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Abstract 

Why is the Internet so hard to evolve? Some argue that we require a radically different 
architecture to enable evolution. To the contrary, we contend that a simple re-engineering of 
the basic Internet interfaces to make them more modular and extensible---as one would in any 
software system---is sufficient to produce a far more evolvable Internet. We describe our 
design, called Omega, and report on its implementation and evaluation on PlanetLab. 



1 Introduction

The software community has long recognized the value
of building large codebases in a way that allows them
to evolve over time. To this end, programmers first
identify a durable modularity around which to build their
system, and then realize this modularity with a set of
abstract and extensible interfaces. The evolvability of well-
designed software stands in stark contrast to the rigidity
of the Internet architecture. While new applications and
new networking technologies are easily deployed, the
architectural core—by which we primarily mean IP, but
also include BGP and DNS—is extremely hard to change.
For example, the move from IPv4 to IPv6, which is little
more than a change in the header format and addressing
scheme, is still ongoing after more than a decade. This
bodes ill for the deployability of any architectural proposal
emerging from the Internet research community.

As a result, the research community has recently begun
focusing on how to foster architectural evolvability. We
discuss this literature later in the paper, but here we note
that the most prominent proposals [4, 10] require the
network to translate between different architectures. In
contrast, we propose an approach that is more similar
to how software systems evolve: a modular design with
extensible interfaces that allows evolution of functionality
while maintaining backwards compatibility. As such, our
approach involves almost no novelty. However, if the
solution is so readily at hand, one might ask why we have
had such a hard time evolving the Internet architecture. We
believe that this is because of two fundamental “mistakes”
made in the early days of the Internet.1

First, while the Internet architecture is built around a
layered modularity, the actual interfaces between these
layers are poorly engineered, undermining that modu-
larity. For instance, TCP uses IP addresses to identify
connections, whereas a well-engineered interface would
separate the concept of a connection from that of an
address. In addition, some interfaces are not extensible,
so new functionality precludes backwards compatibility
(e.g., gethostbyname presumes the name is a DNS
name and the response is an IP address). Most of our
design involves fixing these interface problems, in ways
that would be completely familiar in a software context.

Second, the notion of “architecture” actually involves
two separate concepts: (i) the set of components that
everyone must agree on, and (ii) the set of components
needed to successfully transmit data end-to-end. The
Internet community conflated these two, building into IP

1It is easy to label these as mistakes in hindsight, but at the time
these decisions were made, merely making the system work was a small
miracle.

all the functionality needed to provide end-to-end delivery.
In contrast, the operating systems community has long
understood that these concepts can be quite different;
microkernels taught us that, rather than having a rigid
monolithic OS, one can enable innovation by standardizing
only a small subset of OS functionality and allowing the
rest of the functionality to be supplied at user-level.

We emulate this microkernel approach by not defining
a new monolithic Internet “architecture” and instead only
specifying a more minimal architectural “framework” (or
micro-architecture) called Omega that enables a variety
of fully-functional (or comprehensive) architectures to be
defined within that framework. Each of these comprehen-
sive architectures must augment the basic framework with
various components, and it is these additional components
that can evolve over time. As with microkernels, Omega
faces dual design challenges: Omega must (i) define
as little as possible to allow the maximal degree of
evolvability, and (ii) define enough so that one can
successfully use architectures built within the Omega
framework. We will call the first goal extensibility and
the second goal sufficiency. Our current Internet is
sufficient but not extensible, while defining nothing would
be extensible but not sufficient. Here we seek something
that satisfies both goals, and indeed this was the challenge
faced in building microkernels.

Meeting these dual challenges requires four key com-
ponents: (i) an extensible interdomain service model
(ISM) interface that allows for parallel deployment of
multiple interdomain architectures, (ii) an extensible
network API that enables OS support for various parallel
network services, (iii) the separation of interdomain and
intradomain addressing to preserve modularity, and (iv) a
variety of measures to help hosts cope with the resulting
architectural heterogeneity.

Evaluating the evolvability that Omega provides is
challenging. To this end, we have implemented a prototype
of Omega and have implemented several architectures,
including BGP, Pathlet routing [9], and DONA [12] on
top. We have also implemented several transport protocols,
which can be used by native and legacy applications to
communicate using different architectures that co-exist on
top of Omega via the appropriate APIs.

