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ABSTRACT large volume audio retrieval and multi-modal meeting event
During the past few years, speaker diarization has achievé@tecuoh' faster than real-time performance is rfaqylre'd.
satisfying accuracy in terms of speaker Diarization ErrateR In this paper, we present a fast speaker diarization ap-

(DER). The most successful approaches, based on agglonm@roach by introducing a fast-match component to largely re-
rative clustering, however, exhibit an inherent compotzal  duce the hypothesis space of the BIC-based model selection.
complexity which makes real-time processing, especially i The basic idea of fast-match is using a computationally ghea
combination with further processing steps, almost impossimethod to reduce the hypothesis space of the more expensive
ble. In this article we present a framework to speed up aggand accurate search, which has been widely used for word de-
lomerative clustering speaker diarization. The basic idea coding in speech recognition [5]. Fast-match is esseptzll

to adopt a computationally cheap method to reduce the hysearch space tailoring technique.

pothesis space of the more expensive and accurate model se- Two fast-match strategies are explored in this work, each
lection via Bayesian Information Criterion (BIC). Two da  of which can be used separately. The first strategy uses the
gies based on the pitch-correlogram and the unscentes-trarpitch-correlogram [6], as a type of prosodic feature, to-cap
form based approximation of KL-divergence are used indeture speaker variances by looking at the pitch patternss Thi
pendently as a fast-match approach to select the most liketéchnique has been successfully used for fast speaker-recog
clusters to merge. We performed the experiments using theition. In the second strategy we use KL-divergence, as-a nat
existing ICSI speaker diarization system. The new system ugiral measurement of the difference between two probabilist
ing KL-divergence fast-match strategy only performs 14% ofdistributions. Although no closed-form expression exists
total BIC comparisons needed in the baseline system, speegie KL-divergence between two GMMs, we utilize the accu-
up the system by 41% without affecting the speaker Diarizarate and efficient unscented-transform based approximatio
tion Error Rate (DER). The result is a robust and faster thamvhich involves only evaluating likelihoods of Gaussian-dis

real-time speaker diarization system. tributions at a few points and can achieve the approximation
Index Terms— Speaker diarization, fast-match, pitch-cor-Precision up to second order [7].

relogram, BIC, KL-divergence Based on these two strategies, we implemented two inde-

pendent light-weight scoring schemes to measure how likely

1. INTRODUCTION two clusters are to be merged before applying the more ex-

pensive model selection via BIC. Our proposed technique can

The goal of speaker diarization is to segment audio into-spe&educe the hypothesis space by 86% and speed up the system
ker-homogeneous regions with the ultimate goal of answeRY 41%. We achieve faster than real-time speaker diarizatio
ing the question “who spoke when?” [1]. Many state-of-Without affecting the speaker diarization error rate using
the-art systems use a combination of agglomerative chistefXisting ICSI diarization system [3], which has obtainee ex
ing with Bayesian Information Criterion (BIC) [2] and Gaus- cellent results in past NIST evaluations.

sian Mixture Models (GMMs) of frame-based cepstral fea-  The rest of this article is organized as follows: Section 2
tures (MFCCs) [1][3]. These systems now obtain satisfacintroduces the framework of our fast-match approach fdr fas
tory accuracy in terms of speaker diarization error. How-speaker diarization; Section 3 explains the pitch-cogelm
ever, the approach adopted in these systems exhibits imhereand how it is used for fast-match in speaker diarization;: Sec
complexity due to the iterative cluster merging and sophist tion 4 discusses the fast-match technique using the urestent
cated model selection procedure, which is often severaldim transform based approximation of KL-divergence; Section 5
slower than real-time [4]. For most of the applications ofshows the experiments and presents the results; Section 6 fi-
speaker diarization, e.g. automatic speech recogniti@R)A  nally summarizes this article and points out future work.
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2. FAST-MATCH FRAMEWORK FOR FAST Merging Decision
SPEAKER DIARIZATION v Guster | Chter§ |

The agglomerative clustering approach used by many speakieig. 2. Fast-match framework of efficient cluster merging for
diarization systems starts with a large number of initiakel ~fast speaker diarization, as explained in Section 2.

