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Writing programs that scale with increasing 
numbers of cores should be as easy as writing 
programs for sequential computers.

bY Krste AsAnoViC, rAstisLAV boDiK, JAmes DemmeL,  
tonY KeAVenY, Kurt KeutZer, John KubiAtoWiCZ,  
neLson morGAn, DAViD PAtterson, KoushiK sen,  
John WAWrZYneK, DAViD WesseL, AnD KAtherine YeLiCK

A View of 
the Parallel 
Computing 
Landscape

technology advances to double per-
formance every 18 months. The im-
plicit hardware/software contract was 
that increased transistor count and 
power dissipation were OK as long 
as architects maintained the existing 
sequential programming model. This 
contract led to innovations that were 
inefficient in terms of transistors and 
power (such as multiple instruction 
issue, deep pipelines, out-of-order 
execution, speculative execution, 
and prefetching) but that increased 
performance while preserving the se-
quential programming model. 

The contract worked fine until we 
hit the power limit a chip is able to 
dissipate. Figure 1 reflects this abrupt 
change, plotting the projected micro-
processor clock rates of the Interna-
tional Technology Roadmap for Semi-
conductors in 2005 and then again just 
two years later.16 The 2005 prediction 
was that clock rates should have ex-
ceeded 10GHz in 2008, topping 15GHz 
in 2010. Note that Intel products are 
today far below even the conservative 
2007 prediction. 

After crashing into the power wall, 
architects were forced to find a new par-
adigm to sustain ever-increasing perfor-
mance. The industry decided the only 
viable option was to replace the single 
power-inefficient processor with many 
efficient processors on the same chip. 
The whole microprocessor industry 
thus declared that its future was in par-
allel computing, with increasing num-
bers of processors, or cores, each tech-
nology generation every two years. This 
style of chip was labeled a multicore mi-
croprocessor. Hence, the leap to mul-
ticore is not based on a breakthrough 
in programming or architecture and 
is actually a retreat from the more dif-
ficult task of building power-efficient, 
high-clock-rate, single-core chips.5 

Many startups have sold parallel 
computers over the years, but all failed, 
as programmers accustomed to con-
tinuous improvement in sequential 
performance saw little need to explore 
parallelism. Convex, Encore, Floating 
Point Systems, Inmos, Kendall Square 

INdUSTry NEEdS HELP from the research community 
to succeed in its recent dramatic shift to parallel 
computing. Failure could jeopardize both the 
IT industry and the portions of the economy 
that depend on rapidly improving information 
technology. Here, we review the issues and, as an 
example, describe an integrated approach we’re 
developing at the Parallel Computing Laboratory, or 
Par Lab, to tackle the parallel challenge. 

Over the past 60 years, the IT industry has improved 
the cost-performance of sequential computing by 
about 100 billion times overall.20 For most of the past 
20 years, architects have used the rapidly increasing 
transistor speed and budget made possible by silicon
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Research, MasPar, nCUBE, Sequent, 
Silicon Graphics, and Thinking Ma-
chines are just the best-known mem-
bers of the Dead Parallel Computer So-
ciety. Given this sad history, multicore 
pessimism abounds. Quoting comput-
ing pioneer John Hennessy, President 
of Stanford University: 

“…when we start talking about par-
allelism and ease of use of truly parallel 
computers, we’re talking about a problem 
that’s as hard as any that computer sci-
ence has faced. …I would be panicked if I 
were in industry.”19 

Jeopardy for the IT industry means 
opportunity for the research commu-
nity. If researchers meet the paral-
lel challenge, the future of IT is rosy. 
If they don’t, it’s not. Hence, there 
are few restrictions on potential so-
lutions. Given an excuse to reinvent 
the whole software/hardware stack, 
this opportunity is also a once-in-a-
career chance to fi x other weaknesses 
in computing that have accumulated 
over the decades like barnacles on the 
hull of an old ship. 

Here, we lay out one view of the op-
portunities, then, as an example, de-
scribe in more depth the approach of 
the Berkeley Parallel Computing Lab, 
or Par Lab, updating two long techni-
cal reports4,5 that include more detail. 
Our goal is to recruit more parallel 
revolutionaries. 

Parallel bridge 
The bridge in Figure 2 represents an 
analogy connecting computer users 
on the right to the IT industry on the 
left. The left tower is hardware, the 
right tower is applications, and the 

long span in between is software. We 
use the bridge analogy throughout 
this article. The aggressive goal of the 
parallel revolution is to make it as easy 
to write programs that are as effi cient, 
portable, and correct (and that scale as 
the number of cores per microproces-
sor increases biennially) as it has been 
to write programs for sequential com-
puters. Moreover, we can fail overall 
if we fail to deliver even one of these 
“parallel virtues.” For example, if par-
allel programming is unproductive, 
this weakness will delay and reduce 
the number of programs that are able 
to exploit new multicore architectures. 

Hardware tower. The power wall 
forces the change in the traditional 
programming model, but the question 
for parallel researchers is what kind of 
computing architecture should take 
its place. There is a technology sweet 
spot around a pipelined processor of 
fi ve-to-eight stages that is most effi -
cient in terms of performance per joule 
and silicon area.5 Using simple cores 
means there is room for hundreds of 
them on the same chip. Moreover, hav-
ing many such simple cores on a chip 
simplifi es hardware design and verifi -
cation, since each core is simple, and 
replication of cores is nearly trivial. 
Just as it’s easy to add spares to mask 
manufacturing defects, “manycore” 
computers can also have higher yield. 

One example of a manycore comput-
er is from the world of network proces-
sors, which has seen a great deal of inno-
vation recently due to the growth of the 
networking market. The best-designed 
network processor is arguably the Cisco 
Silicon Packet Processor, also known as 

Metro, which has 188 fi ve-stage RISC 
cores, plus four spares to help yield and 
dissipate just 35 watts. 

It may be reasonable to assume 
that manycore computers will be ho-
mogeneous, like the Metro, but there 
is an argument for heterogeneous 
manycores as well. For example, sup-
pose 10% of the time a program gets no 
speedup on a 100-core computer. To 
run this sequential piece twice as fast, 
assume a single fat core would need 10 
times as many resources as a thin core 
due to larger caches, a vector unit, and 
other features. Applying Amdahl’s Law, 
here are the speedups (relative to one 
thin core) of 100 thin cores and 90 thin 
cores for the parallel code plus one fat 
core for the sequential code: 

Speedup100 = 1 / (0.1 + 0.9/100) = 9.2 
times faster 

Speedup91 = 1 / (0.1/2 + 0.9/90) = 16.7 
times faster 

In this example of manycore proces-
sor speedup, a fat core needing 10 
times as many resources would be 
more effective than the 10 thin cores 
it replaces.5,15 

One notable challenge for the hard-
ware tower is that it takes four to fi ve 
years to design and build chips and port 
software to evaluate them. Given this 
lengthy cycle, how could researchers in-
novate more quickly? 

