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Abstract

The mutual information concept is used to study the distribution of speech information

in frequency and in time. The main focus is on the information that is relevant for phonetic

classi�cation. A large database of hand-labeled 
uent speech is used to (a) compute the

mutual information (MI) between a phonetic classi�cation variable and one spectral feature

variable in the time-frequency plane and (b) compute the joint mutual information (JMI)

between the phonetic classi�cation variable and two feature variables in the time-frequency

plane. The MI and the JMI of the feature variables are used as relevance measures to select

inputs for phonetic classi�ers. Multi-layer perceptron classi�ers with one or two inputs are

trained to recognize phonemes to examine the e�ectiveness of the input selection method

based on the MI and the JMI. To analyze the nonlinguistic sources of variability, we use

speaker-channel labels to represent di�erent speakers and di�erent telephone channels and

estimate the MI between the speaker-channel variable and one or two feature variables.

Keywords: mutual information, sources of variability, spectral feature, input selection,

phonetic classi�cation, multi-layer perceptron.
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1 Introduction

The speech research community has at its disposal rather large speech databases which are

mainly used for training and testing of automatic speech recognition (ASR) systems. There

has been little e�ort to date to use such databases for deriving reusable knowledge about

speech and speech communication processes which could be used to improve ASR technology.

In this paper we describe approaches for studying a large hand-labeled database of 
uent speech

using mutual information, an information-theoretic concept, to learn about the structure of the

speech signal.

It has been known since the 1950s that the information about phonemes is extended in

time and that there are no hard boundaries between phonemes. Over the past �ve years we

have been advocating the use of ASR systems which selectively use relatively large temporal

segments of speech signals. Our motivation was that the information about a phoneme is not

localized to the region of that phoneme only, but instead is spread over a substantial (about

one syllable long) segment of the signal (Hermansky, 1998). Knowledge of the spread of speech

information is important since the basic task of a speech recognizer is to recognize phonemes

or phoneme-like units from information in the acoustic speech signal.

Mutual information, which measures the dependence between random variables, can be

used to measure the spread of information. For speech data, we use this concept to deal with

the question of how various elements of an information stream relate to each other. Some of

our results were reported in (Yang et al, 1999) . Previous work in this direction include (Morris

et al, 1993) and (Bilmes, 1998).

Morris et al (1993) analyzed 3000 vowel-plosive-vowel (VPV) utterances and estimated the

mutual information (MI) between one acoustic feature and the aligned VPV labels and the

joint mutual information (JMI) between two acoustic features and the VPV labels. Their goal

was to use the MI and the JMI results to characterize the distribution of vowel and plosive

information in VPV utterances in the time-frequency plane. They selected features with high

MI and JMI for a Gaussian classi�er and a multi-layer perceptron (MLP) to recognize plosives

in the VPV utterances. To avoid the risk of assuming a wrong distribution for the feature

variable, they used histograms to estimate the MI and the JMI. Although we use the same

approach to estimate the MI and the JMI, our work is di�erent from Morris et al's work in

several ways. We consider the task of phonetic classi�cation of telephone speech. We evaluate

features in di�erent contexts in the time-frequency plane. Our data set is larger to obtain more

reliable MI and JMI estimates. Instead of showing the MI and JMI in grey levels in the time-

frequency plane, we plot the levels of the MI and the JMI so that it is easier to visualize the

maximum MI and JMI. We explicitly are trying to learn the structure of the information, hence

we care to present the results in a more meaningful manner.

Bilmes(1998) showed recently that the salient information of speech appears to be spread

over relatively long temporal spans. He estimated the MI between the spectral energy features

and used it to optimize recognition models. We are interested in how the phonetic information

is distributed in time and frequency. We have a data set in which every frame is hand-labeled

by a phonetic label. We use this data set to estimate the MI and the JMI for one and two

feature variables of energy observations in the time-frequency plane. This allows us to probe

the distribution of phonetic information in time and frequency.

We represent the information in time and frequency by the short-term critical-band logarith-

mic energy X(fk; t). This is a feature representation commonly used in phonetic classi�cation.
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A frame at time t is associated with a phoneme label Yt. The problem is to determine the

relevance of X(fk; t+ d) across all frequencies fk and a context window �D � d � D for the

classi�cation of a phoneme at time t. We study the MI and the JMI of features for phonetic

classi�cation and for the classi�cation of speaker-channels. Our motivation for using the MI

and the JMI to analyze speech data is two-fold: 1. to study the distributions of phonetic

information or speaker-channel information in the feature space for di�erent target variables

(phonetic label or speaker-channel label); 2. to select features for classi�ers for di�erent tasks:

phoneme classi�cation or speaker-channel classi�cation.

It should be noted that feature selection based on the MI and the JMI is independent of

the classi�cation models. Our experimental results show that MLPs using the high MI or high

JMI features as their inputs give high accuracies for phoneme classi�cation.

