Progress of the hill-climbing algorithm over time for the clean Numbers
data. The initial three streams were randomly chosen from the feature pool. Can-
didate feature vectors were scored by ensemble WER on the development set. No
changes were made to streams 2 or 3.

83

Figure 6.4. Progress of the hill-climbing algorithm over time for the noisy Num-
bers data. The initial three streams were randomly chosen from the feature pool.
Candidate feature vectors were scored by ensemble WER on the development set.

84

Figure 6.5. Progress of the hill-climbing algorithm over time for the clean Numbers
data. The initial three streams were respectively MFCC, PLP and MSG. Candidate
feature vectors were scored using Equation 5.1. The figure shows Equation 5.1 as well
as ensemble word accuracy scores.

85

Figure 6.6. Progress of the hill-climbing algorithm over time for the noisy Numbers
data. The initial three streams were respectively MFCC, PLP and MSG. Candidate
feature vectors were scored using Equation 5.1.

86

Figure 6.7. Progress of the hill-climbing algorithm over time for the clean Num-
bers data. The initial three streams were randomly chosen from the feature pool.
Candidate feature vectors were scored using Equation 5.1.

87

Figure 6.8. Progress of the hill-climbing algorithm over time for the noisy Num-
bers data. The initial three streams were randomly chosen from the feature pool.
Candidate feature vectors were scored using Equation 5.1.

88

6.5.6 Hill-climbing improved ensemble performance even for

unseen noises

As described in Section 3.8, in our noisy Numbers corpus there are four noise

types that are used in the training set, the development set, and the evaluation set.

There are also two noises that are only in the training set, two that are only in the

development set, and two that are only in the evaluation set.

This raises the question of whether hill-climbing improved evaluation set perfor-

mance for all six noise types in the evaluation set, or only for the four shared noise

types. Table 6.4 compares evaluation set WERs for the four shared noises and the two

evaluation-only noises. The table shows that hill-climbing improved on the systems

that it started from even for the evaluation-only noises, which were not seen during

the hill-climbing process. In each case, the improvement was statistically significant

(P < 0.002) for both the shared noises and the evaluation-only noises. The differ-

ences in WER between the four systems chosen by hill-climbing were not statistically

significant.

Experiment Shared Evaluation-only
noises noises

(a) Initial three streams, non-RSM 14.1 25.5
(b) Initial three streams, chosen by RSM 15.0 28.8

(c) Hill-climbing (HC) 13.3 23.4
(d) HC, with RSM initial streams 13.3 23.6

(e) HC using α = 1 13.1 24.2
(f) HC using α = 1, with RSM initial streams 13.1 24.5

Table 6.4. Word error rates on the evaluation set for the noisy Numbers corpus, di-
vided into shared noises and evaluation-only noises. The WERs for shared noises were
calculated over 1970 utterances (9821 words). The WERs for evaluation-only noises
were calculated over 986 utterances (4787 words). There were also 592 evaluation set
utterances without any noise added.

89

6.5.7 Testing the features chosen by hill climbing in heavily

mismatched conditions

We now investigate the question of whether the features chosen by hill-climbing

are simply better features in general, or only better if used for the condition (clean

or noisy) that hill-climbing was performed for.

First, we present results for which we used the clean Numbers corpus for feature

selection, MLP training and decoder parameter tuning, and then tested on the eval-

uation set from the noisy Numbers corpus. Second, we present results for which we

used the noisy Numbers corpus for feature selection, but then calculated final evalua-

tion set results by doing MLP training and decoder parameter tuning using the clean

corpus, and then testing on the evaluation set from the noisy corpus.

Using the noisy evaluation set with the clean training and development

sets

Table 6.5 shows the results where we used the clean Numbers training and develop-

ment sets, but the noisy Numbers evaluation set. The systems chosen by hill-climbing

all performed better in this highly mismatched situation than the initial three-stream

systems hill-climbing started from, and this was statistically significant in each case

(P < 0.0003). This is further evidence that improvements in performance gained by

hill-climbing can carry over to situations that were unseen during the hill-climbing

process. Using Equation 5.1 to guide EFS gave much better performance in row (c)

of Table 6.5 than using ensemble WER to guide EFS (rows (a) and (b)), and this was

statistically significant in both cases (P < 10−42).

Table 6.6 shows the corresponding baseline results. For these MLP training and

decoder parameter tuning was done using the clean Numbers training set, and testing

90

was done using the noisy evaluation set. The single-stream MSG baseline has the

lowest WER (30.4% WER in row (c)). The three-stream baselines perform nearly

identically (30.5% in rows (e) and (f)). In the baseline results presented in Table 6.3

in section 6.5.2, the lowest WER came from using all features in the feature pool

concatenated together into a single feature vector, but in Table 6.6 that approach is

outperformed both by the three-MLP baselines (this was statistically significant, P <

10−8) and by the single-MLP MSG baseline (also statistically significant, P = 0.01).

This reversal of the previous relationship between the feature concatenation system

and the three-MLP baseline systems is consistent with the theory that multi-classifier

systems can have an advantage over feature concatenation in mismatched conditions

[14].

Comparing Table 6.5 to Table 6.6, we see that in this highly mismatched condition

the worst hill-climbing result (29.0% WER in row (a) in Table 6.5) is better than

the best baseline result (30.4% WER in row (c) in Table 6.6). This is statistically

significant (P < 10−9). This again supports the idea that hill-climbing can be useful

even in mismatched conditions.

Experiment Initial WER Final WER
(a) Hill-climbing (HC) 30.5 29.0

(b) HC, RSM initialization 30.5 28.2
(c) HC using α = 1 30.5 23.4

(d) HC using α = 1, RSM init. 30.5 27.9

Table 6.5. Hill-climbing WER results on the evaluation set in a highly mismatched
condition: the clean training and development sets were used with the noisy evalua-
tion set. “Initial WER” refers to the WER for the initial features that the hill-climbing
process started with. “Final WER” refers to the WER of the final features chosen
by hill-climbing.

91

Experiment WER
(a) MFCC 33.2
(b) PLP 38.0
(c) MSG 30.4

(d) All features concatenated 32.1
(e) MFCC, PLP, MSG (three streams) 30.5

(f) RSM (three streams) 30.5

Table 6.6. Baseline WERs on the evaluation set in a highly mismatched condition:
the clean training set was used with the noisy evaluation set. The feature vectors and
MLP hidden layer sizes are the same as in Table 6.3.

Using features from hill-climbing on noisy data with the clean training set

and the noisy evaluation set

Table 6.7 shows the results of using features selected by hill-climbing for the noisy

data, but then calculating evaluation set WER by performing MLP training and

decoder tuning on the clean training set and then testing on the noisy evaluation set.

Overall, the results are worse than in Table 6.5. The final WER in each row of Table

6.7 is worse than the final WER in the corresponding row of Table 6.5, and this is

statistically significant (P < 10−6 in rows (a), (b) and (c); P = 0.03 in row (d)).