To further verify the evolvability of Omega we defined a
simple language to express architectural evolution and used
it to test several scenarios involving architectural changes
with our prototype running on PlanetLab. In addition,
to demonstrate the feasibility of deploying Omega itself,
we built another implementation of Omega’s routing
components using Open vSwitch and describe how we can
leverage SDN and IPv6 to deploy Omega incrementally.
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Assumptions and Clarifications. Before describing our
design, we must first define our terms and clarify some of
our assumptions. When we use the term architectural
evolvability, we are referring to the ability to make
fundamental changes in the entire architecture. Moreover,
we want these changes to be relatively easy and frequent
rather than extremely difficult and rare. In short, we want
an Internet where architectural innovation can be ongoing
and pervasive. One aspect of the Internet we do not
expect to change any time soon is its domain structure
(i.e., being organized around ASes). This structure is
not a technical design decision but rather a manifestation
of infrastructure ownership and the need for autonomous
administrative control, factors that we do not see changing
in the foreseeable future.

There are many actors involved in adopting an archi-
tectural change, including domain operators (e.g., ISPs),
router/switch vendors, OS vendors, application vendors,
and application service providers (e.g., CDNs, Google,
Facebook). We assume that all of them, with varying
degrees of nimbleness, will implement the software
changes needed to deploy a new architecture2, but we also
assume that there will always be legacy systems. Hardware
changes will be slower in coming, and we will discuss the
role of hardware in architectural evolution later. Lastly,
domain operators are probably the most conservative
actors in this list, as the penalties for malfunctions are
higher than the rewards for new functionality, so any
change that requires simultaneous adoption by all domains
faces a daunting deployment barrier. We also assume
that requiring widespread deployment of middleboxes to
translate between architectures is a significant barrier to
architectural change.

With these preliminaries in hand, we now turn to the
Omega design asking first how to make it extensible and
then how to make it sufficient.3

2 Making Omega Extensible

We address Omega’s extensibility by considering various
kinds of architectural changes that are hard to effect today
and describe how Omega can make such changes easier
through relatively minor architectural modifications.

Changing the network API and naming. We start with
the network API (hereafter, netAPI) offered by the host

2Note that when we say “deploy” we mean that they will add support
for these newer protocols, but will retain the ability to use the older
protocols (which will remain as the default for quite a while).

3For convenience, our discussion refers to packet-based designs, but
our discussion easily generalizes to non-packet technologies (e.g., optical)
by equating the contents of the packet headers with the information
conveyed by the signaling mechanism in the non-packet technology.

OS to applications, which is currently hard to change
because it is embedded in applications. This can be avoided
by merely providing a layer of indirection—essentially
a netAPI identifier—so that all calls first specify which
version and flavor of netAPI they want. In fact, some
systems already support limited forms of this indirection
(e.g., protocol families).4 It is easy for OS vendors to
support multiple netAPIs, and the set of netAPIs on one
host need not be identical with those on another, so little
coordination is needed to deploy a new netAPI with this
layer of indirection.5

Currently DNS names are embedded in applications;
this could be avoided by having all applications (as some
do now) treat names as semantic-free bits and only handle
them via naming operations implemented in the network
stack (such as gethostbyname). We impose a standard
naming syntax where a namespace identifier is followed by
the bits representing the name, so the stack can recognize
and appropriately handle these names. The stack can
support multiple namespaces simultaneously so, as with
the netAPI, one can add additional namespaces without
revoking old ones.

Changing IP. Our experience with IPv6 suggests that
changing IP (i.e., L3) is hard, but this can be overcome with
two simple design decisions: (i) we require that all netAPIs
pass names, not addresses, so applications are shielded
from changes at L3; and (ii) we separate intradomain
addressing from interdomain addressing. Thus, a full
destination address consists of an interdomain part (a
universally-agreed-upon set of domain identifiers) and
an intradomain part (which need not be understood by
any domain other than the destination domain, see [1]).
The interdomain identifiers are the only form of global
addressing in Omega, and they are not limited to any
particular protocol, so domains can peer with a variety
of technologies and layers (such as L3, optical, MPLS,
or Ethernet). Separating interdomain from intradomain
addressing, by enabling general forms of peering, not only
makes changing the L3 protocol easy, it eliminates the
concept of a universal internetworking layer altogether.