ters and proceeds by an iterative procedure of cluster mgrgi

model re-training and re-alignment, as depicted in Figure 1

A more detailed description can be found in [7] [3]. For each merge hypothesisindb, a new GMM @) needs to

In the cluster merging step, a merge score, which megse trained. When the system is configured to use more initial
sures the goodness of model fitting using one merged modg|ysters, which is preferable for better initial clusteripy
or two separate models based on Bayesian Information Critgne computational load becomes prohibitive.
rion (BIC), is calculated between each two merge candidates . . .
This measurement is then used to determine which two clus- ATter identifying the BIC score calculation as the bottle-
ters should be merged or whether the merge should terminaf%e."Ck for_the whole gystem,. weuse a fast-m_atch approac_h by
It terminates when no merging will improve the BIC score. ntroducing a new light-weight component in the clustering

The computational load of such a system can be deconf €r9'NY to speed up the system as shown in Figure 2. This

posed into three components: (1) find the best merge pat.lzromponent is used as an intermediate step to determine the

s merge; (2) mocel e-vaining and - signmert; 9 il 0= 1KeY e baleses and anly ese merge e
costs. At each iteration, new models are to be trained an P P 9

compared after re-alignment of speech frames. After pnofili ation.

the run-time distribution of an existing ICSI speaker diari In the rest of this article, two strategies based on the pitch
tion system [3], we find that the BIC score calculation takescorrelogram and the unscented transform approximation of
62% of the total run-time, as depicted in Table 1. KL divergence between GMMs will be introduced. We would

also like to point out that this framework is general and many
other fast-match strategies can be used for speeding up a di-

Component . Run-time arization system using agglomerative clustering with Bigye
Find Best Merge Pair and Merge 62 % Information Criterion. The main requirements are: thetstra
Model Re-training/Re-alignmenjt 28 % egy should generate scores which roughly correlate with BIC
Other 10% scoring and it should be computationally efficient.

Total 100 %

Table 1. Run-time distribution of the ICSI speaker diarization

system.
3. PITCH-CORRELOGRAM FAST-MATCH

Analyzing how the best merge hypothesis is found, the APPROACH

reason for the high cost of the BIC score calculation can be
identified. LetD, and D, represent the data belonging to Speech is normally thought of as a physical process consist-
clustera and clusteh, which are modeled bg, and#é,, re- ing of a sound source (i.e. the vocal chords) and a channel,
spectively. D represents the data after mergimgndb, i.e.  which includes the vocal tract, the tongue, lips and etcsThi
D = D,UDy, which is parameterized iy The Merge Score is also known as the speech production model [8]. Pitch anal-
(MS) is calculated as Eq. (1) [7]: ysis tries to capture the fundamental frequency of the sound
source. A pitch-correlogram [6] can be used to capture the
MS(04,0) =logp(D|0) — (logp(Dy|0.) + log p(Dy|6s)) variations of pitch dynamics among different speakers when
(1) sufficient data is available.



3.1. Pitch-correlogram fast-match framework for fast speaker diarization or speak
rouping for hierarchical speaker recognition. Howewsds i

ot recommended to use it as a standalone speaker indexing
feature in applications where a large pool of speaker impos-
tors exists as described in [6].

The pitch-correlogram is used to capture pitch dynamics b}%
looking at the statistics of pitch patterns at frame level di
tance [6]. Specifically, a pitch-correlograrff| is the joint

distribution of quantized pitch bands explored at certednmfe

level distancesk). Whenk is set to 1, the pitch-correlogram
is a 2-dimensional tabl& = [h;;], which basically collects 4. KL-DIVERGENCE FAST-MATCH APPROACH
the bigram statistics of the quantized pitch of neighborin

frames as shown in Eq. (2): gOur second proposed strategy, instead of utilizing new fea-

o " tures (eg. prosodic), as in our first approach, uses thenaligi
hij = n(f{), Dot hij =1, (2)  low-level cepstral features with Gaussian mixture modglin
It measures how likely it is that two models are to be merged
by asking the question, “how different are these two distrib
tciions" via KL-divergence between two GMMs approximated
ed . . -
using the highly accurate and efficient unscented transform

where#(i,j) counts the occurrences of thieh band fol-
lowed by thej-th band among all neighboring frames and
is the total number of frames. Unvoiced frames are mapp
to a single pitch bin.