In Table 6.7, the ensembles chosen by hill-climbing performed better than the

initial ensembles hill-climbing started from only in the cases where Equation 5.1 was

used to score candidate feature vectors (rows (c) and (d) in Table 6.7). In those

two cases, the improvements were statistically significant (P < 10−11). The hill-

climbing results in row (c) and (d) are better than the best baseline result in Table

6.6 (30.4% WER in row (c)), and this is statistically significant (P < 10−13). There

is no statistically significant difference in WER between row (c) and row (d). That

is quite different from Table 6.5, in which row (c) was much better than row (d).

When ensemble WER was used instead of Equation 5.1, Table 6.7 shows that

hill-climbing actually worsened performance from 30.5% WER to 31.9% WER when

92

the initial three streams were chosen randomly (this was statistically significant, P <

10−8) and hill-climbing made no difference to WER when the initial streams were not

chosen randomly.

Experiment Initial WER Final WER
(a) Hill-climbing (HC) 30.5 30.5

(b) HC, RSM initialization 30.5 31.9
(c) HC using α = 1 30.5 28.2

(d) HC using α = 1, RSM init. 30.5 28.5

Table 6.7. Hill-climbing WER results on the evaluation set in a highly mismatched
condition: hill-climbing was performed using the noisy data, but evaluation set WER
was measured by performing MLP training and decoder tuning on the clean training
set and then testing on the noisy evaluation set. “Initial WER” refers to the WER for
the initial features that the hill-climbing process started with. “Final WER” refers
to the WER of the final features chosen by hill-climbing.

6.5.8 How different are the different systems chosen by hill-

climbing?

Word hypothesis disagreement rate

How much do the ensembles chosen by hill-climbing differ between hill-climbing

experiments? One way of approaching this question is to measure how different the

word hypotheses produced by these ensembles are. We can do this by calculating

the WER of one system using another system’s output as if it were the ground truth

transcript. Since this is not a true WER, we will call it a ”word disagreement rate”

(WDR). The pairwise diversities that we calculate when computing Equation 5.1 are

calculated the same way; see Section 5.5 for details. WDR can be calculated very

easily using any WER scoring tool. Tables 6.8 and 6.9 summarize WDRs calculated

on the evaluation set. Each table is in the form of a matrix showing the WDR

between the system identified by the row and the system identified by the column.

93

Tables 6.8 is for the clean Numbers corpus and Table 6.9 is for the noisy Numbers

corpus. (We did not calculate WDR results for the mismatched clean training and

noisy test conditions in Section 6.5.7.)

The WDR tables shows that the disagreements are considerable. Comparing the

WDRs in Tables 6.8 and 6.9 to the WERs in Table 6.2, we see that the four systems

selected by hill-climbing for the clean data have WERs of 4.4-4.6% and WDRs (with

each other) of 1.6-2.5%, and the four systems selected for the noisy data have WERs

of 14.8-14.9% and WDRs (again, with each other) of 5.7-8.4%. So for both the clean

and noisy data, the WDRs are all more than a third of the relevant WERs, and in

some cases they are more than half.

Considering that the WDRs are fairly large, it seems likely that further perfor-

mance gains could be obtained by combining different systems chosen by hill-climbing,

or combining one or more systems chosen by hill-climbing with one or more of the

initial systems that EFS started from. Such combining could be done at the frame

level as with the system combination done in this thesis, or at the word hypothesis

level using techniques such as ROVER or confusion network combination [39][40] [41].

For more on the relationship between WDR and the performance of system combina-

tion, see the discussion of the related concept of “dependent” or “Identical-Incorrect”

errors in [17][13] and Chapter 6 of [86].

Experiment (a) (b) (c) (d) (e) (f)
(a) Initial three streams 0.0 2.4 2.5 3.2 2.7 3.3

(b) Initial three streams, RSM 0.0 3.0 2.6 3.2 2.8
(c) Hill-climbing (HC) 0.0 2.3 1.9 2.3

(d) HC, RSM initialization 0.0 2.4 1.6
(e) HC using α = 1 0.0 2.5

(f) HC using α = 1, RSM init. 0.0

Table 6.8. Word disagreement rate (WDR) matrix for clean Numbers corpus.

94

Experiment (a) (b) (c) (d) (e) (f)
(a) Initial three streams 0.0 10.7 7.9 9.9 8.3 9.9

(b) Initial three streams, RSM 0.0 9.2 7.4 9.7 6.7
(c) Hill-climbing (HC) 0.0 8.0 6.2 7.9

(d) HC, RSM initialization 0.0 8.4 5.7
(e) HC using α = 1 0.0 8.2

(f) HC using α = 1, RSM init. 0.0

Table 6.9. Word disagreement rate (WDR) matrix for noisy Numbers corpus.

Feature difference counts

Another way to measure the differences between systems chosen by hill-climbing is

to compare feature vectors. Tables 6.10-6.13 count how many features are in common

between pairs of systems and how many are not in common. We have used four tables

due to the amount of information presented. Each table is in the form of a matrix

showing the counts of features in common and not in common between the system

identified by the row and the system identified by the column. Each table cell gives

feature difference counts for all three streams. Stream 1 of the first system is compared

to stream 1 of the second system, then stream 2 to stream 2, and finally stream 3 to

stream 3. Each comparison is broken down into three numbers which are separated

by slashes: the number of features in both the system named to the left of the cell

and the system named above the cell, the number of features in only the system

named to the left, and the number of features in only the system named above. The

comparisons for different streams are separated by commas.

Comparing Tables 6.10-6.13 to Tables 6.8-6.9, we observe that just a few differ-

ences in features can result in a considerable WDR between systems.

95

Experiment (a) (b) (c)
(a) Initial three streams 39/0/0, 39/0/0, 36/3/0, 38/1/0, 35/4/1, 37/2/4,

28/0/0 28/0/0 28/0/3
(b) Hill-climbing (HC) 36/0/0, 38/0/0, 33/3/3, 36/2/5,

28/0/0 28/0/3
(c) HC using α = 1 36/0/0, 41/0/0,

31/0/0

Table 6.10. Counts of feature differences between feature vectors selected by hill-
climbing on the clean Numbers corpus, without random initialization of feature vec-
tors.

Experiment (a) (b) (c)
(a) Initial three streams, 39/0/0, 39/0/0, 39/0/2, 39/0/0, 37/2/7, 37/2/2,

RSM 28/0/0 28/0/0 28/0/2
(b) Hill-climbing (HC), 41/0/0, 39/0/0, 38/3/6, 37/2/2,

RSM initialization 28/0/0 28/0/2
(c) HC using α = 1, 44/0/0, 39/0/0,
RSM initialization 30/0/0

Table 6.11. Counts of feature differences between feature vectors selected by hill-
climbing on the clean Numbers corpus, with random initialization of feature vectors.