4While it is possible to implement new APIs in user-level libraries,
there are two issues with such an approach: fragmentation of functionality
and of responsibility. First, building multiple parallel network libraries
creates the problem of interoperability; instead, netAPI operates at a
different, lower level and provides uniform access to a range of APIs
and underlying implementations. Second, introducing new APIs in user-
level libraries while protocols and ISMs remain in the kernel divides
the responsibility for the codebases between distinct parties; with our
approach, it is netAPI developers who are responsible for both interfaces
and implementations.

5Note that two communicating hosts can use different netAPIs, as
long as the implementing protocols they use are compatible.
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Changing forwarding. Packet forwarding is typically
done by protocol-specific ASICs, so changes to L2/L3
packet headers require an upgrade to a domain’s hardware
infrastructure. However, we are cautiously optimistic
that this deployment barrier will lessen in importance
over time, for the following three reasons. First, much
of the architectural action is not on the data path itself,
but at higher layers or on the control plane, so the
need for forwarding changes is less urgent. Second, the
OpenFlow forwarding model, which is rapidly gaining
traction, provides more flexibility on the datapath, and
that flexibility is expected to increase over time. Third,
the “fabric” model of forwarding (such as Qfabric from
Juniper) puts most of the protocol burden at the edge,
where processing can be done with general-purpose CPUs.

Changing interdomain routing and the interdomain
service model. Today the Internet’s various domains
are tied together by BGP, and changing it would require
universal adoption by all domains. We overcome this
barrier in three ways. First, the use of extensible routing
designs lessens the need for broader architectural changes;
for instance, the design in [9] supports arbitrary and
potentially external route computations, a flexible policy
model, innovations in the services offered along paths
(such as QoS, middlebox services, monitoring), multipath
routing, and flexibility in peering technologies.

Second, we enable partial deployment of new interdo-
main routing systems, running along side the current one,
by having (i) packets carry a label that indicates which
routing system computed the route, with the rest of the
header understandable only by routers that participate in
that particular routing system, and (ii) the routing systems
expose which domains are reachable via that routing
system (as BGP does today). In this way, whomever
is choosing the route (end host, domain, external route
computation agent, etc.) can inspect the various routing
systems to find one that provides connectivity.

Third, we note that once we insert this level of in-
direction (through the label in the packet), the service
offered by a new “routing” system need not resemble
traditional routing; for instance, such a mechanism might
offer a pub/sub interface. Thus, Omega’s general approach
enables the incremental introduction of new interdomain
service models (ISMs); new ISMs would be invoked by
upgraded applications via new netAPIs, allowing legacy
applications to use their previous ISMs through their
previous netAPI. Of course, the functionality of an ISM is
only available to those domains supporting that ISM.

So far we have only specified an extensible syntax for
names and the netAPI, inserted an ISM identifier in packets,
and required that the netAPI pass names, not addresses.

Init
Bootstrap(DomainTech #, Address, ISM # +) →
Domain #, (DomainTech #, Address, Directory, Aux),
ISM Num+

Figure 1: Bootstrap API. DomainTech # refers to the
domain technology, Address refers to an intradomain
address, ISM # + refers to a list of possible ISMs, Domain
# refers to the domain’s identifier, Directory refers to the
location of the resource directory, and Aux refers to any
auxiliary information.

Init Metanegotiate(Negotiation # +) → Negotiation #

Figure 2: Metanegotiation API. Negotiation # + refers to a
list of possible negotiation protocols.

This leaves the rest of the architecture free to employ
arbitrary naming systems, netAPIs, and ISMs. While this
certainly provides a high degree of extensibility, we must
now ask how to make this minimal framework sufficient
to support comprehensive architectures.

3 Making Omega Sufficient

When considering Omega’s sufficiency, there are three
main areas of concern. Given all the freedom architectures
have within the Omega framework, Omega must enable
applications and hosts to discover what their options are.
As this freedom allows domains to adopt different designs,
Omega must help hosts cope with this heterogeneity. And,
of course, we must consider what aspects of security must
be built into Omega.
Discovery. In order to take advantage of the variety of
netAPI semantics available, applications should be able to
query the netAPI to determine which netAPI identifiers are
supported by that OS. Similarly, the domain must provide
a resource directory so that the host can determine the
location of critical services (such as name resolvers).