Software span. Software is the main 
problem in bridging the gap between 
users and the parallel IT industry. 
Hence, the long distance of the span in 
Figure 2 refl ects the daunting magni-
tude of the software challenge. 

One especially vexing challenge 
for the parallel software span is that 
sequential programming accommo-
dates the wide range of skills of today’s 
programmers. Our experience teach-
ing parallelism suggests that not every 
programmer is able to understand the 
nitty gritty of concurrent software and 
parallel hardware; diffi cult steps in-
clude locks, barriers, deadlocks, load 
balancing, scheduling, and memory 
consistency. How can researchers de-
velop technology so all programmers 
benefi t from the parallel revolution? 

A second challenge is that two criti-
cal pieces of system software—com-
pilers and operating systems—have 
grown large and unwieldy and hence 

figure 1. microprocessor clock rates of intel products vs. projects from 
the international roadmap for semiconductors in 2005 and 2007.16
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resistant to change. One estimate is 
that it takes a decade for a new compil-
er optimization to become part of pro-
duction compilers. How can research-
ers innovate rapidly if compilers and 
operating systems evolve so glacially? 

A fi nal challenge is how to measure 
improvement in parallel program-
ming languages. The history of these 
languages largely refl ects researchers 
deciding what they think would be 
better and then building it for oth-
ers to try. As humans write programs, 
we wonder whether human psychol-
ogy and human-subject experiments 
shouldn’t be allowed to play a larger 
role in this revolution.17 

Applications tower. The goal of re-
search into parallel computing should 
be to fi nd compelling applications that 
thirst for more computing than is cur-
rently available and absorb biennially 
increasing number of cores for the next 
decade or two. Success does not require 
improvement in the performance of 
all legacy software. Rather, we need to 
create compelling applications that ef-
fectively utilize the growing number of 
cores while providing software environ-
ments that ensure that legacy code still 
works with acceptable performance. 

Note that the notion of “better” 

ings with 50,000 or more servers to run 
SaaS, inspiring the new catchphrase 
“cloud computing.”b They have also be-
gun renting thousands of machines by 
the hour to enable smaller companies 
to benefi t from cloud computing. We 
expect these trends to accelerate; and 

The mobile device (laptops and hand-
helds) is the client. In 2007, Hewlett-
Packard, the largest maker of PCs, 
shipped more laptops than desktops. 
Millions of cellphones are shipped each 
day with ever-increasing functionality, a 
trend we expect to accelerate as well. 

Surprisingly, these extremes in 
computing share many characteris-
tics. Both concern power and energy—
the datacenter due to the cost of power 
and cooling and the mobile client due 
to battery life. Both concern cost—
the datacenter because server cost is 
replicated 50,000 times and mobile 
clients because of a lower unit-price 
target. Finally, the software stacks are 
becoming similar, with more layers for 
mobile clients and increasing concern 
about protection and security. 

b See Ambrust, M. et al. Above the Clouds:
A Berkeley View of Cloud Computing. Univer-
sity of California, Berkeley, Technical Report 
EECS-2009-28.

is not defi ned by only average per-
formance; advances could be in, say, 
worst-case response time, battery life, 
reliability, or security. To save the IT 
industry, researchers must demon-
strate greater end-user value from an 
increasing number of cores. 

Par Lab 
As a concrete example of the parallel 
landscape, we describe Berkeley’s Par 
Lab project,a exploring one of many 
potential approaches, though we won’t 
know for years which of our ideas will 
bear fruit. We hope it inspires more 
researchers to participate, increasing 
the chance of fi nding a solution before 
it’s too late for the IT industry. 

Given a fi ve-year project, we project 
the state of the fi eld in fi ve to 10 years, 
anticipating that IT will be driven to 
extremes in size due to the increasing 
popularity of software as a service, or 
SaaS: 

The datacenter is the server. Amazon, 
Google, Microsoft, and other major IT 
vendors are racing to construct build-

a In March 2007, Intel and Microsoft invited 25 
universities to propose fi ve-year centers for 
parallel computing research; the Berkeley and 
Illinois efforts were ranked fi rst and second.
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figure 2. bridge analogy connecting users to a parallel it industry, inspired by the view of the Golden Gate bridge from berkeley, CA. 
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Many datacenter applications have 
ample parallelism across independent 
users, so the Par Lab focuses on paral-
lelizing applications for clients. The 
multicore and manycore chips in the 
datacenter stand to benefit from the 
same tools and techniques developed 
for similar chips in mobile clients. 

Given this projection, we decided to 
take a fresh approach: the Par Lab will 
be driven top-down, applications first, 
then software, and finally hardware. 

Par Lab application tower. An unfor-
tunate computer science tradition is we 
build research prototypes, then wonder 
why applications people don’t use them. 
In the Par Lab, we instead selected ap-
plications up-front to drive research and 
provide concrete goals and metrics to 
evaluate progress. We selected each ap-
plication based on five criteria: compel-
ling in terms of likely market or social 
impact, with short-term feasibility and 
longer-term potential; requiring signifi-
cant speedup or smaller, more efficient 
platform to work as intended; covering 
the possible platforms and markets 
likely to dominate usage; enabling tech-
nology for other applications; and in-
volvement of a local committed expert 
application partner to help design, use, 
and evaluate our technology. 