2 Data set

Results are based on about 3 hours of phonetically labeled telephone speech from the English

portion (Stories) of the OGI multi-lingual database (Cole et al, 1994). This represents ap-

proximately 50 seconds of extemporaneous speech from each of 210 di�erent speakers. In this

database, the average phoneme duration is about 65ms and the average number of instances

of a phoneme is 3440.

For the experiments in the paper we select a subset of the full phoneme set which consists

of 19 phonemes that commonly occur in connected digits. These phonemes are denoted using

the variable Y and labeled 1 through 19 (refer to Table 1). The speech segments corresponding

to other phonemes and garbage sounds are removed. Since the 19 phonemes cover the major

types of phoneme categories, it is believed that the results and conclusions obtained based on

this smaller phoneme set may be generalized to the full phoneme set.

Acoustic featuresX(fk; t) are computed for 15 critical bands as follows. First, power spectra

are computed from a short-time Fourier transform (STFT) analysis of the speech signal with a

20ms Hamming window advanced in �t = 10ms steps, i.e., the frame rate is 100Hz. Each step

corresponds to a time frame. Then, logarithmic energies are computed by applying critical-band

spaced (log-like in the frequency variable) weighting functions (Fig. 1) to the power spectra.

This is done in a manner similar to that of the computation of Perceptual Linear Prediction

Coe�cients (Hermansky, 1990) by multiplying the power spectra by each weighting function in

turn and integrating the result. The center frequencies of the critical bands may be expressed

on a Hertz or Bark scale. The mapping from k in Bark to f in Hertz is given by the formula

f = 600 � sinh(k=6)

or by the following table.

The total number of frames is about 500,000. The 50-speaker and 100-speaker subsets are

used to obtain the MI and the JMI results in this paper. The 50-speaker subset is a subset of

the 100-speaker one. Unless speci�ed, the MI and the JMI results are based on the 50-speaker

dataset. Half of the data set is not used at all in estimating the MI and the JMI. However,

the whole data set is used in the phonetic classi�cation experiments to verify the MI and JMI

results.
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Table 1: A table of labels for 19 phonemes.

label phoneme example

1 w [w]eed

2 ^ sev[e]n

3 n [n]ine

4 uc (unvoiced closure)

5 th [t]wo

6 u tw[o]

7 T [th]ree

8 9r fou[r]

9 i: thr[ee]

10 f [f]ive

11 aI n[i]ne

12 v se[v]en

13 s [s]even

14 I s[i]x

15 kh [c]at

16 E s[e]ven

17 ei [ei]ght

18 z [z]ero

19 oU zer[o]

3 Mutual information and its properties

The MI between two random variables X and Y is de�ned by the entropies H(X), H(Y ) and

H(X; Y ):

I(X ; Y ) = H(X) +H(Y )�H(X; Y ); (1)

If X and Y have a joint density function p(x; y), the MI is equal to the Kullback-Leibler

divergence between p(x; y) and p(x)p(y)

I(X ; Y ) =

Z
p(x; y) log

p(x; y)

p(x)p(y)
dxdy: (2)

The MI measures the statistical dependence between two random variables. It is zero when

the two random variables are independent.

When X and Y are assumed to be jointly Gaussian, the MI can be computed analytically

by the following formula:

I(X ; Y ) = � log(1� �2)

where � is the correlation coe�cient between X and Y . However, the Gaussian assumption

is usually not true for speech data. We shall give a non-Gaussianity test later in Section 4.1

which shows that energy observations are strongly non-Gaussian.
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Table 2: Center frequencies in Bark and Hertz

center frequency in Bark 1 2 3 4 5 6 7 8

center frequency in Hz 100 204 313 430 560 705 870 1059

center frequency in Bark 9 10 11 12 13 14 15

center frequency in Hz 1278 1532 1828 2176 2584 3065 3630
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Figure 1: The 15 weighting functions used for computing 15 samples from the power spectra

of the speech signal. The weighting function for the 8-th band is shown shaded to show the

shape of the function.

To estimate the MI, one needs to approximate the probability density function p(x; y).

Some typical density approximation methods are based on histogram, kernel function, or EM

algorithm (Bonnlander, 1996; Bilmes, 1998; Yang and Moody, 1999, 2000). Like the approach

in (Morris et al, 1993), we use the histogram method to approximate the density functions

used for estimating the MI and the JMI. This is equivalent to computing the quantized version

of the MI (Cover and Thomas, 1991).

The joint mutual information I(X1; � � � ; Xn; Y ) is de�ned by

I(X1; � � � ; Xn; Y ) = H(X1; � � � ; Xn) +H(Y )�H(X1; � � � ; Xn; Y ): (3)

To estimate the JMI, we need to estimate the joint probability p(x1; � � � ; xn; y). This may su�er
from the curse of dimensionality depending on the feature dimension n and the data size.

