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Jáchym Kolář1,2, Elizabeth Shriberg1,3, and Yang Liu1,4

1 International Computer Science Institute, Berkeley, CA, USA
2 Department of Cybernetics, University of West Bohemia in Pilsen, Czech Republic

3 SRI International, Menlo Park, CA, USA
4 University of Texas at Dallas, TX, USA
{jachym,ees,yangl}@icsi.berkeley.edu

Abstract. We explore the use of prosodic features beyond pauses, in-
cluding duration, pitch, and energy features, for automatic sentence seg-
mentation of ICSI meeting data. We examine two different approaches
to boundary classification: score-level combination of independent lan-
guage and prosodic models using HMMs, and feature-level combina-
tion of models using a boosting-based method (BoosTexter). We report
classification results for reference word transcripts as well as for tran-
scripts from a state-of-the-art automatic speech recognizer (ASR). We
also compare results using the lexical model plus a pause-only prosody
model, versus results using additional prosodic features. Results show
that (1) information from pauses is important, including pause duration
both at the boundary and at the previous and following word bound-
aries; (2) adding duration, pitch, and energy features yields significant
improvement over pause alone; (3) the integrated boosting-based model
performs better than the HMM for ASR conditions; (4) training the
boosting-based model on recognized words yields further improvement.

1 Introduction

Standard automatic speech recognition systems output only a raw stream of
words, leaving out important structural information such as punctuation. Punc-
tuation, in particular that associated with sentence boundaries, is crucial to
human readability. Sentence boundaries also benefit various natural language
processing techniques (e.g., machine translation, information extraction and re-
trieval, text summarization) which are typically trained on formatted input such
as text. Previous efforts in sentence segmentation have studied the role of both
lexical and prosodic features, in data from news broadcasts (mostly read speech)
and from spontaneous telephone conversations (two-party conversations) [1–9].
Work on multi-party meetings has been more recent, and has generally examined
the use of prosody for sentence segmentation using only pause information, for
example [10–12]. In this paper we explore the use of prosodic features beyond
pauses, including duration, pitch, and energy features, for automatic sentence
segmentation of a large set of data from the publicly available ICSI meeting
corpus [13].



2 Method

2.1 Speech Data and Experimental Setup

The ICSI meeting corpus [13] contains approximately 72 hours of multichannel
conversational speech data. For the sentence segmentation experiments herein,
we used 73 out of the total 75 available meetings (two meetings were excluded
because of their very different character from the rest of the data). The 73
meetings were split into a training set (51 meetings, 539k words), a development
set (11 meetings, 110k words), and a test set (11 meetings, 102k words). The
test set contains unseen speakers, as well as speakers appearing in the training
data as it is typical for the real world applications.

A crucial step when performing sentence segmentation of spontaneous speech
is to define the notion of a “sentence”, since spontaneous utterances do not con-
sist of sentences as defined in written text. Although the original manual tran-
scripts of the ICSI corpus do contain punctuation, the punctuation is highly
inconsistent. Transcribers were instructed to focus on transcribing words as
quickly as possible; there was not a focus on consistency or conventions for mark-
ing punctuation. As a result, different transcribers used different approaches to
punctuation annotation. We used instead punctuation marks from a project on
annotation of dialog acts in the same corpus [14, 15]. In this annotation pass,
labelers carefully annotated both dialog acts and their boundaries, using a set
of segmentation conventions for the latter.

For training and testing our models we have used both forced alignment of
reference transcripts and ASR output. Recognition results were obtained using
the state-of-the-art SRI CTS system [16], which was trained using no acoustic
data or transcripts from the analyzed meeting corpus. To represent a completely
automatic system, we used automatic speech/nonspeech segmentation. Word
error rates for this difficult data are still quite high, the used ASR system per-
formed at 38.2% (on the whole corpus). To generate the “reference” sentence
boundaries for the ASR words, we aligned the reference setup to the ASR hy-
potheses with the constraint that two aligned words may not occur further apart
than a fixed time. The possible sentence boundaries for ASR output were then
merged from corresponding aligned words from the reference. Since the ASR
hypotheses tend to miss short backchannels that are usually followed by a sen-
tence boundary, sentence boundaries are less frequent (in our data 13.9%) than
in reference conditions (15.9%).