Here are the five initial applications 
we’re developing: 

Music/hearing. High-performance 
signal processing will permit: concert-
quality sound-delivery systems for 
home sound systems and conference 
calls; composition and gesture-driven 
live-performance systems; and much 
improved hearing aids; 

Speech understanding. Dramatically 
improved automatic speech recogni-
tion in moderately noisy and rever-
berant environments would greatly 
improve existing applications and en-
able new ones, like, say, a real-time 
meeting transcriber with rewind and 
search. Depending on acoustic condi-
tions, current transcribers can gener-
ate many errors; 

Content-based image retrieval. Con-
sumer-image databases are growing so 
dramatically they require automated 
search instead of manual labeling. Low 
error rates require processing very high 
dimensional feature spaces. Current 
image classifiers are too slow to deliver 
adequate response times; 

Intraoperative risk assessment for 

stroke patients. Advanced physiological 
blood-flow modeling based on com-
putational analysis of 3D medical im-
ages of a patient’s cerebral vasculature 
enables “virtual stress testing” to risk-
stratify stroke victims intraoperatively. 
Patients thus identified at low risk of 
complications can then be treated to 
mitigate the effects of the stroke. This 
technology will ultimately lower compli-
cation rates in treating stroke victims, 
improve quality of life, reduce medical 
care expenditures, and save lives; and

Parallel browser. The browser will 
be the largest and most important ap-
plication on many mobile devices. We 
will first parallelize sequential browser 
bottlenecks. Rather than parallelizing 
JavaScript programs, we are pursuing 
an actor language with implicit paral-
lelism. Such a language may be acces-
sible to Web programmers while al-
lowing them to extract the parallelism 
in the browser’s JIT compiler, thereby 
turning all Web-site developers un-
knowingly into parallel programmers. 

Application-domain experts are 
first-class members of the Par Lab proj-
ect. Rather than try to answer design 
questions abstractly, we ask our experts 
what they prefer in each case. Project 
success is judged by the user experience 
with the collective applications on our 
hardware-software prototypes. If suc-
cessful, we imagine building on these 
five applications to create other appli-
cations that are even more compelling, 
as in the following two examples: 

Name Whisperer. Imagine that your 
mobile client peeking out of your shirt 
pocket is able to recognize the per-
son walking toward you to shake your 
hand. It would search a personal im-
age database, then whisper in your 
ear, “This man is John Smith. He got 
an A– from you in CS152 in 1993”; and 

Health Coach. As your mobile client 
is always with you, you could take pic-
tures and weigh your dishes (assum-
ing it has a built-in scale) before and 
after each meal. It would also record 
how much you exercise. Given calories 
consumed and burned and an image of 
your body, it could visualize what you’re 
likely to look like in six months at this 
rate and what you’d look like if you ate 
less or exercised more. 

Par Lab software span. Software 
is the major effort of the project, and 
we’re taking a different path from pre-

vious parallel projects, emphasizing 
software architecture, autotuning, and 
separate support for productivity vs. 
performance programming. 

Architecting parallel software with 
design patterns, not just parallel pro-
gramming languages. Our situation is 
similar to that found in other engineer-
ing disciplines where a new challenge 
emerges that requires a top-to-bottom 
rethinking of the entire engineering 
process; for example, in civil architec-
ture, Filippo Brunelleschi’s solution 
in 1418 for how to construct the dome 
for the Cathedral of Florence required 
innovations in tools and building tech-
niques, as well as rethinking the whole 
process of developing an architecture. 
All computer science faces a similar 
challenge; parallel programming is 
overdue for a fundamental rethinking 
of the process of designing software. 

Programmers have been trying to 
craft parallel code for decades and 
learned a great deal about what works 
and what doesn’t work. Automatic par-
allelism doesn’t work. Compilers are 
great at low-level scheduling decisions 
but can’t discover new algorithms to 
exploit concurrency. Programmers in 
high-performance computing have 
shown that explicit technologies (such 
as MPI and OpenMP) can be made to 
work but too often require heroic ef-
fort untenable for most commercial 
software vendors. 

To engineer high-quality parallel 
software, we plan to rearchitect the 
software through a “design pattern lan-
guage.” As explored in his 1977 book, 
civil architect Christopher Alexander 
wrote that “design patterns” describe 
time-tested solutions to recurring prob-
lems within a well-defined context.3 
An example is Alexander’s “family of 
entrances” pattern, addressing how to 
simplify comprehension of multiple 
entrances for a first-time visitor to a 
site. He defined a “pattern language” 
as a collection of related and interlock-
ing patterns, constructed such that the 
patterns flow into each other as the de-
signer solves a design problem. 

Computer scientists are trained to 
think in well-defined formalisms. Pat-
tern languages encourage a less for-
mal, more associative way of thinking 
about a problem. A pattern language 
does not impose a rigid methodol-
ogy; rather, it fosters creative problem 
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solving by providing a common vo-
cabulary to capture the problems en-
countered during design and identify 
potential solutions from among fami-
lies of proven designs. 

The observation that design patterns 
and pattern languages might be useful 
for software design is not new. An exam-
ple is Gamma et al.’s 1994 book Design 
Patterns, which outlined patterns use-
ful for object-oriented programming.12 
In building our own pattern language, 
we found Shaw’s and Garlan’s report,23 
which described a variety of architec-
tural styles useful for organizing soft-
ware, to be very effective. That these 
architectural styles may also be viewed 
as design patterns was noted earlier 
by Buschmann in his 1996 book Pat-
tern-Oriented Software Architecture.7 In 
particular, we adopted Pipe-and-Filter, 
Agent-and-Repository, Process Control, 
and Event-Based architectural styles as 
structural patterns within our pattern 
language. To this list, we add MapReduce 
and Iterator as structural design patterns. 

These patterns define the structure 
of a program but do not indicate what 
is actually computed. To address this 
blind spot, another key part of our pat-
tern language is the set of “dwarfs” of 
the Berkeley View reports4,5 (see Fig-
ure 3). Dwarfs are best understood as 
computational patterns providing the 
computational interior of the structural 
patterns discussed earlier. By analogy, 
the structural patterns describe a fac-
tory’s physical structure and general 
workflow. The computational patterns 
describe the factory’s machinery, flow 
of resources, and work products. Struc-
tural and computational patterns can 
be combined to architect arbitrarily 
complex parallel software systems. 

Convention holds that truly useful 
patterns are not invented but mined 
from successful software applications. 
To arrive at our list of useful compu-
tational patterns we began with those 
compiled by Phillip Collela of Law-
rence Berkeley National Laboratory of 
the “seven dwarfs of high-performance 
computing.” Then, in 2006 and 2007 
we worked with domain experts to 
broadly survey other application ar-
eas, including embedded systems, 
general-purpose computing (SPEC 
benchmarks), databases, games, arti-
ficial intelligence/machine learning, 
computer-aided design of integrated 

circuits, and high-performance com-
puting. We then focused in depth on 
the patterns in the applications we de-
scribed earlier. Figure 3 shows the re-
sults of our pattern mining. 