Pitch varies by2% — 10% in successive voiced frames, )
which implies that the transition of the pitch bands betweerf-1- KL-divergence
neighboring voiced frames is lazy in the sense that they ar¢pe KL-divergence of two distributions is defined as
dominated by small band changél turns out to be a very
sparse matrix with a lot of zero values on off-diagonal en-
tries. Human pitch roughly ranges between 50-500 Hz (or in
logarithm pitch domaitog 50 — log 500). We use 110 bins to ) o
linearly quantize this pitch region (or logarithm of thiggsi ~ and the symmetric version is

region). s _
The pitch-correlogram generation only involves counting KL(f(z)llg(z)) = KL(f(@)llg(x)) + KL(g(x)||f(a:))(.5)

bigrams c.)f p'tCh. band; af‘d can be calcglated eff_|C|entIy. .The\/henf(x) andg(x) are Gaussian mixture distributions, there
rest of this section will discuss three different kinds o$-di . . . L

. . is no closed-form expression. To solve the integration in Eq
tance used to measure the distance between two p|tch—corr&—) sampling methods, such as Monte-Carlo simulation, can
lograms. be used. The Monte-Carlo method generates a sequence of
sampling points, simulating the distribution, and appneaies
the integration by performing summation over this simulate

Since the pitch-correlogramis essentially a histogranuafg ~ Sequence. However, this is computationally expensive and

tized pitch bigrams, as mentioned before, the quantitatiw-  d0€s not suit our need for efficiency.

sure of their dissimilarity can be calculated using binHiy-

histogram dissimilarity measurements as summarized in [9]4.2. Efficient and highly accurate approximation using the
Three different kinds of bin-by-bin dissimilarity measure unscented-transform

ments are adopted, i.e. Minkowsky-form distandg | ,

histogram intersection distancé}{) and Jeffrey divergence

(dy), with details in [9]. We empirically found the Jeffrey di-

\éergencng)n%t;{rfgrrrns:{rt])estitars] errb? S?O\rm ": Slecrgr?d&‘l'also generates sampling points, but is fundamentallyriffe
Upposet; a j arethe pitch-correlogramior cius in that the samples are generated in a completely determinis

g, hEk) is thek-th bin of the histograntZ;. Jeffrey divergence tjc fashion.

KL(f@)lgte)) = [ 70108 %d )

3.2. Distance measure

The unscented transformation is a method for calculatamigst
tics of a random variable undergoing a nonlinear transform
[10], which looks similar to Monte-Carlo sampling since it

(d) is calculated as: SupposeX is ad-dimensional random variable with ex-
B k) (k) pectationuy andzx are the sigma points chosen frokhac-
dj(H;, Hj) = Z(hf.k) log % + hgk) log j(k) ), (3) cordingto Eqg. (6), whose sample mean equalsand sample
B m m covariance equaly’  :
() 4 p (R
wherem® = "t vo(k) = px £ /A >k k=1,--,d,  (6)

3.3. Limitation of the pitch-correlogram where [} i is the k-th column of the covariance matrix

X
The pitch-correlogram exhibits certain speaker discrahin If Y is a new random variable generated by applying a
lity and captures speaker variances. It is well suited far ounonlinear transformatiofy to X, i.e. Y = Q(X), thenuy



can be approximated by the sample meag,pfvhich are the The baseline system has a DER of 11.74% and performs
nonlinear transform of the sigma point, i.e. ys = Q(z,), 4951 BIC comparisons in total with BIC score based heuristic
and this approximation is precise up to second order [108 Thpruning described in [12]. Table 2 summarizes this baseline
approximation of KL-divergence between Gaussian mixtureystem:
models based on the unscented-transform has been used in
speaker recognition applications [11]. DER = 1174, #BIC = 1951

Applying the unscented transformif (z) log g(x)dxz can T Top Too  Trpisap | aRT zRT