2.2 Prosodic Features

We developed a database of 270 prosodic features describing pause, pitch, du-
ration, and energy information in the vicinity of each word boundary, inspired
by [2, 17]. Features were extracted directly from the automatically aligned speech
signal, so that no hand-labeling of prosody (such as ToBI) was necessary in model
training. A number of features were highly correlated, differing only in the nor-
malization approach. To reduce the feature space, we combined similar features



into groups, and then selected the features from each group that were most fre-
quently used in a first set of decision trees. We then used the resulting smaller
set of 40 features to train the models reported in this paper.

Pause features consisted of the pause duration after the current, previous,
and following words. Duration features included the duration of vowels, final
rhymes, and whole words, aiming mainly to reflect the phenomenon of prebound-
ary lengthening. We used raw durations as well as duration features normalized
using phoneme duration statistics from the whole database. Pitch features in-
cluded features describing minimal, maximal and mean values, f0 slopes, and
differences and ratios of values across word boundaries. These features were ex-
tracted both from raw f0 value and from a f0 contour stylized by a piece-wise
linear function. Energy features were represented by maximal, minimal, and
mean frame-level RMS values, both raw and per-channel normalized. Statistics
showing which prosodic feature were used by our models are provided at the end
of Section 3.

2.3 Classifiers

We report results obtained using two different approaches: (1) a combination of
independent language and prosodic models in an HMM framework, and (2) a
boosting-based algorithm (BoosTexter) that uses one integral model containing
both lexical and prosodic features.

HMM Approach The approach for sentence boundary detection from speech
that has received the most attention in recent years is a hidden Markov model
(HMM) [1, 2, 5]. This approach provides a convenient way for combining lex-
ical and prosodic features and is computationally efficient. In the HMM, the
word/event pairs correspond to states, and the words as well as other (in our
case prosodic) features correspond to observations. That is, the words appear
both in the states and in the observations, with the transition probabilities given
by the N -gram language model. Transition probabilities are estimated using
standard N -gram techniques from text data, in which sentence boundaries are
marked by a special tag (which is for training purposes treated in the same way
as other word tokens). The HMM observation likelihoods are estimated by con-
verting posteriors obtained by a prosodic classifier into likelihoods, under the
assumption that prosodic features depend only on the events, and not on the
words.

After several simplifications [2, 5], to combine prosodic and lexical scores we
use the relation

P (ei|F,W ) ∝ P (ei|W )

(

P (ei|fi)

P (ei)

)λ

(1)

where ei and fi stand for i-th event (type of boundary, in our case “sentence
boundary” or “no boundary”) and vector of prosodic features, respectively, and
W and F for the sequences of words and prosodic features, respectively. λ is



an exponential scaling factor estimated using held-out data, which allows us to
weight the relative contributions from the two models.

In past work, the most popular classifiers for estimating posteriors P (ei|fi)
have been decision trees, since they handle features with undefined values, com-
bine continuous and categorical features, and are easily human-readable and
interpretable. When training a sentence boundary classifier, we have to deal
with the problem of imbalanced data [18], since sentence boundaries occur only
at approximately 16% of all word boundaries in our corpus. The skewed dis-
tribution of training data may cause decision trees to miss out on inherently
valuable features that are dwarfed by data priors. One solution to this prob-
lem is to train classifiers on data downsampled to equal class priors. To take
advantage of all available data, we apply ensemble sampling instead of simple
downsampling. Ensemble sampling is performed by randomly splitting the ma-
jority class into int(N) nonoverlapping subsets, where N is the ratio between the
number of samples in the majority and minority classes. Each subset is joined
with all minority class samples to form int(N) balanced sets to train classifiers.
It is also advantageous to employ bagging [19], which decreases classifier variance
by averaging results obtained by multiple classifiers. The classifiers are trained
from different datasets sampled with replacement from the original training set.
A combination of these two methods (applying bagging on ensemble samples)
makes up ensemble bagging, which we used in our experiments.

Boosting-based Approach The HMM approach has also a couple of dis-
advantages. The combination of prosodic and lexical models makes strong in-
dependence assumptions, which are not typically met in actual language data.
Moreover, the HMM training maximizes the joint probability of data and hidden
events, but a criterion more closely related to classification error is the posterior
probability of the correct hidden variable assignment given the observations. To
overcome these drawbacks, models based on maximum entropy [4, 6] or condi-
tional random fields [9] have been proposed in past work. These models provide
a more principled way to combine prosodic and overlapping lexical features. In
this work, we explore a different approach, by integrating prosodic and lexical
features into one model based on boosting. We provide some detail here on the
approach, since it has not been described for this task in previous work.