Computational and structural pat-
terns can be hierarchically composed 
to define an application’s high-level 
software architecture, but a complete 
pattern language for application de-
sign must at least span the full range, 
from high-level architecture to detailed 
software implementation and tuning. 
Mattson et al’s 2004 book Patterns for 
Parallel Programming18 was the first 
such attempt to systematize parallel 
programming using a complete pattern 
language. We combine the structural 
and computational patterns mentioned 
earlier in our pattern language to liter-
ally sit on top of the algorithmic struc-
tures and implementation structures 
in the pattern language in Mattson’s 
book. The resulting pattern language is 
still under development but is already 
employed by the Par Lab to develop the 
software architectures and parallel im-
plementations of such diverse applica-
tions as content-based image retrieval, 
large-vocabulary continuous speech 
recognition, and timing analysis for in-
tegrated circuit design. 

Patterns are conceptual tools that 
help a programmer reason about a 
software project and develop an ar-
chitecture but are not themselves 
implementation mechanisms for 
producing code. 

Split productivity and efficiency lay-
ers, not just a single general-purpose 
layer. A key Par Lab research objective 
is to enable programmers to easily 
write programs that run as efficiently 
on manycore systems as on sequential 
ones. Productivity, efficiency, and cor-
rectness are inextricably linked and 
must be addressed together. These ob-
jectives cannot be accomplished with 
a single-point solution (such as a uni-
versal language). In our approach, pro-
ductivity is addressed in a productivity 
layer that uses a common composition 
and coordination language to glue to-
gether the libraries and programming 
frameworks produced by the efficien-
cy-layer programmer. Efficiency is prin-
cipally handled through an efficiency 
layer that is targeted for use by expert 
parallel programmers. 

The key to generating a successful 

if researchers  
meet the  
parallel challenge, 
the future of it  
is rosy. if they  
don’t, it’s not.
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multicore software developer commu-
nity is to maximally leverage the efforts 
of parallel programming experts by en-
capsulating their software for use by the 
programming masses. We use the term 
“programming framework” to mean 
a software environment that supports 
implementation of the solution pro-
posed by the associated design pattern. 
The difference between a programming 
framework and a general programming 
model or language is that in a program-
ming framework the customization is 
performed only at specified points that 
are harmonious with the style embod-
ied in the original design pattern. An 
example of a successful sequential 
programming framework is the Ruby 
on Rails framework, which is based 
on the Model-View-Controller pat-
tern.26 Users have ample opportunity 
to customize the framework but only 
in harmony with the core Model-View-
Controller pattern. 

Frameworks include libraries, code 
generators, and runtime systems that 
assist programmers with implementa-
tion by abstracting difficult portions 
of the computation and incorporating 
them into the framework itself. Histor-
ically successful parallel frameworks 
encode the collective experience of the 
programming community’s solutions 

to recurring problems. Basing frame-
works on pervasive design patterns will 
help make parallel frameworks broad-
ly applicable. 

Productivity-layer programmers will 
compose libraries and programming 
frameworks into applications with the 
help of a composition and coordina-
tion language.13 The language will be 
implicitly parallel; that is, its composi-
tion will have serial semantics, mean-
ing the composed programs will be 
safe (such as race-free) and virtualized 
with respect to processor resources. It 
will document and check interface re-
strictions to avoid concurrency bugs 
resulting from incorrect composition, 
as in, say, instantiating a framework 
with a stateful function when a state-
less one is required. Finally, it will 
support definition of domain-specific 
abstractions for constructing frame-
works for specific applications, offer-
ing a programming experience similar 
to MATLAB and SQL. 

Parallel programs in the efficiency 
layer are written very close to the ma-
chine, with the goal of allowing the best 
possible algorithm to be written in the 
primitives of the layer. Unfortunately, 
existing multicore systems do not of-
fer a common low-level programming 
model for parallel code. We are thus 

defining a thin portability layer that 
runs efficiently across single-socket 
platforms and includes features for 
parallel job creation, synchronization, 
memory allocation, and bulk-memory 
access. To provide a common model of 
memory across machines with coher-
ent caches, local stores, and relatively 
slow off-chip memory, we are defining 
an API based on the idea of logically 
partitioned shared memory, inspired 
by our experience with Unified Parallel 
C,27 which partitions memory among 
processors but not (currently) between 
on- and off-chip. 

We may implement this efficiency 
language either as a set of runtime 
primitives or as a language extension of 
C. It will be extensible with libraries to 
experiment with various architectural 
features (such as transactions, dynamic 
multithreading, active messages, and 
collective communication). The API will 
be implemented on some existing mul-
ticore and manycore platforms and on 
our own emulated manycore design. 

To engineer parallel software, pro-
grammers must be able to start with 
effective software architectures, and 
the software engineer would describe 
the solution to a problem in terms of a 
design pattern language. Based on this 
language, the Par Lab is creating a fam-

figure 3. the color of a cell (for 12 computational patterns in seven general application areas and five Par Lab applications)  
indicates the presence of that computational pattern in that application; red/high; orange/moderate; green/low; blue/rare.
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ily of frameworks to help turn a design 
into working code. The general-pur-
pose programmer will work largely with 
the frameworks and stay within what 
we call the productivity layer. Specialist 
programmers trained in the details of 
parallel programming technology will 
work within the efficiency layer to im-
plement the frameworks and map them 
onto specific hardware platforms. This 
approach will help general-purpose 
programmers create parallel software 
without having to master the low-level 
details of parallel programming. 

Generating code with search-based au-
totuners, not compilers. Compilers that 
automatically parallelize sequential 
code may have great commercial value 
as computers go from one to two to four 
cores, though as described earlier, his-
tory suggests they will be unable to scale 
from 32 to 64 to 128 cores. Compiling 
will be even more difficult, as the switch 
to multicore means microprocessors 
are becoming more diverse, since con-
ventional wisdom is not yet established 
for multicore architectures. For exam-
ple, the table here shows the diversity 
in designs of x86 and SPARC multicore 
computers. In addition, as the num-
ber of cores increase, manufacturers 
will likely offer products with differing 
numbers of cores per chip to cover mul-
tiple price-performance points. They 
will also allow each core to vary its clock 
frequency to save power. Such diversity 
will make the goals of efficiency, scal-
ing, and portability even more difficult 
for conventional compilers, at a time 
when innovation is desperately needed. 