The JMI, I(X1; � � � ; Xn; Y ) � 0, measures the dependence between (X1; � � � ; Xn) and Y . It

can also be written as

I(X1; � � � ; Xn; Y ) = H(X1; � � � ; Xn)�H(X1; � � � ; XnjY ) (4)

or

I(X1; � � � ; Xn; Y ) = H(Y )�H(Y jX1; � � � ; Xn): (5)

6



The entropy H(X1; � � � ; Xn) represents the uncertainty about the random vector (X1; � � � ; Xn).

Conditional on Y , the uncertainty about this random vector is decreased. The JMI, I(X1; � � � ; Xn; Y ),

is the reduction in uncertainty about (X1; � � � ; Xn) when Y is observed. For example, if

(X1; � � � ; Xn) is a feature vector and Y is a target variable representing phonemes or speaker-

channels, then equation (5) gives a more appealing interpretation. I(X1; � � � ; Xn; Y ) is the

reduction in uncertainty about the target variable Y when the features or inputs (X1; � � � ; Xn)

are used to predict Y .

For the phonetic classi�cation problem, we encounter a classi�cation variable that assigns a

phonetic label to each frame. This variable is called a target variable for phonetic classi�cation.

The dependence between the target variable and the feature variables can be probed by the

mutual information but not fully by a correlation coe�cient since the energy observations are

not Gaussian ( See Section 4.1).

In practice, the correlation coe�cient is often used to probe dependences between vari-

ables. But, it is only optimal for gaussian variables. Also correlation is useless when one of

the variables ( phoneme category ) is not even numerical, let alone not gaussian. The cor-

relation coe�cient and mutual information have two major di�erences. First, the correlation

coe�cient measures linear dependences between random variables, whereas the mutual infor-

mation measures the non-linear statistical dependences between random variables. Second, the

correlation coe�cient is only invariant to component-wise linear transforms while the mutual

information is invariant to component-wise monotonic transforms which may be nonlinear, i.e.,

I(f(X); g(Y )) = I(X; Y ) if the two functions f(x) and g(x) are monotonic and di�erentiable.

The proof for the invariance property is given in Appendix.

Mutual information has been used previously for feature selection in (Bonnlander, 1996;

Barrows and Sciortino, 1996; Battiti, 1994). This method only selects individually optimal

features. Joint mutual information has been used in (Yang and Moody, 1999) to select jointly

optimal features for radar pulse classi�cation. In this paper, we shall apply both the MI and

the JMI to identify the features most relevant for phonetic classi�cation and speaker-channel

classi�cation. For the features within one frequency band at di�erent time shifts, we shall

apply the JMI to measure the relevance of the features before and after the current time frame.

4 Mutual information for phonetic classi�cation

To study the dependence structure in the speech data we need the mutual information instead

of the correlation coe�cient, because as we show next, the energy observations are strongly

non-Gaussian even after taking the logarithm.

4.1 Non-Gaussianity of speech data

We use the following statistics to test whether the distribution of the data is Gaussian:

normalized skewness S =
1

p
6Ts3

TX
t=1

(xt � �x)3; and

normalized kurtosis K =
1

p
24Ts4

TX
t=1

(xt � �x)4 �

s
3T

8
;
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where �x and s2 are the sample mean and sample variance of xt. S and K are used to test the

skewness and kurtosis of the data set. Under the null hypothesis that the distribution of the

observation is Gaussian, asymptotically, both the normalized skewness S and the normalized

kurtosis K follow the standard Gaussian distribution N(0; 1) (See Vol.1 in (Stuart and Ord,

1994)).
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Figure 2: The statistics S and K in di�erent bands.

For the trajectory at k Bark, the normalized skewness and the normalized kurtosis are

denoted by S(fk) and K(fk) respectively. The results in Fig. 2 are based on a 50-speaker

subset of the speech data. At the signi�cance level � = 0:01, the critical values for the

standard normal distribution are �2:58. It is shown in Fig. 2 that the logarithmic spectral

energy observations are strongly non-Gaussian. All absolute values of the normalized kurtosis

statistics exceed the critical value, while 12 out of 15 absolute values of the normalized skewness

statistics exceed the critical value. The normalized kurtosis statistics show that most of the

bands are platykurtic or sub-Gaussian with negative kurtosis except the two lowest frequency

bands and the highest frequency band which are leptokurtic or super-Gaussian. From Fig. 2

it is seen that the �rst, second and 15-th band have rather di�erent statistics. It is worthwhile

to note that these bands fall mostly outside the telephone bandwidth (300-3400Hz) and may

be noisy or less reliable for phonetic classi�cation.

The reason of testing non-Gaussianity is two-fold: 1. to justify why we use MI rather than

correlation; 2. to determine the number of bins for a histogram to approximate a density

function.