The principle of boosting is to combine many weak learning algorithms to
produce an accurate classifier. The algorithm generates weak classification rules
by calling the weak learners repeatedly in series of rounds. Each weak classifier
is built based on the outputs of previous classifiers, focusing on the samples
that were formerly classified incorrectly. This general method can be basically
combined with any classifier. We used an algorithm called BoosTexter, that
combines weak classifiers having a basic form of one-level decision trees using
confidence-rated predictions [20]. The test at the root of each tree can check
for the presence of a word N -gram, or for a value of a continuous feature. This
allows a straightforward combination of lexical and prosodic features.



For training the classifier, we have used exactly the same set of prosodic
features as was used for prosodic classification using decision trees. We have
added the following N -gram features (w0 denotes the word before the classi-
fied boundary, w1 the word after the boundary, and so on) – unigrams: w0, w1,
bigrams: w0w1, w

−1w0, trigrams: w
−1w0w1, w0w1w2, and a binary feature in-

dicating whether the word before the boundary is identical with the following
word.

3 Experimental Results and Discussion

Our experimental results testing both approaches in reference and ASR condi-
tions are summarized in Table 1. As an evaluation metric we use a “boundary
error rate” described by

E =
I + M

NW

[%] (2)

where I denotes the number of false sentence boundary insertions, M the num-
ber of misses, and NW the number of words in the test set. For each system, we
report error rates using lexical features alone, pause durations alone (including
both pause duration at the boundary, and at the previous and following word
boundaries), all prosodic features alone, lexical features plus pause durations,
and lexical features plus all prosodic features. We also present chance perfor-
mance, or the performance achieved by classifying every word boundary as the
class having the highest prior probability (which is “no sentence boundary” in
our case). Note that chance performance differs for reference versus ASR condi-
tions as described in Section 2.1. To enable a comparison of relative gain from
each set of features for both conditions, we also report the relative error reduction
with respect to chance error.

Results for the reference condition (REF) indicate that the language model
alone performs better than the prosodic model alone, and either model is out-
performed by a combination model. The gain from additional prosodic features
(beyond pause) is larger when lexical information is not accessible. However,
when combining with the lexical model, there is a significant gain from adding
prosodic features beyond pauses, both for the HMM (0.12% absolute, 2.0% rel-
ative, p < 0.01) and for BoosTexter (0.10% absolute, 1.7% relative, p < 0.01).
Results using both approaches are very similar for the reference condition.

Results for the ASR condition show that recognition errors cause more degra-
dation for lexical than for prosodic features. Note that while degradation is ex-
pected for lexical features, it is not the case that prosodic features should be
completely robust to word error: some prosodic features depend on phone or
word boundary information for extraction or normalization. The level of degra-
dation for individual models is also visible from values of the exponential weight λ

(optimized on development data), which is used for combining the prosodic and
language models in the HMM. For the reference condition, the optimal value
was 0.8 (giving a slightly higher weight to the lexical model), while for the ASR
condition it was 1.1 (actually giving a higher weight to the prosodic model).



Table 1. Sentence boundary detection error rates (defined as count of false alarms and
misses divided by the total number of words [%]) for different models (HMM trained
on reference, BoosTexter trained on reference /TrREF/ and BoosTexter trained on
recognized words /TrASR/) and test conditions (REFerence and ASR), numbers within
parentheses correspond to relative reductions over chance error rate

HMM approach BoosTexter-TrREF BoosTexter-TrASR

chance 15.92 (0.0) 15.92 (0.0) N/A
LM 7.47 (53.1) 7.73 (51.4) N/A

REF pause 8.96 (43.7) 8.78 (44.8) N/A
all prosody 8.06 (49.4) 8.28 (48.0) N/A
LM+pause 5.89 (63.0) 5.88 (63.1) N/A
LM+all prosody 5.77 (63.8) 5.78 (63.7) N/A

chance 13.85 (0.0) 13.85 (0.0) 13.85 (0.0)
LM 9.43 (31.9) 9.59 (30.8) 9.48 (31.6)