In recent years, autotuners have 
become popular for producing high-
quality, portable scientific code for se-
rial microprocessors,10 optimizing a set 
of library kernels by generating many 
variants of a kernel and measuring each 
variant by running on the target plat-
form. The search process effectively 
tries many or all optimization switches; 
hence, searching may take hours to 
complete on the target platform. How-
ever, search is performed only once, 
when the library is installed. The result-
ing code is often several times faster 
than naive implementations. A single 
autotuner can be used to generate high-
quality code for a variety of machines. 
In many cases, the autotuned code is 
faster than vendor libraries that were 
specifically hand-tuned for the target 

The synthesized mechanics could be 
barrier synchronization expressions or 
tricky loop bounds in stencil loops. Our 
sketching-based synthesis is to tradi-
tional, deductive synthesis what model 
checking is to theorem proving; rather 
than interactively deriving a program, 
our system searches a space of candi-
date programs with constraint solving. 
Efficiency is achieved by reducing the 
problem to one solved with two com-
municating SAT solvers. In future work, 
we hope to synthesize parallel sparse 
matrix codes and data-parallel algo-
rithms for additional problems (such as 
parsing). 

Verification and testing, not one or the 
other. Correctness is addressed differ-
ently at the two layers. The productiv-
ity layer is free from concurrency prob-
lems because the parallelism models 
are restricted, and the restrictions are 
enforced. The efficiency-layer code is 
checked automatically for subtle con-
currency errors. 

A key challenge in verification is 
obtaining specifications for programs 
to verify. Modular verification and au-
tomated unit-test generation require 
the specification of high-level serial se-
mantic constraints on the behavior of 
the individual modules (such as paral-
lel frameworks and parallel libraries). 
To simplify specification, we use ex-
ecutable sequential programs with the 
same behavior as a parallel component, 
augmented with atomicity constraints 
on a task,21 predicate abstractions of 
the interface of a module,14 or multiple 
ownership types.8 

Programmers often find it difficult to 
specify such high-level contracts involv-
ing large modules; however, most find 
it convenient to specify local properties 
of programs using assert statements 
and type annotations. Local assertions 
and type annotations are often gener-
ated from a program’s implicit correct-
ness requirements (such as data race, 
deadlock freedom, and memory safety). 
The system propagates implications 
of these local assertions to the module 
boundaries through a combination of 
static verification and directed automat-
ed unit testing. These implications cre-
ate serial contracts that specify how the 
modules (such as frameworks) are used 
correctly. When the contracts for the 
parallel modules are in place, program-
mers use static program verification to 

machine. This surprising result is partly 
explained by the way the autotuner tire-
lessly tries many unusual variants of a 
particular routine. Unlike libraries, au-
totuners also allow tuning to the partic-
ular problem size. Autotuners also pre-
serve clarity and support portability by 
reducing the temptation to mangle the 
source code to improve performance 
for a particular computer. 

Autotuning also helps with produc-
tion of parallel code. However, paral-
lel architectures introduce many new 
optimization parameters; so far, there 
are few successful autotuners for paral-
lel codes. For any given problem, there 
may be several parallel algorithms, each 
with alternative parallel data layouts. 
The optimal choice may depend not 
only on the processor architecture but 
also on the parallelism of the computer 
and memory bandwidth. Consequent-
ly, in a parallel setting, the search space 
will be much larger than for traditional 
serial hardware. 

The table lists the results of auto-
tuning on three multicores for three 
kernels related to the dwarfs’ sparse 
matrix, stencil for PDEs, and structured 
grids9,30,31 mentioned earlier. This au-
totuned code is the fastest known for 
these kernels for all three computers. 
Performance increased by factors of two 
to four over standard code, much better 
than you would expect from an optimiz-
ing compiler. 

Efficiency-layer programmers will 
be able to build autotuners for use by 
domain experts and other efficiency-
layer programmers to help deliver on 
the goals of efficiency, portability, and 
scalability. 

Synthesis with sketching. One chal-
lenge for autotuning is how to produce 
the high-performance implementa-
tions explored by the search. One ap-
proach is to synthesize these complex 
programs. In doing so, we rely on the 
search for performance tuning, as well 
as for programmer productivity. To ad-
dress the main challenge of traditional 
synthesis—the need for experts to com-
municate their insight with a formal 
domain theory—we allow that insight 
to be communicated directly by pro-
grammers who write an incomplete 
program, or “sketch.” In it, they provide 
an algorithmic skeleton, and the syn-
thesizer supplies the low-level mechan-
ics by filling in the holes in the sketch. 
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check if the client code composed with 
the contracts is correct. 

Static program analysis in the pres-
ence of pointers and heap memory 
falsely reports many errors that cannot 
really occur. For restricted parallelism 
models with global synchronization, 
this analysis becomes more tractable, 
and a recently introduced technique 
called “directed automated testing,” 
or concolic unit testing, has shown 
promise for improving software quality 
through automated test generation us-
ing a combination of static and dynam-
ic analyses.21 The Par Lab combines 
directed testing with model-checking 
algorithms to unit-test parallel frame-
works and libraries composed with se-
rial contracts. Such techniques enable 
programmers to quickly test executions 
for data races and deadlocks directly, 
since a combination of directed test 
input generation and model checking 
hijacks the underlying scheduler and 
controls the synchronization primi-
tives. Our testing techniques will pro-
vide deterministic replay and debug-
ging capabilities at low cost. We will 
also develop randomized extensions of 
our directed testing techniques to build 
a probabilistic model of path cover-

age. The probabilistic models will give 
a more realistic estimate of coverage of 
race and other concurrency errors in 
parallel programs. 

Parallelism for energy efficiency. While 
the earlier computer classes—desktops 
and laptops—reused the software of 
their own earlier ancestors, the energy 
efficiency for handheld operation may 
need to come from data parallelism 
in tasks that are currently executed se-
quentially, possibly from three sources: 

Efficiency. Completing a task on slow 
parallel cores will be more efficient than 
completing it in the same time sequen-
tially on one fast core; 

Energy amortization. Preferring data-
parallel algorithms over other styles of 
parallelism, as SIMD and vector com-
puters amortize the energy expended 
on instruction delivery; and 

Energy savings. Message-passing pro-
grams may be able to save the energy 
used by cache coherence. 

We apply these principles in our work 
on parallel Web browsers. In algorithm 
design, we observe that to save energy 
with parallelization, parallel algorithms 
must be close to “work efficient,” that 
is, they should perform no more total 
work than a sequential algorithm, or 

else parallelization is counterproduc-
tive. The same argument applies to op-
timistic parallelization. Work efficiency 
is a demanding requirement, since, for 
some “inherently sequential” problems, 
like finite-state machines, only work-
inefficient algorithms are known. In this 
context, we developed a nearly work-ef-
ficient algorithm for lexical analysis. We 
are also working on data-parallel algo-
rithms for Web-page layout and identi-
fying parallelism in future Web-browser 
applications, attempting to implement 
them with efficient message passing. 