In addition, when a host boots up in a new domain, it
must discover the properties of its environment. To this end,
the netAPI must include a Bootstrap API (see Figure 1)
that enables a bootstrap daemon (or the equivalent) to
collect this information. The host stack must interact with
the communication technology in the local domain via
compatible software in the stack. The domain technology
(and the corresponding stack software) must implement
the bootstrap interface (but the means of implementation
can be technology-specific).

More specifically, we define the bootstrap interface
as follows: when initiating the bootstrap, the host op-
tionally specifies which intradomain technology it would
prefer, an address it would like to be assigned within
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Component Description

netAPI
API identifier
Pass names not addresses
Bootstrap API

Addressing Separation of intra-/inter-domain identifiers

ISMs
ISM identifier in packet header
DoS interface
Path visibility (not a strict requirement)

Domains
Resource directory
Support for bootstrap interface

Hosts Metanegotiation protocol

Table 1: Summary of the Omega design.

the domain, and a list of ISMs the host would like to
use. The domain returns its domain identifier, a tuple
containing essential intradomain information—including
the intradomain technology (either the one requested,
or another), the host address (for that technology), the
resource directory address, and any auxiliary information—
and a list of supported ISMs (a subset of those requested
by the initiating host). The resource directory allows
the host to find local facilities such as name resolution
servers, first hop routers for the various ISMs, and other
resources needed to function. The bootstrap interface could
also return auxiliary information about the domain in an
extensible manner, but the content above is the minimal
necessary for the host to function within the domain.

Heterogeneity. Two communicating hosts must use
compatible protocols, and they should be able to negotiate
this set of protocols (as in [6]). Omega does not specify the
negotiation protocol, only a metanegotiation protocol (see
Figure 2) that allows two hosts to decide on a negotiation
protocol to use, allowing the set of negotiation protocols
to evolve over time. During metanegotiation, the initiating
host (if it has no prior information about the protocols
supported by the other host) sends a list of supported
negotiation protocols, and the receiving host returns a
single one (which the initiating host then uses to begin
the negotiation process). Metanegotiation is a last resort:
if two hosts have recently communicated, or if the name
resolution process provides the supported protocols (or
negotiation protocols) in metadata, then it is unnecessary.

Another area where heterogeneity becomes an issue is in
path properties; different paths will support different QoS
features or router-assisted congestion control mechanisms.
While Omega does not mandate a specific interface for
this, it is recommended that any ISM provide a reasonable
degree of visibility and choice, so that hosts can pick paths
that meet their needs. If the ISM allows the equivalent of
source-based policy-compliant route computation, then a

new capability can be used if any policy-compliant path
supports it (as opposed to today where one can use the
capability only if the default path supports it).

Security. Many have argued (see [1, 13, 15]) that, except
for availability, all aspects of network security (narrowly
construed) can be implemented at the end hosts. Preserving
availability falls into two categories: dealing with attacks
on the infrastructural components (such as hacking a router
or injecting false routing advertisements), and dealing with
denial of service attacks. Each architecture is responsible
for protecting itself against infrastructural attacks, but
since denial-of-service attacks can be launched across
architectures we require that every new ISM (whether
routing for traditional destination-based packet delivery, or
new service models like optical) provide an interface that
ensures protection against denial of service. For traditional
packet delivery, this interface could enable delivery (for
capability-like approaches to DoS, such as in [16]) or
prevent delivery (for filter-based approaches to DoS, such
as in [3, 13]). Thus, for a domain to support a new ISM, it
must support both the delivery and DoS interfaces.6 While
Omega does require that ISMs support a DoS interface, it
does not specify the nature of that interface.

Comments. Note that here we are not asking what addi-
tional components are needed to build a comprehensive
architecture, but what features must be built into Omega
itself, and not left to individual architectures; Table 1
provides a summary of Omega’s key components. The
ability to discover what architectures are available locally,
and to tolerate the inevitable diversity in architectures,
is clearly needed within Omega itself, as is a mandate
to provide some form of DoS interface in every ISM.
What is not needed, however, is some explicit agreement
about how architectures share resources (though this is
an objection we frequently hear); each domain that is
deploying multiple designs in parallel (such as supporting
multiple congestion control schemes in their routers)
can independently determine how to allocate their re-
sources among them (e.g., by assigning relative bandwidth
shares to traffic classes using different congestion control
schemes); there is no need for a global agreement on this.