ASR pause 8.97 (35.2) 8.85 (36.1) 8.82 (36.3)
all prosody 8.30 (40.1) 8.31 (40.0) 8.35 (39.7)
LM+pause 7.03 (49.2) 6.84 (50.6) 6.81 (50.8)
LM+all prosody 7.00 (49.4) 6.67 (51.8) 6.58 (52.5)

An interesting observation is that the BoosTexter model using both prosodic
and textual features proved to be more robust to recognition errors than the
HMM. Note that for the language model and prosody alone, boosting does not
help. However, when using both prosodic and lexical cues, it yields some gain
over the HMM. This fact supports the hypothesis that it is advantageous to more
tightly integrate prosodic and textual features. We tried training BoosTexter
on recognized rather than reference words, to see how training on data more
matched to the test data (i.e., containing many word errors) would affect per-
formance. As shown, this approach outperforms the approach of training on
reference in the case of boosting, but not when using the HMM. Finally, there
was a significant gain from adding prosodic features beyond pauses. For the best
BoosTexter model the gain was 0.23% absolute and 3.4% relative, significant
at p < 0.001.

To explore which prosodic features were useful in this task, we analyzed
prosodic decision trees from the HMM approach, because they are much easier
to interpret than the resulting BoosTexter model. We used the measure “feature
usage” [2], which counts how many times (by token) each feature is queried in
a decision tree. Results were averaged over all trees generated during ensemble
bagging. The statistics for each group of features as well as the best features from
each group are listed in Table 2. The statistics show that the most frequently
used features were pause duration after the current word, raw word duration,
pause after the following word, and normalized duration of the last rhyme in the
word. Sums of usages of features from the four basic groups show that those most
frequently queried in decision trees were duration features, followed by pause,
pitch, and energy features.



Table 2. Prosodic feature usage (percentage of total feature usage) for groups of
prosodic features

group total usage two most frequently used features from each group

pause 24.8 pause after current word(16.1), pause after previous word(5.7)

duration 48.9 word duration(9.3), last rhyme normalized duration(5.5)

pitch 21.4 first slope of following word(3.6), min f0 of last voic. region(3.2)

energy 4.9 mean RMS following word(2.3), min of voiced norm RMS (1.5)

4 Summary and Conclusions

We explored the use of prosody including pauses, duration, pitch, and energy
features, for automatic sentence segmentation of a large set of data from the ICSI
meeting corpus. We have examined two different approaches to the boundary
classification: HMM and a boosting-based classifier BoosTexter. Results indicate
that (1) information from pauses is important, including pause duration both
at the boundary, and at the previous and following word boundaries; (2) adding
duration, pitch, and energy features yields a further significant improvement;
(3) an integrated boosting-based model performs better than an HMM for ASR
conditions; (4) training the boosting-based model on recognized words yields
additional improvement.

From this work, we conclude that prosody can make an important contri-
bution to meeting understanding, via helping to find boundaries of sentences or
dialog acts. Features beyond pauses are worth exploring in future work, as are
modeling techniques that can tightly integrate prosodic and lexical features. Fi-
nally, for corpora in which state-of-the-art ASR performance is still rather poor,
it may be useful to train models on recognized rather than reference words.

5 Acknowledgments

The authors thank Dilek Hakkani-Tur and Gokhan Tur for help with the boosting
software, and Ozgur Cetin for generating ASR output. This work was supported
by the European Union 6th FWP ISR Integrated Project AMI (FP6-506811), the
DARPA CALO project (NBCHD-030010), NSF project IIS-0121396, DARPA
Contract No. HR0011-06-C-0023, and by the Academy of Sciences of the Czech
Republic (project No. 1QS101470516). The views expressed are those of the
authors, and not the funding agencies.

References

1. Stolcke, A., Shriberg, E., Bates, R., Ostendorf, M., Hakkani, D., Plauche, M.,
Tur, G., Lu, Y.: Automatic Detection of Sentence Boundaries and Disfluencies
Based on Recognized Words. In: Proc. ICSLP 98, pp. 2247–2250, Sydney (1998)



2. Shriberg, E., Stolcke, A., Hakkani-Tur, D., Tur, G.: Prosody-based Automatic Seg-
mentation of Speech into Sentences and Topics. In: Speech Communication, vol.
32, no. 1–2, p. 127–154 (2000)

3. Warnke, V., Kompe, R., Niemann, H., Nöth, E.: Integrated Dialog Act Segmen-
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