6.6 Summary

When we ran experiments using either the clean or noisy Numbers corpus, hill-

climbing almost always improved performance compared to the initial ensembles that

hill-climbing started with (Table 6.2), even for noises types that were unseen during

the hill-climbing process (Table 6.4). This confirms our hypothesis that appropriate

use of ensemble feature selection will improve ensemble performance in ASR. However,

the ensembles obtained by hill-climbing performed the same as a baseline system that

used the entire feature pool with a single MLP (Table 6.3). Later, when we used the

clean Numbers training and development sets but measured final performance on the

noisy Numbers evaluation set, we found that the ensembles chosen by hill-climbing

outperformed all baseline systems (Table 6.5 and Table 6.6). When we used features

selected by hill-climbing for the noisy data, but then measured final performance

96

Experiment (a) (b) (c)
(a) Initial three streams 39/0/0, 39/0/0, 36/3/0, 39/0/1, 31/8/1, 38/1/7,

28/0/0 28/0/1 27/1/2
(b) Hill-climbing (HC) 36/0/0, 40/0/0, 30/6/2, 38/2/7,

29/0/0 27/2/2
(c) HC using α = 1 32/0/0, 45/0/0,

29/0/0

Table 6.12. Counts of feature differences between feature vectors selected by hill-
climbing on the noisy Numbers corpus, without random initialization of feature vec-
tors.

Experiment (a) (b) (c)
(a) Initial three streams, 39/0/0, 39/0/0, 34/5/3, 37/2/4, 38/1/1, 38/1/4,

RSM . 28/0/0 28/0/3 25/3/5
(b) Hill-climbing (HC), 37/0/0, 41/0/0, 35/2/4, 36/5/6,

RSM initialization 31/0/0 25/6/5
(c) HC using α = 1, 39/0/0, 42/0/0,
RSM initialization 30/0/0

Table 6.13. Counts of feature differences between feature vectors selected by hill-
climbing on the noisy Numbers corpus, with random initialization of feature vectors.

by performing MLP training and decoder tuning on the clean training set and then

testing on the noisy evaluation set, we found that the ensembles chosen by hill-

climbing outperformed all baseline systems when Equation 5.1 was used to guide

hill-climbing, but worsened or did not change performance when ensemble WER was

used to guide hill-climbing (Table 6.7).

Overall, hill-climbing performed better when guided with Equation 5.1 rather than

ensemble WER, and when feature vectors were initialized non-randomly rather than

randomly.

97

Chapter 7

Conclusions

Contents

7.1 Summary and contributions 98

7.2 Possible future directions 102

7.2.1 Different ensemble sizes . 102

7.2.2 A larger feature pool . 103

7.2.3 Doing less decoder parameter tuning 103

7.2.4 Different versions of the random subspace method 103

7.2.5 Generalizing the gains from hill-climbing 104

7.2.6 Tuning α . 104

7.2.7 Alternative ways to score candidate ensembles 104

7.2.8 Genetic algorithms . 105

7.1 Summary and contributions

Multi-stream ASR systems have become popular among researchers, but only a

small number of papers have been published on the topic of ensemble feature selection

98

(EFS) for such systems, and those have worked with blocks of features rather than

individual features. In this thesis, we have demonstrated that the performance of

multi-stream ASR systems can be improved by using ensemble feature selection at

the level of individual features.

Initially, we used the OGI ISOLET task (both the original, clean version and our

own noise-added version) to evaluate the random subspace method (RSM). RSM,

well known in the pattern recognition community, simply chooses each feature vector

randomly from the feature pool. We used 25 classifiers in our RSM ensembles, and

we fixed the number of features per classifier at 39, a common feature vector length

for ASR front ends. We experimented with nine feature pools and three different

train/test conditions (clean train with clean test, noisy train with noisy test, and

clean train with noisy test). For a given feature pool and train/test condition, we

found RSM improved performance over baseline systems in all but one of the cases

where there was a statistically significant performance difference. However, there

were many cases with no such difference. Statistically significant differences were

more common for the clean train and noisy test condition than for the other two

conditions. When we compared the best RSM system to the best baseline systems

without restricting ourselves to a particular feature pool, RSM did not give a statisti-

cally significant performance improvement over baseline in any of the three train and

test data conditions.

We then moved on to evaluate hill-climbing, a guided approach to EFS in which

initially chosen feature vectors are iteratively improved by adding or removing one

feature at a time if the change improves performance. Since hill-climbing is much

slower than the random subspace method, in our hill-climbing experiments we used

only one feature pool, which contained MFCC, PLP and MSG features. Also, we used

three MLPs per ensemble instead of 25. We started by evaluating hill-climbing on

the ISOLET task. We tried four different variations of hill-climbing with the original

99

ISOLET task and our noisy version of it, for a total of eight experiments. The

variations were whether Equation 5.1 or ensemble WER was used as the performance

score to guide hill-climbing, and whether the initial three feature vectors were chosen

by RSM or by giving each feature type (MFCC, PLP, or MSG) its own feature vector.

We found that for our noisy version of ISOLET, hill-climbing improved performance

on held-out data (compared to the three-stream system that hill-climbing started

from) in three out of four experiments, with relative WER reductions of 5-6%. There

was no statistically significant difference in the remaining experiment. However, for

the original, clean version of ISOLET hill-climbing made no statistically significant

difference to performance on held-out data. This is despite the fact that relative

reductions in WER between 14%-28% were achieved for the data used to guide hill-

climbing. Because these gains did not generalize to the held out data, we suspected

that hill-climbing performance was limited by the very small amount of data used

to guide the hill-climbing process. Thus, we switched from the ISOLET task to the

OGI Numbers task, which allowed us to use much more speech to guide hill-climbing

process.

For the Numbers task, hill-climbing improved performance (compared to the

three-stream system hill-climbing started from) in seven out of eight cases when we

ran experiments using either the clean or noisy Numbers corpus, giving relative WER

reductions of 6-8% compared to non-RSM initial feature vectors and 8-14% compared

to RSM initial feature vectors. (In the eighth case, which used RSM initial feature

vectors with the clean corpus, there was no statistically significant performance dif-

ference.) With the noisy corpus, hill-climbing improved performance even for noise

types that were unseen during the hill-climbing process. However, for both the clean

and noisy data the systems obtained by hill-climbing performed the same as the

best non-ensemble baseline system, which used the entire feature pool in one feature

vector.

100

In later Numbers experiments we investigated performance in mismatched condi-

tions by using clean data for training MLPs, tuning decoder parameters and guiding

hill-climbing but using the noisy evaluation set to measure final performance, or al-

ternatively using the features selected by hill-climbing for the noisy data, but then

measuring final performance by performing MLP training and decoder parameter

tuning on the clean training set and then testing on the noisy evaluation set. In these

experiments, we found that the ensembles chosen by hill-climbing outperformed all

ensemble and non-ensemble baseline systems when Equation 5.1 was used to guide

hill-climbing.

The hill-climbing algorithm, as defined in [25], scores candidate feature vectors

with Equation 5.1, which combines single-classifier accuracy with a measure of that

classifier’s contribution to ensemble diversity. Since the eventual goal is to improve

ensemble accuracy, we compared the effectiveness of using Equation 5.1 to using

ensemble accuracy (or ensemble WER, which is equivalent). Overall, we found that

guiding hill-climbing using Equation 5.1 indeed performed better than guiding it using

ensemble WER in our ISOLET and Numbers experiments.