Space-time partitioning for decon-
structed operating systems. Space-time 
partitioning is crucial for manycore cli-
ent operating systems. A spatial partition 
(partition for short) is an isolated unit 
containing a subset of physical machine 
resources (such as cores, cache parti-
tions, guaranteed fractions of memory 
or network bandwidth, and energy 
budget). Space-time partitioning virtu-
alizes spatial partitions by time-multi-
plexing whole partitions onto available 
hardware but at a coarse-enough gran-
ularity to allow efficient programmer-
level scheduling in a partition. 

The presence of space-time parti-
tioning leads to restructuring systems 

Autotuned performance in GfLoPs/s on three kernels for dual-socket systems.

mPu type

Intel e5345 Xeon  
4 out-of-order cores,  

2.3Gh

AMD 2356 Opteron X4 
4 out-of-order cores,  

2.3Ghz 

Sun 5140 UltraSPARC T2 
8 multithreaded cores,  

1.2Ghz

Kernel  
Optimization SpMV Stencil LBMhD SpMV Stencil LBMhD SpMV Stencil LBMhD

Standard 1.0 1.3 3.5 1.4 1.5 3.0 2.1 0.5 3.4

NUMA 1.0 — 3.5 2.4 2.6 3.7 3.5 0.5 3.8

Padding  — 1.3 4.5 — 3.1 5.8 — 0.5 3.8

Vectorization — — 4.6 — — 7.7 — — 9.7

Unrolling — 1.7 4.6 — 3.6 8.0 — 0.5 9.7

Prefetching 1.1 1.7 4.6 2.9 3.8 8.1 3.6 0.5 10.5

Compression 1.5 — — 3.6 — — 4.1 — —

$/TLB block — 2.2 — — 4.9 — — 5.1 —

Collab Thread — — — — — — — 6.7 —

SIMD — 2.5 5.6 — 8.0 14.1 — — —

Final 1.5 2.5 5.6 3.6 8.0 14.1 4.1 6.7 10.5
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services as a set of interacting distrib-
uted components. We propose a new 
“deconstructed OS” called Tessellation 
structured around space-time partition-
ing and two-level scheduling between 
the operating system and application 
runtimes. Tessellation implements 
scheduling and resource management 
at the partition granularity. Applica-
tions and OS services (such as file sys-
tems) run within their own partitions. 
Partitions are lightweight and can be 
resized or suspended with similar over-
heads to a process-context swap. 

A key tenet of our approach is that 
resources given to a partition are either 
exclusive (such as cores or private cach-
es) or guaranteed via a quality-of-service 
contract (such as a minimum fraction 
of network or memory bandwidth). 
During a scheduling quantum, the ap-
plication runtime within a partition 
is given unrestricted “bare metal” ac-
cess to its resources and may schedule 
tasks onto them in some way. Within 
a partition, our approach has much in 
common with the Exokernel.11 In the 
common case, we expect many appli-
cation runtimes to be written as librar-
ies (similar to libOS). Our Tessellation 
kernel is a thin layer responsible for 
only the coarse-grain scheduling and 
assignment of resources to partitions 
and implementation of secure restrict-
ed communications among partitions. 
The Tessellation kernel is much thin-
ner than traditional kernels or even 
hypervisors. It avoids many of the per-
formance issues associated with tra-
ditional microkernels by providing OS 
services through secure messaging to 
spatially co-resident service partitions, 
rather than context-switching to time-
multiplexed service processes. 

Par Lab hardware tower. Past parallel 
projects were often driven by the hard-
ware determining the application and 
software environment. The Par Lab is 
driven top down from the applications, 
so the question this time is what should 
architects do to help with the goals of 
productivity, efficiency, correctness, 
portability, and scalability? 

Here are four examples of this kind 
of help that illustrate our approach: 

Supporting OS partitioning. Our hard-
ware architecture enforces partition-
ing of not only the cores and on-chip/
off-chip memory but also the commu-
nication bandwidth among these com-

ponents, providing quality-of-service 
guarantees. The resulting performance 
predictability improves parallel pro-
gram performance, simplifies code au-
totuning and dynamic load balancing, 
supports real-time applications, and 
simplifies scheduling. 

Optional explicit control of the mem-
ory hierarchy. Caches were invented so 
hardware could manage a memory hi-
erarchy without troubling the program-
mer. When it takes hundreds of clock 
cycles to go to memory, programmers 
and compilers try to reverse-engineer 
the hardware controllers to make bet-
ter use of the hierarchy. This backward 
situation is especially apparent for 
hardware prefetchers when program-
mers try to create a particular pattern 
that will invoke good prefetching. Our 
approach aims to allow programmers 
to quickly turn a cache into an explicitly 
managed local store and the prefetch 
engines into explicitly controlled Di-
rect Memory Access engines. To make it 
easy for programmers to port software 
to our architecture, we also support a 
traditional memory hierarchy. The low-
overhead mechanism we use allows 
programs to be composed of methods 
that rely on local stores and methods 
that rely on memory hierarchies. 

Accurate, complete counters of perfor-
mance and energy. Sadly, performance 
counters on current single-core com-
puters often miss important measure-
ments (such as prefetched data) or are 
unique to a computer and only under-
standable by the machine’s designers. 
We will include performance enhance-
ments in the Par Lab architecture only 
if they have counters to measure them 
accurately and coherently. Since energy 
is as important as performance, we also 
include energy counters so software can 
improve both. Moreover, these coun-
ters must be integrated with the soft-
ware stack to provide insightful mea-
surements to the efficiency-layer and 
productivity-layer programmers. Ide-
ally, this research will lead to a standard 
for performance counters so schedul-
ers and software development kits can 
count on them on any multicore. 

Intuitive performance model. The 
multicore diversity mentioned earlier 
exacerbates the already difficult jobs 
performed by programmers, compiler 
writers, and architects. Hence, we de-
veloped an easy-to-understand visual 

to save the 
it industry, 
researchers must 
demonstrate 
greater end-user 
value from  
an increasing 
number of cores. 
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Center is pursuing deterministic mod-
els that allow programmers to reason 
with sequential semantics for testing 
while naturally exposing a parallel per-
formance model for WYSIWYG perfor-
mance. For reactive programs where 
parallelism is part of the problem, it is 
pursuing a shared-nothing approach 
that leverages actor-like models used in 
distributed systems. For application do-
mains that allow greater specialization, 
it is developing a framework to gener-
ate domain-specific environments that 
either hide concurrency or expose only 
specialized forms of concurrency to the 
end user while exploiting domain-spe-
cific optimizations and performance 
measures. Initial applications and do-
mains include teleimmersion via “vir-
tual teleportation” (multimedia), dy-
namic real-time virtual environments 
(computer graphics), learning by read-
ing, and authoring assistance (natural 
language processing). 