!oe app.rOX|mated using Eq. (7) [11], WhICh is sufficient for 81505 69724 11173s 640s 160 145
illustrating the approximation for Eq. (5):

L& 2 Table 2. Summary of the baseline speaker diarization system:
f(z)log g(z)dx = — oY logg(zir). (7) the total meeting time1() and the total speech tim&¢p);
/ 2d ; ; the run-time for speaker clusterin@dc) and the run-time

for FE and SAD {rr+s4p); the real-time factor for speaker

Since a diagonal covariance matrix is used (as in our Spe"ﬁﬁétering ¢RT)) and for speaker diarization RT%).
diarization system), i.€y ", = diag(a?,,--- ,07 ), the sigma

points are simply:
Xip =pi£Vdojger, i=1,--- nk=1,---.d, 5.2. Matching rate ()
(8) , N
wheree,, is ad-dimensional indicator vector and has all zero.The theoretical number of merge hypotheses at each iteratio

components except one only at theh entry. This approxi- % (n; —1)/2, wheren; is the number of clusters at theh

mation is precise up to second order from the theorem of thléeranon anch; = Mi-1— 1. The matching r?‘te"" is used to
unscented-transform [10]. Since it only involves evahigti control the shrinking rate of the hypothesis space aftar fas
match, which is defined as the ratio of the total number of

the likelihood of Gaussian at a few sigma points, it is compu- . .

tationally efficient. comparisons needed after and before fast-matching. . '
Since the hypothesis space decreases after each iteration,

we find it is necessary to dynamically boost the matching rate

5. EXPERIMENTS AND RESULTS so that we start with a more constrained matching and become

more “relaxed” as the size of hypothesis space decreases.

Two types of boosting for matching rate) @re used: the

The baseline system used in our experiments is an existirfgfSt one always matches the tap candidates at each itera-

ICSI Meeting Evaluation development system [12], which hagion, which implicitly increases since the size of hypothesis

three components: Feature Extraction (FE), Speech Agtivitspace decreases along iterations; the second approaatt expl

Detection (SAD) and Speaker Clustering (SC). The total sysitly linearly decreases the matching ratas in Eq. (9):

tem run-time is the sum of the speaker clustering run-time

(T'sc) and the run-time of feature extraction and speech ac- ri=1p 4+ i * (- 740)72' =0,---,M—1, (9)

tivity detection ('rp+sap). Since the new fast-match sys-

tem does not change the first two componefiiss 1 sAp IS \yherea/ is the initial number of clusters and is the initial

constant for both systqms. . matching rate.

The data set contains 12 meetings and a total of 2.3 hours

(T") of audio data to be diarized. This is a set we put together . )

as the development set for NIST Meeting Evaluation 2006[4]2-3- Average cross ranking percentager) and matching

which will be referred to as DEV06 data set in the rest ofchance (/C)

this paper. The diarization engine only processes the Bpeegesides using the NIST DER to measure the performance of

frames output by SAD with total duratiofi’ ). the diarization system, we also introduce the average cross
To better illustrate the effect of our fast-match approachranking percentage) and the Matching Chancé{C) to

we use two real-time measurements for system run-time: (heasure the goodness of the new scoring and the effectivenes

2RTy = Tsc/Tsp; (2)xRTy = (Tsc+Tre+sap)/T. The fast-matching.

first one measures the real time factor of the speaker diariza e average cross ranking percentafg fneasures the

tion engine for speaker clustering, the second one measurgGerage ranking percentage of the togranked pairs hypoth-

the real time factor of the whole diarization system. All ex-ggjzed by BIC scoring using the new scoririg) @s shown in
periments were performed on an Intel Xeon 2.8 GHz machingq_ (10)

with 512 KB of cache and 3 GB of RAM, which was exclu-
sively reserved for these experiments. The operating syste Rp prc(m) = >oimy rankp([rankpicl;)
used was Linux Red Hat Enterprise 4. \BIC Hemp