As a byproduct of our work on ensemble feature selection, we have placed several

resources online that can be reused by other researchers. We created noisy versions

of the OGI ISOLET and Numbers corpora using various noises and signal-to-noise

ratios, and put scripts and noise files online [122][123] so that others can reproduce

these noisy corpora. This is useful since past publications on noisy ASR using these

corpora have used various different and unpublished noisy versions, making results

more difficult to compare across papers. It also is a time saver for other researchers.

We have also made scripts and configuration files available [122][123] for ISOLET

and Numbers ASR systems based on open source software, which are useful for the

same reasons. Finally, we have made our ensemble feature selection scripts and lists

of selected features available online, to make it easier for future work on EFS for

101

ASR to compare to or build on our work. Those are online at http://www.icsi.

berkeley.edu/speech/papers/gelbart-ms/numbers-hillclimb and http://www.

icsi.berkeley.edu/speech/papers/gelbart-ms/isolet-hillclimb, and we may

use those same locations in the future if we need to publish updates or corrections

regarding the work described in this thesis.

7.2 Possible future directions

Our work on feature selection for multi-stream ASR at the level of individual

features is a first step which hopefully could be improved on by others. This section

points out some possible directions for future work.

7.2.1 Different ensemble sizes

If there were more classifiers in the ensemble, the hill-climbing algorithm would

have more options to choose from when distributing features, which might result in

greater accuracy gains. We are currently running experiments on the Numbers corpus

in which we use five classifiers with the same MFCC, PLP and MSG feature pool we

previously used with three classifiers. The first classifier uses the 13 static MFCC

features, the second uses the 26 dynamic (delta and delta-delta) MFCC features, the

third uses the 13 static PLP features, the fourth uses the 26 dynamic PLP features,

and the fifth uses the 28 MSG features. We plan to publish the final results in a

conference paper or technical report or at http://www.icsi.berkeley.edu/speech/

papers/gelbart-ms/numbers-hillclimb.

102

http://www.icsi.berkeley.edu/speech/papers/gelbart-ms/numbers-hillclimb
http://www.icsi.berkeley.edu/speech/papers/gelbart-ms/numbers-hillclimb
http://www.icsi.berkeley.edu/speech/papers/gelbart-ms/isolet-hillclimb
http://www.icsi.berkeley.edu/speech/papers/gelbart-ms/isolet-hillclimb
http://www.icsi.berkeley.edu/speech/papers/gelbart-ms/numbers-hillclimb
http://www.icsi.berkeley.edu/speech/papers/gelbart-ms/numbers-hillclimb

7.2.2 A larger feature pool

A larger feature pool also might make hill-climbing more useful. The authors of

[79] and [17][13] explored feature selection using feature pools containing hundreds

of features, all of which can be calculated using tools that are freely available online

[124]. And there are many other possible features. For example, the ETSI Aurora

standards process produced two carefully engineered feature extraction front ends

for noise-robust ASR [61][125] for which the source code is available online [126] for

research use.

7.2.3 Doing less decoder parameter tuning

During hill-climbing, we re-ran decoder parameter tuning every time we made

any change to a feature vector, which was very time consuming. As we discussed in

Section 5.6, there are several possible ways to reduce the amount of time spent on

decoder parameter tuning, and it would be interesting to know what effect, if any,

this would have on the usefulness of the final feature vectors chosen by hill-climbing.

7.2.4 Different versions of the random subspace method

We used the random subspace method on its own in Chapter 4 and as a starting

point for hill-climbing in later chapters. We always used 39 features per classifier in

our RSM ensembles. As discussed in Section 4.6, there are other possibilities which

could be worth investigating.

103

7.2.5 Generalizing the gains from hill-climbing

Our Numbers ASR systems perform comparably to the best published results we

are aware of, but we know of an unpublished result that is much better (see Section

3.10.2). That raises the question of whether performance gains from hill-climbing on

the Numbers corpus would still be achieved if we started from a truly state-of-the-art

Numbers system.

Investigating how easily hill-climbing can be scaled up to larger-scale ASR systems

is a related topic. As a wrapper approach, hill-climbing might be impractically slow

for a large-vocabulary ASR system trained on thousands of hours of data. This raises

the question of whether it would be useful to run hill-climbing on a smaller, faster

task and then use the selected features for the larger task.

7.2.6 Tuning α

As discussed in Section 5.5, it might be possible to improve hill-climbing perfor-

mance by adjusting the value of α in Equation 5.1.

7.2.7 Alternative ways to score candidate ensembles

When scoring candidate ensembles with Equation 5.1 during hill-climbing, we

calculated diversity by averaging word-level pairwise diversities (see Section 5.5).

Diversity measures for ASR in particular are discussed in [13][17][16]. and in Chapter

6 of [86]. Various possible diversity measures for classifier ensembles in general are

discussed in [25][127].

The use of classification margin [127] instead of accuracy might also be worth

investigating. Perhaps margin would be less vulnerable to overfitting [128]. There

has been successful recent work using margin in ASR model training [129][130][131].

104

7.2.8 Genetic algorithms

It might be possible to improve performance by replacing hill-climbing with an-

other guided, wrapper-style search approach. A genetic algorithm would be a reason-

able choice. Tsymbal et al. showed in [25] that a genetic algorithm approach to EFS

can outperform hill-climbing, and in [132] they proposed a newer genetic algorithm

approach which often improved performance over the one in [25].

105

Bibliography

[1] B. Meyer, T. Wesker, T. Brand, A. Mertins, and B. Kollmeier, “A human-
machine comparison in speech recognition based on a logatome corpus,” in
Speech Recognition and Intrinsic Variation (SRIV2006), Toulouse, France,
2006.

[2] B. Meyer, M. Wächter, T. Brand, and B. Kollmeier, “Phoneme confusions
in human and automatic speech recognition,” in INTERSPEECH, Antwerp,
Belgium, 2007.

[3] X. Huang, A. Acero, and H. Hon, Spoken Language Processing: A Guide to
Theory, Algorithm and System Development, Prentice Hall, 2001.

[4] D. Jurafsky and J. Martin, Speech and Language Processing, Prentice Hall,
second edition, 2008.

[5] B. Gold and N. Morgan, Speech and Audio Signal Processing: Processing and
Perception of Speech and Music, Wiley, 1999.

[6] L. R. Rabiner, “A tutorial on hidden Markov models and selected applications
in speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, 1989.

[7] M. Shire, Discriminant training of front-end and acoustic modeling stages to
heterogeneous acoustic environments for multi-stream automatic speech recog-
nition, Ph.D. thesis, University of California Berkeley, 2000, online at
http://www.icsi.berkeley.edu.

[8] A. Sharkey, “Types of multinet system,” in Multiple Classifier Systems,
Cagliari, Italy, 2002.

[9] T. Dietterich, “Ensemble methods in machine learning,” in Multiple Classifier
Systems, Cagliari, Italy, 2000.

[10] T. Dietterich, The Handbook of Brain Theory and Neural Networks, chapter
Ensemble Learning, MIT Press, second edition, 2002.

[11] A. Tsymbal, M. Pechenizkiy, and P. Cunningham, “Diversity in ensemble fea-
ture selection,” Tech. Rep. TCD-CS-2003-44, Trinity College Dublin, 2003,
available at http://www.cs.tcd.ie.