Stanford. The Pervasive Parallelism 
Laboratory (http://ppl.stanford.edu/
wiki/index.php/Pervasive_Parallelism_
Laboratory) at Stanford University takes 
an application-driven approach toward 
parallel computing that extends from 
programming models down to hard-
ware architecture. The key technical 
concepts are domain-specific languag-
es for increasing programmer produc-
tivity and a common parallel runtime 
environment combining dynamic and 
static approaches for concurrency 
and locality management. There are 
domain-specific languages for artifi-
cial intelligence and robotics, business 
data analysis, and virtual worlds and 
gaming. The experimental platform 
is the Flexible Architecture Research 
Machine, or FARM, system, combining 
commercial processors with FPGAs in 
the memory fabric. 

Georgia Tech. The Sony, Toshiba, 
IBM Center of Competence for the Cell 
Broadband Engine Processor (http://sti.
cc.gatech.edu/) at Georgia Tech focuses 
on a single multicore computer, as its 
name suggests. Researchers explore 
versions of programs on Cell, includ-
ing image compression6 and financial 
modeling.2 The Center also sponsors 
workshops and provides remote access 
to Cell hardware. 

Rice University. The Habanero Multi-
core Software Project (http://habanero.
rice.edu/Habanero_Home.html) at 

model with built-in performance guide-
lines to identify bottlenecks in the dozen 
dwarfs in Figure 3.29 The Roofline mod-
el plots computational and memory-
bandwidth limits, then determines the 
best possible performance of a kernel 
by examining the average number of op-
erations per memory access. It also plots 
ceilings below the “roofline” to suggest 
the optimizations that might be useful 
for improving performance. One goal of 
the performances counters should be to 
provide everything needed to automati-
cally create Roofiline models. 

A notable challenge from our ear-
lier description of the hardware tower 
is how to rapidly innovate at the hard-
ware/software interface, when it can 
take four to five years to build chips and 
run programs needed to evaluate them. 
Given the capacity of field-programma-
ble gate arrays (FPGAs), researchers can 
prototype full hardware and software 
systems that run fast enough to inves-
tigate architectural innovations. This 
flexibility means researchers can “tape 
out” every day, rather than over years. 
We will leverage the Research Accelera-
tor for Multiple Processors (RAMP) Proj-
ect (http://ramp.eecs.berkeley.edu/) to 
build flexible prototypes fast enough to 
run full software stacks—including new 
operating systems and our five com-
pelling applications—to enable rapid 
architecture innovation using future 
prototype software, rather than past 
benchmarks.28 

reasons for optimism 
Given the history of parallel comput-
ing, it’s easy to be pessimistic about our 
chances. The good news is that there 
are plausible reasons researchers could 
succeed this time: 

No killer microprocessor. Unlike in the 
past, no one is building the faster serial 
microprocessor; programmers need-
ing more performance have no option 
other than parallel hardware; 

New measures of success. Rather than 
the traditional goal of linear speedup 
for all software as the number of pro-
cessors increases, success can reflect 
improved responsiveness or MIPS/Joule 
for a few new parallel killer apps; 

All the wood behind one arrow. As 
there is no alternative, the whole IT in-
dustry is committed, meaning many 
more people and companies are work-
ing on the problem; 

Manycore synergy with cloud comput-
ing. SaaS applications in data centers 
with millions of users are naturally par-
allel and thus aligned with manycore, 
even if clients apps are not; 

Vitality of open source software. The 
OSS community is a meritocracy, so it’s 
likely to embrace technical advances 
rather than be limited by legacy code. 
Though OSS has existed for years, it is 
more important commercially today 
than it was; 

Single-chip multiprocessors enable in-
novation. Having all processors on the 
same chip enables inventions that were 
impractical or uneconomical when 
spread across many chips; and

FPGA prototypes shorten the hard-
ware/software cycle. Systems like RAMP 
help researchers explore designs of 
easy-to-program manycore architec-
tures and build prototypes more quickly 
than they ever could with conventional 
hardware prototypes. 

Given the importance of the chal-
lenges to our shared future in the IT 
industry, pessimism is not a sufficient 
excuse to sit on the sidelines. The sin is 
not lack of success but lack of effort. 

related Projects 
Computer science hasn’t solved the 
parallel challenge though not because 
it hasn’t tried. There could be a dozen 
conferences dedicated to parallelism, 
including Principles and Practice of Par-
allel Programming, Parallel Algorithms 
and Architectures, Parallel and Distrib-
uted Processing, and Supercomputing. 
All traditionally focus on high-perfor-
mance computing; the target hardware 
is usually large-scale computers with 
thousands of microprocessors. Simi-
larly, there are many high-performance 
computing research centers. Rather 
than review this material, here we high-
light four centers focused on multicore 
computers and their approaches to the 
parallel challenge in academia: 

Illinois. The Universal Parallel Com-
puting Research Center (http://www.
upcrc.illinois.edu/) at the University of 
Illinois focuses on making it easy for do-
main experts to take advantage of paral-
lelism, so the emphasis is more on pro-
ductivity in specific domains than on 
generality or performance.1 It relies on 
advancing compiler technology to find 
opportunities for parallelism, whereas 
the Par Lab focuses on autotuning. The 



contributed articles

oCtobER 2009  |   vol.  52  |   No.  10  |   CommuniCAtions of the ACm     67

Rice University is developing languages, 
compilers, managed runtimes, concur-
rency libraries, and tools that support 
portable parallel abstractions with high 
productivity and high performance for 
multicores; examples include parallel 
language extensions25 and optimized 
synchronization primitives.24 

Conclusion 
We’ve provided a general view of the 
parallel landscape, suggesting that the 
goal of computer science should be 
making parallel computing productive, 
efficient, correct, portable, and scal-
able. We highlighted the importance 
of finding new compelling applica-
tions and the advantages of manycore 
and heterogeneous hardware. We also 
described the research of the Berkeley 
Par Lab. While it will take years to learn 
which of our ideas work well, we share it 
here as a concrete example of a coordi-
nated attack on the problem. 