Since the logarithmic spectral observations are non-Gaussian, instead of using the corre-

lation coe�cient, we use mutual information to probe the dependence between features and

phonetic labels. Using histograms to approximate a probability density function, one needs to

choose the number of the bins to separate data points. There are several rules to choose the

number of bins. Given a data set fxt; t = 1; � � � ; Tg, for Gaussian distributions, one may choose
log2 T + 1 as the number of bins by Sturges's rule; but, for non-Gaussian distributions, one is
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better o� to choose log2 T +1+ log2(1+ �̂
p
T=6) as the number of bins by Doane's rule where

�̂ is the estimated kurtosis of xt (See (Venables and Ripley, 1994) for the two rules). We use

Doane's rule to choose the number of bins based on our �nding that the data is strongly non-

Gaussian. For our data sets, the number of bins is between 20 and 30 depending on whether

we use the whole data set or a subset to compute the number of bins.

4.2 MI between one feature and phonetic label

As a �rst step we obtain the MI between phonetic labels and a single feature in the time-

frequency plane.

4.2.1 Distribution of information in frequency

While the features can be anywhere in the time-frequency plane, we �rst evaluate the MI for

the features in the same frame as the phonetic label. Thus, the MI result will represent the

distribution of information in the spectral feature vector which is aligned with the phonetic

label.

Our speech data set is denoted by

DT = f(X(fk; t); Yt) : k = 1; � � � ; 15; t = 1; � � � ; Tg:

Each feature vector (X(f1; t); � � � ; X(f15; t)) is assigned a phonetic label Yt that is used as a

target variable for phonetic classi�cation. It is also called a phonetic label variable. Based on

the data set DT , for each k, we estimate the MI between a feature variable X(fk; t) for the

current time frame and the target variable Yt:

I(X(fk; t); Yt); k = 1; � � � ; 15:

This MI function indicates the degree of relevance of each frequency band for phonetic

classi�cation. Fig. 3 shows two plots of MI as a function of frequency band, one plot for a data

set with 50 speakers and one for a data set with 100 speakers.

It is revealed in Fig. 3 that along the frequency axis, all frequency bands carry information

about the underlying phoneme label, with the dominant information around 5 Bark or 560 Hz.

In the rest of this paper, the MI and JMI are estimated based on the 50-speaker data set.

4.2.2 Distribution of information in time

In the speech data, adjacent frames usually contain similar information about the same phoneme.

The same concept as used above for �nding the distribution of information along the frequency

axis is used to examine features at the same frequency but mis-aligned in time. The result

would indicate how much the information about the phoneme is spread out in time.

De�ne a set of frequency indices

Zf = f1; 2; � � � ; 15g:

and a set of time shifts

S(L;�) = fl� : l = �L; � � � ; Lg:
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Figure 3: Mutual information between the phonetic label variable and one feature point in

each frequency band for the 100-speaker and 50-speaker datasets. The two speaker sets exhibit

similar patterns across di�erent bands.

The MI between the phonetic label variable and the features in di�erent bands at di�erent

time shifts is

I(X(fk; t+ d); Yt); k 2 Zf ; d 2 S(L;�)

The MI is shown in Fig. 4 as a function of k and d, for L = 20 frames and � = 10ms.
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Figure 4: (a) 3-D plot of the MI, I(X(fk; t + d); Yt), between the phonetic label variable and

the features in di�erent frequency bands with di�erent time shifts based on the 100-speaker

dataset. (b) Contour plot of the MI function.

As a function of a time shift d, the MI function I(X(fk; t + d); Yt) indicates the relevance

of the features in the frames before and after the current frame at t. For fk = f5, this MI

function is shown in Fig. 5.

To explain Fig. 5, let us consider two points (X(fk; t); Yt) and (X(fk; t+ d); Yt). On average

X(fk; t+d) contains little information on Yt when the absolute time shift is greater than 100ms.

Conversely, X(fk; t+d) does contain information on Yt for absolute time shifts less than 100ms.

This suggests that one may want to use contextual information in a window of about 100ms

to either side of the frame being classi�ed.

Along the time axis, features further than 100ms from the labeled frame are basically

irrelevant for the classi�cation of that label. But, this is only true when the featureX(fk; t+ d)
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Figure 5: Mutual information as a function of time shift (in frames) and the classi�cation

target variable for the 5-th frequency band. The dotted line shows the lower bound (0.0028

bits) which is the MI between the 5-th frequency band and scrambled phonetic labels.

is used alone to predict the phoneme label Yt. We shall show in Section 4.4.2 that the feature

X(fk; t+ d) with an absolute time shift d larger than 100ms is still relevant for predicting Yt
when the feature X(fk; t+ d) is used jointly with the feature X(fk; t).

4.3 Informationless MI levels

When a feature variable is not relevant to the target variable, the MI estimate is small. We

use two methods to obtain informationless MI levels: 1. scramble the observations for the

target variable; 2. use a random input to replace the observations for the feature variable. For

the �rst method, the observed labels Yt are treated as an array and indices of the array are

randomly permuted to obtain the scrambled version of Yt.