106

http://www.icsi.berkeley.edu
http://www.cs.tcd.ie

[12] David Opitz, “Feature selection for ensembles,” in Sixteenth National Confer-
ence on Artificial Intelligence (AAAI), Orlando, Florida, 1999.

[13] L. Burget, Complementarity of speech recognition systems and system combi-
nation, Ph.D. thesis, Brno University of Technology, Czech Republic, 2004,
available at http://speech.fit.vutbr.cz.

[14] D. Ellis, “Stream combination before and/or after the acoustic model,” Tech.
Rep. 00-007, International Computer Science Institute, 2000, available at http:
//www.icsi.berkeley.edu.

[15] H. Christensen, B. Lindberg, and O. Andersen, “Employing heterogeneous
information in a multi-stream framework,” in ICASSP, Istanbul, Turkey, 2000.

[16] D. Ellis and J. Bilmes, “Using mutual information to design feature combina-
tions,” in ICSLP, Beijing, China, 2000.

[17] L. Burget, “Measurement of complementarity of recognition systems,” in
Seventh International Conference on Text, Speech and Dialogue (TSD), Brno,
Czech Republic, 2004.

[18] H. Misra and H. Bourlard, “Spectral entropy feature in full-combination multi-
stream for robust ASR,” in INTERSPEECH, Lisbon, Portugal, 2005.

[19] W. Abdulla and N. Kasabov, “Reduced feature-set based parallel CHMM
speech recognition systems,” Information Sciences, November 2003.

[20] A. Hagen and A. Morris, “Recent advances in the multi-stream HMM/ANN
hybrid approach to noise robust ASR,” Computer Speech and Language, vol.
19, no. 1, 2005.

[21] T. K. Ho, “The random subspace method for constructing decision forests,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no.
8, 1998.

[22] T. K. Ho, “Nearest neighbors in random subspaces,” in Second International
Workshop on Statistical Techniques in Pattern Recognition, Sydney, Australia,
1998.

[23] M. Skurichina and R. Duin, “Bagging, boosting and the random subspace
method for linear classifiers,” Pattern Analysis and Applications, vol. 5, no. 2,
2002.

[24] S. Günter and H. Bunke, “Ensembles of classifiers derived from multiple proto-
types and their application to handwriting recognition,” in Multiple Classifier
Systems, Cagliari, Italy, 2004.

[25] A. Tsymbal, M. Pechenizkiy, and P. Cunningham, “Diversity in search strate-
gies for ensemble feature selection,” Information Fusion, vol. 6, no. 1, 2005.

107

http://speech.fit.vutbr.cz
http://www.icsi.berkeley.edu
http://www.icsi.berkeley.edu

[26] R. Kohavi and G. John, “Wrappers for feature subset selection,” Artificial
Intelligence, December 1997.

[27] D. O’Shaughnessy, “Automatic speech recognition: History, methods and chal-
lenges,” Pattern Recognition, vol. 41, no. 10, 2008.

[28] D. Jurafsky, “Slides from ASR classes taught at Stanford,” http:

//www.stanford.edu/class/cs224s and http://www.stanford.edu/class/

linguist236.

[29] S. Chen, M. Picheny, E. Eide, and G. Potamianos, “Slides from an ASR
class taught at Columbia by IBM researchers,” http://www.ee.columbia.edu/

~stanchen/e6884/outline.html, 2005.

[30] B. Pellom, “Slides from an ASR class at the Helsinki University of Technology,”
http://www.cis.hut.fi/Opinnot/T-61.6040/pellom-2004.

[31] J. Glass and V. Zue, “Slides from an ASR class at
the Massachusetts Institute of Technology,” http://ocw.mit.

edu/OcwWeb/Electrical-Engineering-and-Computer-Science/

6-345Automatic-Speech-RecognitionSpring2003/CourseHome.

[32] M. Benzeghiba, R. De Mori, O. Deroo, S. Dupont, T. Erbes, D. Jouvet, L. Fis-
sore, P. Laface, A. Mertins, C. Ris, R. Rose, V. Tyagi, and C. Wellekens,
“Automatic speech recognition and speech variability: A review,” Speech Com-
munication, vol. 49, no. 10-11, 2007.

[33] N. Morgan and H. Bourlard, “Continuous speech recognition: an introduction
to the hybrid HMM/connectionist approach,” IEEE Signal Processing Maga-
zine, May 1995, but note that the IEEE Xplore index lists the title as just the
three words continuous speech recognition.

[34] H. Bourlard and N. Morgan, Connectionist Speech Recognition - A Hybrid
Approach, Kluwer Academic Press, 1994.

[35] C. Bishop, Neural Networks for Pattern Recognition, Oxford University Press,
1996.

[36] B. Chen, Learning discriminant narrow-band temporal patterns for automatic
recognition of conversational telephone speech, Ph.D. thesis, University of Cal-
ifornia Berkeley, 2005, online at http://www.icsi.berkeley.edu.

[37] H. Hermansky, “Perceptual linear predictive (PLP) analysis of speech,” Journal
of the Acoustical Society of America, April 1990.

[38] B. Kingsbury, Perceptually-inspired signal processing strategies for robust speech
recognition in reverberant environments, Ph.D. thesis, University of California
Berkeley, 1998, available at http://www.icsi.berkeley.edu.

108

http://www.stanford.edu/class/cs224s
http://www.stanford.edu/class/cs224s
http://www.stanford.edu/class/linguist236
http://www.stanford.edu/class/linguist236
http://www.ee.columbia.edu/~stanchen/e6884/outline.html
http://www.ee.columbia.edu/~stanchen/e6884/outline.html
http://www.cis.hut.fi/Opinnot/T-61.6040/pellom-2004
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-345Automatic-Speech-RecognitionSpring2003/CourseHome
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-345Automatic-Speech-RecognitionSpring2003/CourseHome
http://ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science/6-345Automatic-Speech-RecognitionSpring2003/CourseHome
http://www.icsi.berkeley.edu
http://www.icsi.berkeley.edu

[39] J. Fiscus, “A post-processing system to yield reduced word error rates: Rec-
ognizer Output Voting Error Reduction (ROVER),” in IEEE Workshop on
Automatic Speech Recognition and Understanding (ASRU), Santa Barbara, Cal-
ifornia, 1997.

[40] G. Evermann and P. Woodland, “Posterior probability decoding, confidence
estimation and system combination,” in NIST Speech Transcription Workshop,
College Park, Maryland, 2000.

[41] A. Stolcke, H. Bratt, J. Butzberger, H. Franco, V. Gadde, M. Plauché,
C. Richey, E. Shriberg, K. Sönmez, F. Weng, and J. Zheng, “The SRI March
2000 Hub-5 conversational speech transcription system,” in NIST Speech Tran-
scription Workshop, College Park, Maryland, 2000.

[42] R. Singh, M. Seltzer, B. Raj, and R Stern, “Speech in noisy environments: Ro-
bust automatic segmentation, feature extraction and hypothesis combination,”
in ICASSP, Salt Lake City, Utah, 2001.

[43] C. Breslin and M. Gales, “Complementary system generation using directed
decision trees,” in ICASSP, Honolulu, Hawaii, 2007.