Unlike the traditional approach of 
making hardware king, the Par Lab 
is application-driven, working with 
domain experts to create compelling 
applications in music, image- and 
speech-recognition, health, and par-
allel browsers. 

The software span connecting ap-
plications to hardware relies more on 
parallel software architectures than 
on parallel programming languages. 
Instead of traditional optimizing com-
pilers, we depend on autotuners, us-
ing a combination of empirical search 
and performance modeling to create 
highly optimized libraries tailored to 
specific machines. By splitting the soft-
ware stack into a productivity layer and 
an efficiency layer and targeting them 
at domain experts and programming 
experts respectively, we hope to bring 
parallel computing to all programmers 
while keeping domain experts produc-
tive and allowing expert programmers 
to achieve maximum efficiency. Our ap-
proach to correctness relies on verifica-
tion where possible, then uses the same 
tools to reduce the amount of testing 
where verification is not possible. 

The hardware tower of the Par Lab 
serves the software span and applica-
tion tower. Examples of such service 
include support for OS partitioning, ex-
plicit control for the memory hierarchy, 
accurate measurement for performance 
and energy, and an intuitive, multicore 

10. Demmel, J., Dongarra, J., eijkhout, v., fuentes, e., 
Petitet, a., vuduc, r., Whaley, r., and yelick, K. self-
adapting linear algebra algorithms and software. 
Proceedings of the IEEE, Special Issue on Program 
Generation, Optimization, and Adaptation 93, 2 (feb. 
2005), 293–312. 

11. engler, D.r. exokernel: an operating system 
architecture for application-level resource 
management. in Proceedings of the 15th Symposium 
on Operating Systems Principles (cooper Mountain, co, 
Dec. 3–6, 1995), 251–266. 

12. gamma, e. et al. Design Patterns: Elements of 
Reusable Object-Oriented Software. addison-Wesley 
Professional, reading, Ma, 1994. 

13. gelernter, D. and carriero, n. coordination languages 
and their significance. Commun. ACM 35, 2 (feb. 1992), 
97–107. 

14. henzinger, t.a. et al. Permissive interfaces. in 
Proceedings of the 10th European Software Engineering 
Conference (lisbon, Portugal, sept. 5–9). acM Press, 
new york, 2005, 31–40. 

15. hill, M. and Marty, M. amdahl’s law in the multicore 
era. IEEE Computer 41, 7 (2008), 33–38. 

16. international technology roadmap for 
semiconductors. executive summary, 2005 and 2007; 
http://public.itrs.net/. 

17. Kantowitz, B. and sorkin, r. Human Factors: 
Understanding People-System Relationships. John 
Wiley & sons, inc., new york, 1983. 

18. Mattson, t., sanders, B., and Massingill, B. Patterns for 
Parallel Programming. addison-Wesley Professional, 
reading, Ma, 2004. 

19. o’hanlon, c. a conversation with John hennessy and 
David Patterson. Queue 4, 10 (Dec. 2005/Jan. 2006), 
14–22. 

20. Patterson, D. and hennessy, J. Computer Organization 
and Design: The Hardware/Software Interface, Fourth 
Edition. Morgan Kaufmann Publishers, Boston, Ma, nov. 
2008. 

21. sen, K. and viswanathan, M. Model checking 
multithreaded programs with asynchronous atomic 
methods. in Proceedings of the 18th International 
Conference on Computer-Aided Verification (seattle, 
Wa, aug. 17–20, 2006). 

22. sen, K. et al. cute: a concolic unit testing engine for 
c. in Proceedings of the Fifth Joint Meeting European 
Software Engineering Conference (lisbon, Portugal, 
sept. 5–9). acM Press, new york, 2005, 263–272. 

23. shaw, M. and garlan, D. An Introduction to Software 
Architecture. technical report cMu/sei-94-tr-21, 
esc-tr-94-21. cMu software engineering institute, 
carnegie Mellon university, Pittsburgh, Pa, 1994. 

24. shirako, J., Peixotto, D., sarkar, v., and scherer, 
W. Phasers: a unified deadlock-free construct for 
collective and point-to-point synchronization. in 
Proceedings of the 22nd ACM International Conference 
on Supercomputing (island of Kos, greece, June 7–12). 
acM Press, new york, 2008, 277–288. 

25. shirako, J., Kasahara, h., and sarkar, v. language 
extensions in support of compiler parallelization. in 
Proceedings of the 20th Workshop on Languages and 
Compilers for Parallel Computing (urbana, il, oct. 
11–13). springer-verlag, Berlin, 2007, 78–94. 

26. thomas, D. et al. Agile Web Development with Rails, 
Second Edition. the Pragmatic Bookshelf, raleigh, nc, 
2008. 

27. uPc language specifications, version 1.2. technical 
report lBnl-59208. lawrence Berkeley national 
laboratory, Berkeley, ca, 2005. 

28. Wawrzynek, J. et al. raMP: research accelerator for 
Multiple Processors. IEEE Micro 27, 2 (Mar. 2007), 
46–57. 

29. Williams, s., Waterman, a., and Patterson, D. roofline: 
an insightful visual performance model for floating-
point programs and multicore architectures. Commun. 
ACM 52, 4 (apr. 2009), 65–76. 

30. Williams, s. et al. lattice Boltzmann simulation 
optimization on leading multicore platforms. in 
Proceedings of the 22nd IEEE International Parallel 
and Distributed Processing Symposium (Miami, fl, apr. 
14–18, 2008). 

31. Williams, s. et al. optimization of sparse matrix-vector 
multiplication on emerging multicore platforms. in 
Proceedings of the Supercomputing (SC07) Conference 
(reno, nv, nov. 10–16). acM Press, new york, 2007. 

the authors are all affiliated with the Par lab (http://parlab.
eecs.berkeley.edu/) at the university of california, Berkeley. 

© 2009 acM 0001-0782/09/1000 $10.00

performance model. We also plan to try 
to scrape off the barnacles that have ac-
cumulated on the hardware/software 
stack over the years. 

This parallel challenge offers the 
worldwide research community an op-
portunity to help IT remain a growth 
industry, sustain the parts of the world-
wide economy that depend on the con-
tinuous improvement in IT cost-per-
formance, and take a once-in-a-career 
chance to reinvent the whole software/
hardware stack. Though there are rea-
sons for optimism, the difficulty of the 
challenge is reflected in the numerous 
parallel failures of the past. 

Combining upside and downside, 
this research challenge represents the 
most significant of all IT challenges 
over the past 50 years. We hope many 
more innovators will join this quest to 
build a parallel bridge. 
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