For the 50-speaker data set, in all bands, the MI between the feature and the scrambled

phonetic labels is less than 0.003 bits. An informationless MI level of 0.0028 bits for the 5-th

band is shown by the dotted line in Fig. 5. For the 100-speaker data set, in all bands, the

MI between the feature and the scrambled phonetic labels is less than 0.001 bits. Roughly

speaking, the informationless MI level becomes smaller by half when the data set is doubled.

Replacing energy observations by a Gaussian random sequence of the same size, we obtain

the informationless MI level of 0.0017 bits. Hereafter, any MI or JMI estimates which are less

than 0.0028 bits will be considered as insigni�cant.

4.4 JMI between two features and the phonetic label

The MI between phonetic labels and a single feature gives a general indication which shows how

linguistic information is distributed in the time-frequency plane. However, phonetic classi�ca-

tion is seldom done using only a single feature. Rather, a whole vector of features is typically

used to estimate the phonetic identity of the underlying linguistic event. How is the linguistic
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information distributed in a combination of features in the time-frequency plane? To address

this problem, we use the concept of the JMI between the phonetic label and two features in

the time-frequency plane which tells us how much more additional information (not contained

in the �rst feature) is provided by the second feature. 1

4.4.1 Additional feature at di�erent frequency but the same time

Consider the relevance of two features in the same frame but in di�erent frequency bands for

phonetic classi�cation. The JMI between these two features and the classi�cation variable is

J1(k; j) = I(X(fk; t); X(fj; t); Yt):

where the two features are aligned with the target variable in time. Here, we de�ne J1(k; k) =

I(X(fk; t); Yt).

For the 5-th band as the �rst feature, for example, the JMI as a function of frequency in

Bark of the second-feature band is shown in Fig. 6.
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Figure 6: The MI of one feature at 5 Bark, the horizontal line. The JMI of two features, one

at 5 Bark and another one at k Bark, the solid line.

By the chain rule for mutual information (see (Cover and Thomas, 1991)), we have

J1(5; k) = I(X(f5; t); Yt) + I(X(fk; t); YtjX(f5; t)):

The quantity I(X(fk; t); YtjX(f5; t)) is the MI between X(fk; t) and Yt conditional on X(f5; t)

and is called the conditional MI. It is the information gain due to the 2nd feature X(fk; t)

given the 1st feature X(f5; t). It is shown in Fig. 6 that the conditional MI reaches a maximum

at 9 Bark (from about 0.5 bits for a single feature to as much as 0.85 bits for an additional

1The concept of JMI can be extended to more than two features. However, the amount of data needed for

reliable estimates increases exponentially as the number of features increases.
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feature at 9 Bark). In general, we �nd that the inclusion of a second feature always provides

information in addition to that provided by a single feature.

The JMI between the phonetic label variable and two features in the same frame but in

di�erent bands are shown in Fig. 7. The k-th row in the matrix [J1(k; j)] is plotted in the k-th

panel in Fig. 7. Note that Fig. 6 is an enlargement of the 5-th panel in Fig. 7.

For the two optimal features in the same frame but di�erent frequency bands, we compute

the maximum

J1(4; 9) = max
k;j2Zf

J1(k; j) = 0:9 (bits): (6)

This means that among all possible pairs (X(fk; t); X(fj; t)) in the same frame, the pair

(X(f4; t); X(f9; t)) is the most relevant for phonetic classi�cation.

Let J1(k; j
�

k) = maxj2Zf
J1(k; j) be the maximum JMI in the k-th band. The maximum

JMI and the MI are compared in Fig. 8. Given the 1st feature at k Bark, the information gain

is maximized at j�k Bark. The gap between the two curves in Fig. 8 represents the maximum

information gain due to a second feature given the �rst feature in each of the frequency bands.

The band indices fj�kg are listed in the following table.

Table 3: The frequency bands of optimal second features.

Bark k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bark j�k 6 6 9 9 9 3 3 4 4 4 4 5 5 5 5
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Figure 7: For k = 1; � � � ; 15, the JMI, fJ1(k; j); j 2 Zfg, is plotted in the k-th panel where

Zf = f1; 2; � � � ; 15g. The horizontal line in the k-th panel represents the MI of one feature at

k Bark. In each panel, excess values of the JMI above the horizontal line are the information

gain due to a second feature.

4.4.2 Additional feature at the same frequency but at a di�erent time

To examine the relevance of two features in the same frequency band but at di�erent times in

predicting the phoneme, we de�ne the JMI J2(k; d) as follows:

J2(k; d) = I(X(fk; t); X(fk; t+ d); Yt); k 2 Zf ; d 2 S(L;�):

Here, L = 60 frames and � = 10ms and we de�ne J2(k; 0) = I(X(fk; t); Yt). When k = 5, the

JMI of the 5-th frequency band J2(5; d) as a function of time shift is shown in Fig. 9.