[44] X. Li and R. Stern, “Parallel feature generation based on maximizing normal-
ized acoustic likelihood,” in ICSLP, Jeju Island, Korea, 2004.

[45] X. Li, Combination and generation of parallel feature streams for improved
speech recognition, Ph.D. thesis, Carnegie Mellon University, 2005, available at
http://www.cs.cmu.edu/~robust.

[46] A. Halberstadt and J. Glass, “Heterogeneous measurements and multiple clas-
sifiers for speech recognition,” in ICSLP, Sydney, Australia, 1998.

[47] A. Halbertstadt, Heterogeneous acoustic measurements and multiple classifiers
for speech recognition, Ph.D. thesis, Massachusetts Institute of Technology,
1998, available at http://groups.csail.mit.edu/sls.

[48] D. Ellis, “Improved recognition by combining different features and different
systems,” in Applied Voice Input/Output Society (AVIOS), San Jose, California,
2000, available at http://www.icsi.berkeley.edu.

[49] Q. Zhu, A. Stolcke, B. Chen, and N. Morgan, “Using MLP features in SRI’s con-
versational speech recognition system,” in INTERSPEECH, Lisbon, Portugal,
2005.

[50] F. Valente, J. Vepa, and H. Hermansky, “Multi-stream features combina-
tion based on Dempster-Shafer rule for LVCSR System,” in INTERSPEECH,
Antwerp, Belgium, 2007.

[51] Hervé Bourlard and Stéphane Dupont, “Sub-band-based speech recognition,”
in ICASSP, Munich, Germany, 1997.

109

http://www.cs.cmu.edu/~robust
http://groups.csail.mit.edu/sls
http://www.icsi.berkeley.edu

[52] S. Dupont, Etude et développement d’architectures multi-bandes et multi-
modales pour la reconnaissance robuste de la parole, Ph.D. thesis, Faculté
Polytechnique de Mons, June 2000.

[53] N. Mirghafori, A multi-band approach to automatic speech recognition, Ph.D.
thesis, University of California Berkeley, 1998.

[54] A. Janin, D. Ellis, and N. Morgan, “Multi-stream speech recognition: Ready
for prime time?,” in EUROSPEECH, Budapest, Hungary, 1999.

[55] H. Wang, D. Gelbart, H. Hirsch, and W. Hemmert, “The value of auditory offset
adaptation and appropriate acoustic modeling,” in INTERSPEECH, Brisbane,
Australia, 2008.

[56] S. Sharma, D. Ellis, S. Kajarekar, P. Jain, and H. Hermansky, “Feature ex-
traction using non-linear transformation for robust speech recognition on the
Aurora database,” in ICASSP, Istanbul, Turkey, 2000.

[57] D. Ellis, “Aurora experiments,” http://www.icsi.berkeley.edu/~dpwe/

respite/multistream/.

[58] D. Ellis, “Comparing features statistics: MFCCs, MSGs, etc.,” http://www.

icsi.berkeley.edu/~dpwe/respite/multistream/msgmfcc.html.

[59] H. Hermansky, D. Ellis, and S. Sharma, “Tandem connectionist feature stream
extraction for conventional HMM systems,” in ICASSP, Istanbul, Turkey, 2000.

[60] Q. Zhu, B. Chen, N. Morgan, and A. Stolcke, “On Using MLP Features in
LVCSR,” in ICSLP, Jeju Island, Korea, 2004.

[61] A. Adami, L. Burget, S. Dupont, H. Garudadri, F. Grezl, H. Hermansky, P. Jain,
S. Kajarekar, N. Morgan, and S. Sivadas, “Qualcomm-ICSI-OGI features for
ASR,” in ICSLP, Denver, Colorado, 2002.

[62] M. Kleinschmidt and D. Gelbart, “Improving word accuracy with Gabor feature
extraction,” in ICSLP, Denver, Colorado, 2002.

[63] H. Misra, H. Bourlard, and V. Tyagi, “New entropy based combination rules
in HMM/ANN multi-stream ASR,” in ICASSP, Hong Kong, 2003.

[64] H. Misra, Multi-stream processing for noise robust speech recognition, Ph.D.
thesis, Ecole Polytechnique Fédérale de Lausanne, 2006, available at http:

//www.idiap.ch.

[65] K. Kirchhoff, GA Fink, and G. Sagerer, “Conversational speech recognition
using acoustic and articulatory input,” in ICASSP, Istanbul, Turkey, 2000.

[66] K. Kirchhoff, G.A. Fink, and G. Sagerer, “Combining acoustic and articulatory
feature information for robust speech recognition,” Speech Communication,
July 2002.

110

http://www.icsi.berkeley.edu/~dpwe/respite/multistream/
http://www.icsi.berkeley.edu/~dpwe/respite/multistream/
http://www.icsi.berkeley.edu/~dpwe/respite/multistream/msgmfcc.html
http://www.icsi.berkeley.edu/~dpwe/respite/multistream/msgmfcc.html
http://www.idiap.ch
http://www.idiap.ch

[67] A. Jain, R. Duin, and J. Mao, “Statistical pattern recognition: A review,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, January 2000.

[68] I. Oh, J. Lee, and B. Moon, “Hybrid genetic algorithms for feature selection,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, November
2004.

[69] R. Duda, P. Hart, and D. Stork, Pattern Classification, Wiley-Interscience,
second edition, 2000.

[70] L. Pols, “Real-time recognition of spoken words,” IEEE Transactions on Com-
puters, September 1971.

[71] H. Malvar and D. Staelin, “The LOT: transform coding without blocking ef-
fects,” IEEE Transactions on Acoustics, Speech, and Signal Processing, April
1989.

[72] N. Kumar and A.G. Andreou, “Heteroscedastic discriminant analysis and re-
duced rank HMMs for improved speech recognition,” Speech Communication,
December 1998.

[73] S. Balakrishnama, A. Ganapathiraju, and J. Picone, “Linear discriminant anal-
ysis for signal processing problems,” in IEEE Southeastcon, 1999.

[74] G. Saon, M. Padmanabhan, R. Gopinath, and S. Chen, “Maximum likelihood
discriminant feature spaces,” in ICASSP, Istanbul, Turkey, 2000.

[75] M. Kleinschmidt, “Localized spectro-temporal features for automatic speech
recognition,” in EUROSPEECH, Geneva, Switzerland, 2003.

[76] B. Meyer and B. Kollmeier, “Optimization and evaluation of Gabor feature
sets for ASR,” in INTERSPEECH, Brisbane, Australia, 2008.

[77] Michael Kleinschmidt, Robust speech recognition based on spectro-temporal pro-
cessing, Ph.D. thesis, Carl von Ossietzky-Universitt Oldenburg, 2002, available
at http://www.uni-oldenburg.de/medi.

[78] M. Kleinschmidt, B. Meyer, and D. Gelbart, “Gabor feature extraction for auto-
matic speech recognition,” http://www.icsi.berkeley.edu/speech/papers/

gabor.

[79] Aldebaro Klautau, “Mining speech: automatic selection of heterogeneous fea-
tures using boosting,” in ICASSP, Hong Kong, 2003.