5.1. Baseline system

, (10



whereF’ denotes the new scoring schemenk is the rank-

ing usingF, [rankprc); is the index of the top-th hypoth- sof = et

esis by BIC ranking angtcmyp is the total number of BIC- e

comparison without fast-matching. -
The Matching ChanceM C) is the probability that the G0

fast-match will not mistakenly exclude the best BIC progbse

hypothesis among all iterations and all meetings. //\/\
10r-

5.4. Results o—— % : ; 10 12 14

6 K 8
Iteration number

In order to choose the distance measurement for pitch-corre
lograms, we experimented with three different distance-med™ig. 3.  The average cross ranking percentage of
surements: Minkowsky-form distancé;( ), symmetric his-  pitch-correlogram = Rpc 51c(1)) and  KL-divergence
togram intersection distancé{) and Jeffrey divergencey),  (ftrc.z1c(1)), as defined in Section 5.3.

as introduced in Section 3.2. The linear boosting of matghin
rate as shown in Eq. (9) is used with the initial matching
rate set to 10%. Table 3 shows the diarization results of fast
match using pitch-correlogram. Jeffrey divergendgg) (per-

forms better than the other distance measurements in terms
of DER and is used as the distance measurement for pitch- £
correlograms in the rest of this paper.

Distance | dy, dn dr,, oar
DER (%) | 12.64 | 12.18| 11.49 o 5 10 5 20 25 e

Table 3. Diarization results of pitch-correlogram fast-match rig. 4. The matching chance (MC) of pitch-correlogram and
versus different distance measuremeiits (dn anddy, ), as  KL-divergence, as defined in Section 5.3.

explained in Section 3.2.

The average cross ranking percentage of the pitch-correl@ach iteration, there is a 0.79% degredation in DER, which
gram Rpc.sre(1)) and KL-divergence Ry 1 rc (1)) ver- partially verifies our statement on the limitation of thechit
sus BIC is shown in Figure 3, which depicts the average rankcorrelogramin Section 3.3. The best result is achievedgusin
ing percentage of the top 1 BIC decisions in the new scoring€ KL-divergence approach, which matches only the top 5
versus iterations. As can be observed from this figure, in olc@ndidates at each iteration. It performs 715 BIC compasiso
der to keep the top 1 BIC decision in the match space, th€l4% of 4951 comparisons performed in the baseline system),
matching rate 1) needs to be increased along iterations as$Peeds up the system by 41% and achieves faster than real-
discussed previously. We can also see that the KL-divesgendime speaker diarization without affecting the speakerizia
scoring has a better average cross ranking percentagehan fion error rate. The reason for the degradation of the DER
pitch-correlogram scoring. performance of KL-divergence approach in the 10% match-
Figure 4 shows the matching chance (MC) of the pitchjng rate with linear boosting setup is not clear, which miggt
correlogram and KL-divergence versus the number of the meflu€ to the dynamics of greedy search and sub-optimal merg-
ge candidatesif) kept after fast-match. Whem = 1, itis  ing path of agglomerative clustering.
equivalent to discarding BIC scoring completely and only us
ing it in making merge decisions, and the matching charce DER #BIC | Tsc(s) | xRTy | zRTy | SU
(MC) is only 20%. But asn increases to 15, the matching Baseline | 11.74% | 4951 11173 | 1.60 | 1.45 | NA
chance increases to 880%. We would also like to pointout| pc, — | 11.49% | 2035 8727 | 1.25 | 1.15 | 22%
that since it is not completely clear that the BIC decision ispc,., . | 12.53% | 697 6667 | 0.96 | 0.90 | 40%
optimal in terms of DER, thé/ C-curve does not necessarily KL,—01 | 12.52% | 2060 8347 120 | 1.10 | 25%
exactly correlate with DER. KLrops | 11.58% | 715 6570 | 0.88 | 0.94 | 41%
The results of the diarization speed-up and DER are shown
in Table 4. The pitch-correlogram approach, with the startTable 4. Results of pitch-correlogram and KL-divergence
ing match rate set to 10% with linear boosting along iterafast-match £U is the speedup df'sc over the baseline).
tions as in Eq. (9), speeds up the system by 22% without
degrading the DER. When only top-5 candidates are keptin Since in the KL-divergence fast-match approach, the sys-




tem performance is not affected by keeping only the top 5
merge candidates at each iteration, we move one step further
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