Information is gained by using a feature located at a di�erent time (points labeled by B, C,

D, or E in Fig. 9) in addition to the feature from the current time (labeled by point A). Point

A represents the MI, J2(5; 0) = I(X(f5; t); Yt), which is also shown by the maximum value in

Fig. 5. The asymptotic level of the JMI is 0.61 bits even when the absolute time shifts are

larger than 600ms. This suggests that the second feature, even if it is far apart from the �rst

one, will increase the JMI by removing a constant bias in the data. The maximum of the JMI

is achieved at point B corresponding to a feature 50ms before the current time. Based on the

data set we used to estimate the JMI, the average phoneme duration is about 65ms. This may

be the reason why the frame at -50ms gives the maximum additional information for phonetic
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Figure 8: The maximum JMI, J(k; j�k), versus the MI in the k-th band. The gap between

two curves is equal to J1(k; j
�

k) � I(X(fk; t); Yt) which is the information increase due to one

contextual feature at the current time frame but in a di�erent frequency band. The average

information increase across 15 bands is 0.49 bits.

classi�cation. Note that the current frame is at time zero and so negative time is in the past

while the positive time is in the future.

The spread of the additional information is asymmetric in time with most of the supporting

information found in the intervals [-200ms, -20ms] and [20ms, 200ms]. Around the point B in

Fig. 9, the mutual information increases from 0.5 bits for a single feature to around 0.68 bits

for two features. This may indicate possible asymmetries in the coarticulation pattern with

a weaker anticipatory coarticulation. The asymmetry may also indicate a causal direction in

time, i.e., the label at the current time is more predictable from features in the past rather

than from features in the future.

For the 50-speaker data set,

J2(4; 50) = max
k2Zf ;d2S(60;10)

J2(k; d) = 0:69 (bits): (7)

The JMI patterns are quite similar in all frequency bands. Fig. 10 shows the JMI, J2(k; d),

as a function of the Bark index k and the time shift d.

The same JMI function is shown in Fig. 11 by 15 panels. The k-th panel shows the JMI of

two features at k Bark, I(X(fk; t); X(fk; t+ d); Yt) at di�erent time shifts. The JMI at 5 Bark

shown in Fig. 9 is an enlargement of the 5-th panel in Fig. 11.

The information gain due to a contextual feature in a di�erent frame is clearly seen in

Fig. 11. The maximum JMI in the k-th band is

J2(k; d
�

k) = max
d2S(60;10)

J2(k; d):

Given the 1st feature at time shift 0 in the k-th band, the 2nd feature in the same band achieves

a maximum information gain at the time shift d�k ms. The optimal time shifts are given in the

following table.
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Figure 9: The JMI of the 5-th frequency band as a function of time shift in ms. Information

is gained by using a feature located at a di�erent time (e.g. B, C, D, or E) in addition to the

feature from the current time frame (located at point A).

Table 4: The optimal time shifts in di�erent bands.

Bark k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d�kms 20 -40 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50 -50 -60

This table shows that adding a feature at 50ms before the current time gives the maximum

information gain in all bands except the very low and the very high frequency bands.

Both Fig. 8 and Fig. 12 show the information gain of the second feature given the �rst

feature in each band. But in Fig. 8 the second feature is in the same time frame but in a

di�erent band as the �rst feature, while in Fig. 12 the second feature is in the same band but

in a di�erent time frame as the �rst one.
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Figure 10: The JMI as a function of the frequency band index k and the time shift d: (a) 3-D

plot and (b) Contour plot.
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Figure 11: The JMI between the phonetic label variable and two features in the same band.

The k-th panel (counting row-by-row) shows the JMI, J2(k; d) for d 2 S(60; 10):

19



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bark 

M
I a

nd
 m

ax
im

um
 J

M
I i

n 
bi

ts

maximum JMI
MI         

Figure 12: The maximum JMI, J2(k; d
�

k), versus the MI in the k-th band. The gap between

the two curves at Bark k is J2(k; d
�

k)� I(X(fk; t); Yt) which is the information gain due to one

contextual feature in the same band but at a di�erent time frame. The average information

increase across 15 bands is 0.17 bits.

4.4.3 Additional feature in a neighborhood of the �rst one

We have so far estimated the JMI of two features either in the same current frame or in the

same frequency band. The question still remains whether a pair of features in di�erent frames

and frequency bands would give a larger JMI.

When we maximized the JMI in (6) and (7), we considered the following two contexts of

the feature X(f4; t):

Cf = fX(fj; t) : j 2 Zfg; (8)

CT = fX(f4; t+ d) : d 2 S(60; 10)g: (9)

In the context Cf , the feature X(f9; t) gives the maximum information gain while in the

context CT the feature X(f4; t � 50) provides the maximum information gain. In a bigger

context Cf

S
CT , the feature X(f9; t) achieves the maximum information gain.