[80] K. Tieu and P. Viola, “Boosting image retrieval,” in IEEE Conference on
Computer Vision and Pattern Recognition, Hilton Head Island, South Carolina,
2000.

111

http://www.uni-oldenburg.de/medi
http://www.icsi.berkeley.edu/speech/papers/gabor
http://www.icsi.berkeley.edu/speech/papers/gabor

[81] K.Y. Su and C.H. Lee, “Speech recognition using weighted HMM and subspace
projection approaches,” IEEE Transactions on Speech and Audio Processing,
vol. 2, no. 1, 1994.

[82] J. Novovicová, P. Pudil, and J. Kittler, “Divergence based feature selection
for multimodal class densities,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, February 1996.

[83] F. Valente and C. Wellekens, “Variational Bayesian feature selection for Gaus-
sian mixture models,” in ICASSP, 2004.

[84] R. Kommer and B. Hirsbrunner, “Distributed genetic algorithm to discover a
wavelet packet best basis for speech recognition,” in EUROSPEECH, Geneva,
Switzerland, 2003.

[85] B. Raj and RM Stern, “Missing-feature approaches in speech recognition,”
IEEE Signal Processing Magazine, vol. 22, no. 5, 2005.

[86] S. Wu, Incorporating information from syllable-length time scales into automatic
speech recognition, Ph.D. thesis, University of California Berkeley, 1998, online
at http://www.icsi.berkeley.edu.

[87] A. Tsymbal, S. Puuronen, and D.W. Patterson, “Ensemble feature selection
with the simple Bayesian classification,” Information Fusion, vol. 4, no. 2, 2003.

[88] L. Kuncheva and L. Jain, “Designing classifier fusion systems by genetic al-
gorithms,” IEEE Transactions on Evolutionary Computation, vol. 4, no. 4,
2000.

[89] C. Guerra-Salcedo and D. Whitley, “Feature selection mechanisms for ensemble
creation: A genetic search perspective,” in AAAI-99 and GECCO-99 Workshop
on Data Mining with Evolutionary Algorithms, Orlando, Florida, 1999.

[90] C. Guerra-Salcedo and D. Whitley, “Genetic approach to feature selection
for ensemble creation,” in Genetic and Evolutionary Computation Conference
(GECCO-99), Orlando, Florida, 1999.

[91] P. Sollich and A. Krogh, “Learning with ensembles: How overfitting can be
useful,” in Neural Information Processing Systems (NIPS), 1996.

[92] W.N. Street and Y.S. Kim, “A streaming ensemble algorithm (SEA) for large-
scale classification,” in Knowledge Discovery and Data Mining (KDD), San
Francisco, California, 2001.

[93] J.V. Hansen and A. Krogh, “A general method for combining predictors tested
on protein secondary structure prediction,” in Artificial Neural Networks in
Medicine and Biology (ANNIMAB-1), Goteborg, Sweden, 2000.

112

http://www.icsi.berkeley.edu

[94] P. Granitto, P. Verdes, H. Navone, and H. Ceccatto, “Aggregation algorithms
for neural network ensemble construction,” in Proceedings of the VII Brazilian
Symposium on Neural Networks (SBRN’02), 2002.

[95] P. Cunningham and J. Carney, “Diversity versus quality in classification ensem-
bles based on feature selection,” in European Conference on Machine Learning,
Barcelona, Spain, 2000.

[96] G. Zenobi and P. Cunningham, “Using diversity in preparing ensembles of
classifiers based on different feature subsets to minimize generalization error,”
in European Conference on Machine Learning, Freiburg, Germany, 2001.

[97] Corpora group at Center for Spoken Language Understanding, “ISOLET ver-
sion 1.3,” http://www.cslu.ogi.edu/corpora.

[98] Corpora group at Center for Spoken Language Understanding, “Numbers ver-
sion 1.3,” http://www.cslu.ogi.edu/corpora.

[99] “SPRACHcore speech recognition tools,” http://www.icsi.berkeley.edu/

~dpwe/projects/sprach/sprachcore.html.

[100] “HTK speech recognition toolkit,” http://htk.eng.cam.ac.uk/.

[101] H. Hirsch, “FaNT: Filtering and Noise Adding Tool,” http://dnt.kr.hsnr.

de/download.html.

[102] “FaNT and the calculation of the signal-to-noise-ratio (SNR),” http://dnt.

kr.hsnr.de/download/snr_comments.html.

[103] H. Steeneken and F. Geurtsen, “Description of the RSG-10 noise database,”
Tech. Rep., TNO Institute for Perception, Holland, 1988.

[104] H. Hirsch and D. Pearce, “The AURORA experimental framework for the per-
formance evaluation of speech recognition systems under noisy conditions,” in
Automatic Speech Recognition: Challenges for the New Millenium (ASR2000),
Paris, France, 2000, also published in a shorter version in ICSLP 2000.

[105] J. Reunanen, “Overfitting in making comparisons between variable selection
methods,” Journal of Machine Learning Research, vol. 3, 2003.

[106] K. Schutte, PhD thesis in progress, Ph.D. thesis, Massachusetts Institute of
Technology, not yet published.

[107] S. Renals and M. Hochberg, “Efficient evaluation of the LVCSR search space
using the NOWAY decoder,” in ICASSP, 1996.

[108] L. Gillick and S. Cox, “Some statistical issues in the comparison of speech
recognition algorithms,” in ICASSP, 1989.

113

http://www.cslu.ogi.edu/corpora
http://www.cslu.ogi.edu/corpora
http://www.icsi.berkeley.edu/~dpwe/projects/sprach/sprachcore.html
http://www.icsi.berkeley.edu/~dpwe/projects/sprach/sprachcore.html
http://htk.eng.cam.ac.uk/
http://dnt.kr.hsnr.de/download.html
http://dnt.kr.hsnr.de/download.html
http://dnt.kr.hsnr.de/download/snr_comments.html
http://dnt.kr.hsnr.de/download/snr_comments.html

[109] J. Mariéthoz and S. Bengio, “A new speech recognition baseline system for
Numbers 95 Version 1.3 based on Torch,” Tech. Rep. IDIAP-RR 04-16, IDIAP,
2004, available at http://www.idiap.ch.

[110] J. Frankel, M. Wester, and S. King, “Articulatory feature recognition using
dynamic Bayesian networks,” Computer Speech & Language, vol. 21, no. 4,
2007.

[111] S. Neto, “The ITU-T Software Tool Library,” International Journal of Speech
Technology, May 1999.

[112] International Telecommunication Union, “ITU Software Tools Library (ITU-T
Recommendation G.191),” http://www.itu.int.

[113] S. Zhao and N. Morgan, “Multi-stream spectro-temporal features for robust
speech recognition,” in INTERSPEECH, Brisbane, Australia, 2008.

[114] M. Karnjanadecha and S. Zahorian, “Signal modeling for high-performance
robust isolated word recognition,” IEEE Transactions on Speech and Audio
Processing, September 2001.

[115] A. Faria and D. Gelbart, “Efficient pitch-based estimation of VTLN warp
factors,” in INTERSPEECH, Lisbon, Portugal, 2005.

[116] V. Tyagi, C. Wellekens, and H. Bourlard, “On variable-scale piecewise station-
ary spectral analysis of speech signals for ASR,” in INTERSPEECH, Lisbon,
Portugal, 2005.

[117] A. Hagen and H. Bourlard, “Using multiple time scales in the framework of
multi-stream speech recognition,” in ICSLP, Beijing, China, 2000.

[118] Wikipedia, “Speculative execution — Wikipedia, the free encyclopedia,” 2008,
[Online; accessed September 10, 2008].

[119] J. Loughrey and P. Cunningham, “Using early-stopping to avoid overfitting
in wrapper-based feature selection employing stochastic search,” Tech. Rep.
2005-37, Trinity College Dublin, 2005, available at http://www.cs.tcd.ie.

[120] J. Loughrey and P. Cunningham, “Overfitting in wrapper-based feature subset
selection: The harder you try the worse it gets,” Tech. Rep. 2005-17, Trinity
College Dublin, 2005, available at http://www.cs.tcd.ie.

[121] P. Cunningham, “Overfitting and diversity in classification ensembles based on
feature selection,” Tech. Rep. 2000-07, Trinity College Dublin, 2000, available
at http://www.cs.tcd.ie.

[122] “Noisy Numbers and Numbers ASR scripts,” http://www.icsi.berkeley.

edu/Speech/papers/gelbart-ms/numbers.

114

http://www.idiap.ch
http://www.itu.int
http://www.cs.tcd.ie
http://www.cs.tcd.ie
http://www.cs.tcd.ie
http://www.icsi.berkeley.edu/Speech/papers/gelbart-ms/numbers
http://www.icsi.berkeley.edu/Speech/papers/gelbart-ms/numbers

[123] “Noisy ISOLET and ISOLET ASR scripts,” http://www.icsi.berkeley.edu/

Speech/papers/eurospeech05-onset/isolet.

[124] ISCA Student Advisory Commitee, “List of free software for speech processing,”
http://isca-students.org/freeware.

[125] D. Macho, L. Mauuary, B. Noé, Y. Cheng, D. Ealey, D. Jouvet, H. Kelleher,
D. Pearce, and F. Saadoun, “Evaluation of a noise-robust DSR front-end on
AURORA databases,” in ICSLP, Denver, Colorado, 2002.

[126] “Aurora noise robust front ends,” http://www.icsi.berkeley.edu/speech/

papers/qio.

[127] M.N. Kapp, R. Sabourin, and P. Maupin, “An empirical study on diversity
measures and margin theory for ensembles of classifiers,” in International Con-
ference on Information Fusion (Fusion 2007), Quebec City, Canada, 2007.

[128] A. Tsymbal, “Personal communication,” 2007.

[129] F. Sha and L. Saul, “Large margin hidden markov models for automatic speech
recognition,” in Neural Information Processing Systems (NIPS), 2007.

[130] D. Yu, L. Deng, X. He, and A. Acero, “Large-margin minimum classification
error training for large-scale speech recognition tasks,” in ICASSP, Honolulu,
Hawaii, 2007.

[131] H. Jiang and X. Li, “Incorporating training errors for large margin HMMs
under semi-definite programming framework,” in ICASSP, Honolulu, Hawaii,
2007.

[132] A. Tsymbal, M. Pechenizkiy, and P. Cunningham, “Sequential genetic search
for ensemble feature selection,” in International Joint Conferences on Artificial
Intelligence (IJCAI), Edinburgh, Scotland, 2005.

[133] J. Bilmes, K. Asanovic, C. Chin, and J. Demmel, “Using PHIPAC to speed
error back-propagation learning,” in ICASSP, Munich, Germany, 1997.

115

http://www.icsi.berkeley.edu/Speech/papers/eurospeech05-onset/isolet
http://www.icsi.berkeley.edu/Speech/papers/eurospeech05-onset/isolet
http://isca-students.org/freeware
http://www.icsi.berkeley.edu/speech/papers/qio
http://www.icsi.berkeley.edu/speech/papers/qio

Appendix A

Bunch size and MLP training

One of the Quicknet MLP training options is bunch size, as explained in [133]:
“two modes of back-propagation learning [are traditionally defined], on-line mode
where only one training pattern is used at a time to update the weight matrices, and
batch mode where all training patterns are used simultaneously to update the weight
matrices. An alternate strategy, which we call bunch-mode..., uses more than one
training pattern simultaneously to update the weight matrices.” The bunch size is
the number of training patterns used to update the weight matrices in bunch mode.

A bunch size of 1 is equivalent to traditional online training. Higher bunch sizes
can result in faster Quicknet training speeds, and the default in Quicknet 3.20 is 16.
However, to obtain the maximum training speed for multi-threaded trainings, it is
necessary to increase bunch size beyond 16.

When working with the Numbers corpus, we performed trainings using four
threads and a bunch size of 2048. This bunch size had been used previously for
another project which used eight-threaded trainings with a much larger speech cor-
pus. A bunch size of 2048 was judged to be an appropriate speed/quality tradeoff for
that project, but it turned out to be a suboptimal choice for our Numbers corpus.
It often resulted in considerable degradation in quality of the trained nets. Table
A.1 shows the effect of the bunch size choice. We could have achieved a comparable
training speed using a smaller bunch size, but we did not realize that using 2048
would have this effect.

We did not notice this effect until we already had completed thousands of CPU-
hours worth of Numbers experiments. Thus, we chose not to re-run our experiments
with a different bunch size. Instead, Numbers results presented in this thesis (with
the sole exception of the default bunch size results in Table A.1) were consistently
calculated using four-threaded training with a bunch size of 2048. In other words,
while our training choices were not optimal, they were consistent.

The bunch size issue affected only our results for the Numbers corpus. In our
experiments on the ISOLET corpus, we did not use multi-threaded training, and so
we left the bunch size at the default.

116

Experiment Clean train and test Noisy train and test
Default Bunch size Default Bunch size

bunch size 2048 bunch size 2048
(a) MFCC (3600 hidden units) 5.7 6.5 20.4 21.4

(b) PLP (3600 HUs) 4.8 5.0 17.2 17.5
(c) MSG (4772 HUs) 6.3 7.3 14.8 16.3

(d) MFCC, PLP, MSG 4.4 4.9 15.5 15.7
(e) MFCC (1200 HUs) 6.3 6.4 21.5 21.2
(f) PLP (1200 HUs) 5.0 5.1 17.8 17.1
(g) MSG (1590 HUs) 5.8 7.0 14.9 15.9

Table A.1. This table shows the effect of bunch size for the Numbers corpus. The
results are word error rates (WERs) on the evaluation set. Rows (a), (b) and (c)
are for single-stream MFCC, PLP and MSG respectively, with the number of hidden
units (HUs) chosen as explained in Section 6.2. Row (d) is for a three-MLP MFCC,
PLP and MSG system with the same total number of acoustic model parameters. It
uses 1200 HUs for the MFCC and PLP MLPs and 1590 for the MSG MLP. Rows
(e), (f) and (g) show the single-stream performance of the MLPs that are used in the
three-stream system in row (d).

117