In general, it seems reasonable to conclude that an additional feature at the same time

frame but at a di�erent frequency band provides the most additional information. To check

this, we consider an even bigger context of the feature X(f4; t):

Cf;T = fX(fj; t+ d) : j 2 Zf ; d 2 S(60; 10):g (10)

For every feature in Cf;T , the conditional MI, I(X(fj; t + d); YtjX(f4; t)), is estimated and

plotted in Fig. 13(a) and (b). The distribution of the information gain of a second feature in

the neighborhood of the �rst feature is again asymmetric (see Fig. 13(b) ). The result con�rms

that the second feature X(f9; t) at the current frame gives the maximum information gain in

the larger context Cf;T .
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Figure 13: The conditional mutual information I(X(fj; t+ d); YtjX(f4; t)) in the context Cf;T :

(a) 3-D plot; (b) Contour plot. The feature X(f9; t) gives the maximum information in this

context.

4.4.4 Phonetic classi�cation experiments

We use mutual information to measure the relevance of the features for phonetic classi�cation

based on the following hypothesis: the classi�ers with features of high MI or high JMI perform

better. To verify this, We conducted several phonetic classi�cation experiments using multi-

layer perceptron (MLP) classi�ers.

Each MLP classi�er used in the experiments is a fully-connected feed-forward neural net-

work with a single hidden layer. The units in the hidden layer use a sigmoid activation function

while the output units employ a soft-max function de�ned as follows. Let y = (y1; � � � ; yn)0 be
the hidden layer outputs and W = (wij) be a weight matrix of m � n connecting the hidden
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Figure 14: Frame accuracies of the MLP with one frequency feature.

layer and the output layer. Let u =Wy and

zi =
euiPm
k=1 e

uk
; i = 1; � � � ; m;

where (z1; � � � ; zm) are the soft-max outputs of the MLP.

The software was developed at the International Computer Science Institute, Berkeley,

California. We used n = 300 units in the hidden layer and m = 19 units in the output layer,

where each output unit corresponds to one of the 19 phonetic classes used in this article.

The whole data set used in the experiments consists of 3 hours of speech from 210 speakers.

It is divided into three subsets: 67% of the whole data set being a training set, 8% being a

cross-validation set, and 25% being a test set. Each MLP is trained using an on-line error-back-

propagation algorithm with relative entropy criterion and binary outputs. During the training

process, the performance of the network on the cross-validation set is used to determine when

to stop the training and how to set the learning rate after each training epoch. The training

starts at a learning rate of 0.008 that is held constant until the performance on the cross-

validation set does not improve. For every subsequent epoch the learning rate is divided by a

factor of two. The training is stopped when the performance on the cross-validation set shows

no further improvement. The accuracy of the MLP is computed using the test set.

To speed up on-line training, the input-output patterns are randomly presented to the net-

work. The input features are normalized to have zero mean and unit variance. The normalizing

mean and variance values are computed only on the training data and applied to the test data

during recognition.

We did three experiments to obtain frame accuracies of the MLPs with di�erent inputs for

phonetic classi�cation.

In the �rst experiment, each MLP was trained and tested using a single feature in one of

15 critical bands. The frame accuracies of these single-input MLPs are shown in Fig. 14. The

results are consistent with the MI shown in Fig. 3. The features from 3 Bark to 8 Bark have
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relatively high MI. Consequently, the MLPs with a single feature in these bands ( 3-8 bands )

achieve relatively high accuracies.

In the second experiment, each MLP had two inputs in two di�erent critical bands. The

results are shown in Fig. 15. The k-th panel in Fig. 15 shows the accuracies of the MLPs with

one input in the k-th band and another input in other bands. The accuracies of the MLPs

shown in Fig. 15 are compatible with the patterns of the JMI of two features shown in Fig. 7.
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Figure 15: Frame accuracies of the MLP with two frequency features.

In the third experiment, each MLP has 30 inputs consisting of two vectors x0 and xd. Here,

x0 = (X(f1; t); � � � ; X(f15; t))

and

xd = (X(f1; t+ d); � � � ; X(f15; t+ d)):

The accuracies of the MLPs shown in Fig. 16 are in agreement with the JMI in Fig. 9. The

frame accuracy is maximum when d = �50ms. Fig. 9 only depicts the JMI for the 5-th band

while Fig. 16 depicts the frame accuracy for those MLPs using inputs from all bands. Therefore,

Fig. 16 may re
ect a combined e�ect across all bands.

5 MI between spectral features and speaker-channel labels

Phonetic variability is not the only source of variability in speech. The other nonlinguistic

sources of variability are di�erent speakers and di�erent communication channels. The concept
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Figure 16: Frame accuracies of the MLP with 30 inputs.

of mutual information can also be applied to nonlinguistic information. To illustrate this, we

show how the nonlinguistic information is distributed in di�erent frequency bands.

In this case we use speaker-channel labels fZtg to label the frames in the time-frequency

plane. The MI estimates I(X(fk; t);Zt) shown in Fig. 17 indicate that for speaker-channel

classi�cation the low and high frequency bands are most relevant and the 4-th and 5-th bands

are the least relevant. This is in contrast to the MI for phonetic classi�cation. The low

frequency components in the 1st and 2nd bands contain line noise. It is possible that features

in the 1st and 2nd bands give more information than those in other bands to di�erentiate

speaker-channels.

For each k = 1; � � � ; 15, a sequence of JMI estimates fI(X(fk; t); X(fj; t);Zt)g15j=1 is plotted
in the k-th panel in Fig. 18. The �rst panel shows that if one feature is in the �rst band then

the most relevant feature for speaker-channel classi�cation is in the second band. Other panels

show that if one feature is not in the �rst band then the most relevant feature is always in the

�rst band. The maximum JMI is

I(X(f1; t); X(f2; t);Zt) = max
k;j

I(X(fk; t); X(fj; t);Zt) = 1:65 (bits):

The MI and JMI for speaker-channel classi�cation can be used to measure the sensitivity

of the features to speaker-channel changes. Features in the low and high frequency bands that

have high speaker-channel MI are sensitive to the speaker-channel variability and may not be

good features for phonetic classi�cation. This is consistent with the result shown in Fig. 3.
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Figure 17: The MI between the speaker-channel labels and one feature for speaker-channel

classi�cation. The 50-speaker data set is used to evaluate the MI.

6 Discussion and Conclusions

The question of how information is coded in the speech signal is of both practical and theoretical

importance. For the past few years we have been advocating that established data analysis

techniques could be applied to large speech corpora to gain more knowledge on this important

topic. This work is an attempt in this direction in which we use a relatively large phoneme-

labeled data set and the information-theoretic concept of mutual information to gain insight

into the distribution of phonetically relevant information and speaker-channel variability.

Analysis of the distributions of critical-band spectral energy observations shows that these

distributions are non-Gaussian. This motivates the analysis of non-linear dependence using the

mutual information.

Analysis of the MI between phonetic labels and spectral energy observations at points in

the time-frequency plane revealed that along the frequency axis, all frequency bands carry

information about the underlying phoneme label, with dominant information around 3-8 Bark

(313-1059 Hz).

Analysis of the JMI between the phonetic labels and spectral energy observations at the

current frame at two di�erent points in di�erent frequency bands showed that the addition of a

feature at a di�erent frequency band considerably increases the information about the phonetic

label.

Along the time axis, from Fig. 5, individual features more than 100ms in the past or in

the future are not relevant for the phonemes at the current time frame. However, from Fig. 9,

jointly with a feature at the current time frame, the second features more than 100ms in the

past or the future are still relevant for predicting the phoneme.

It is the analysis of the JMI along the time axis which we �nd the most interesting. Even

though the additional information from the second feature is not as high as in the case of

the second feature at the same time frame and di�erent frequency band as discussed above,
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Figure 18: The JMI between the speaker-channel labels and two features for speaker-channel

classi�cation. The k-th panel (counting row-by-row) shows the JMI, I(X(fk; t); X(fj; t);Zt)

for j = 1; � � � ; 15:

it indicates that signi�cant information for phonetic classi�cation is spread in time over at

least 200ms. This spread is asymmetric in time with relatively more information found in the

interval [-200ms, -20ms] and less found in the interval [20ms, 200ms] (See Fig. 9).

The MI and the JMI between the speaker-channel label and the features in the time-

frequency plane show that the features most relevant for phonetic classi�cation are least relevant

for speaker-channel classi�cation.
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Appendix: A Proof of The Invariance Property

We want to show that if fi(y); i = 1; � � � ; n; and g(y) are di�erentiable monotonic functions,

then

I(f1(X1); � � � ; fn(Xn); g(Y )) = I(X1; � � � ; Xn; Y ):

In fact, let Z = (Z1; � � � ; Zn; Zn+1) = (f1(X1); � � � ; fn(Xn); g(Y )), then

p(zn+1) = p(y)=jg0(y)j
p(z1; � � � ; zn; zn+1) = p(x1; � � � ; xn; y)=j�n+1j
p(z1; � � � ; zn) = p(x1; � � � ; xn)=j�nj

where j�n+1j = j�njjg0(y)j and j�nj =
Qn

i=1 jf
0

i(yi)j. Hence,

I(Z1; � � � ; Zn;Zn+1) =

Z
p(z1; � � � ; zn; zn+1) log

p(z1; � � � ; zn; zn+1)
p(z1; � � � ; zn)p(zn+1)

dz1 � � �dzn+1

=

Z
p(x1; � � � ; xn; y)

j�n+1j
log

p(x1; � � � ; xn; y)j�njjg0(y)j
j�n+1jp(x1; � � � ; xn)p(y)

j�n+1jdx1 � � �dxndy

=

Z
p(x1; � � � ; xn) log

p(x1; � � � ; xn; y)
p(x1; � � � ; xn)p(y)

dx1 � � �dxndy

= I(X1; � � � ; Xn; Y )
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