6Of course, there are many other aspects of security that do not fit
within the narrow definition we adopt here (see [13] in particular for an
explicit discussion of this), but Omega’s role in security is not to define
particular security mechanisms but to allow the Internet to adopt the
necessary mechanisms through architectural evolution. The one place
where we place a security requirement on Omega directly is to require all
ISMs to incorporate their own DoS interfaces.
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Init Open(Schema, Resource, Options) → Handle
Listen(Schema, Resource, Options) → Handle

Access
Put(Handle, Data, Options, Aux. Data) → Result
Get(Handle, Options, Aux. Data) → Data
Accept(Listen Handle, Options) → Handle

Meta Control(Handle, Mode, Option) → Result
Cleanup Close(Handle) → Result

Figure 3: Sockets API.

Init Subscribe(Schema, Resource, Options) → Handle
Publish(Schema, Resource, Data, Opt.) → Handle

Access Get(Handle, Options, Aux. Data) → Data
Meta Control(Handle, Mode, Option) → Result
Cleanup Cancel(Handle) → Result

Figure 4: Pub/Sub API.

Init
Client(Resource, Options) → Handle
Server(Resource, Options) → Handle
Register(Server Handle, Function) → Result

Access
Invoke(Handle, Function, Options) → Result, Token
GetReply(Handle, Token, Options) → Result, (Data)
Process(Server Handle, Options) → Result

Meta Control(Handle, Mode, Option) → Result
Cleanup Close(Handle) → Result

Figure 5: RPC API.

4 Using Omega

To make our discussion more concrete, we next look at a
few example interfaces, and then trace the life of a packet.

4.1 Example Interfaces

In Figure 3 we give our version of the Sockets API, which
is quite similar to BSD sockets. Our implementation
of netAPI interfaces such as the Sockets API rely
upon schemas, which are classes of protocols that
provide the same functionality. For example, in our
C++ implementation of Omega, an application can use
the Sockets API to open an unreliable socket by calling
Socket::Open(SCHEMA DATAGRAM UNRELIABLE,

name, options) where name is the name of the remote
host and options is used by the schema to select and
configure the underlying protocol.

An application can also publish content using the
Pub/Sub API we implemented (Figure 4), which interfaces
with our DONA ISM. We also built a simple RPC interface
(Figure 5) that lets applications ignore the underlying
protocols in use. The interface provides high-level
semantics—that of function calls and arguments—and
hides details of ISMs and schemas within the stack. Such
high-level constructs are commonplace; we merely wanted

to demonstrate that Omega can accommodate them in its
netAPI model.

In Figure 6 we give a definition of an ISM providing
best-effort packet delivery, as might be provided through
traditional IP interdomain routing using BGP or through a
scheme such as pathlet routing [9], both of which we im-
plement as backends for this ISM interface. This interface
includes capability-like security primitives RequestToSend
and AllowToSend. Figure 7 describes the DONA interface,
which is similar to many other ICN designs (each of
which uses its own terminology for the same set of calls).
Note that there is no security portion of the interface, as
such publish/subscribe models do not suffer from standard
denial-of-service flooding attacks. Figure 8 describes
the interface to an ISM that provides end-to-end optical
connections (without any packetization); the signaling
mechanism supports the RequestToSend and AllowToSend
calls, which must precede any transmission and provide
inherent support for selectively allowing or denying traffic.

4.2 Life of a Packet

All of our previous discussion focused on individual
aspects of Omega’s design. Here we try to put them
together by describing the life of a packet. Consider host
X in domain A communicating with host Y in domain
B using a packet-based ISM Q. When the packet leaves
X, its outer headers reflect A’s internal technologies (say
IP over Ethernet), followed by the Q-specific header;
when the packet arrives at the first-hop-router for ISM
Q, the outer headers headers are removed (leaving the
Q-specific headers) and replaced, if needed, by headers
the ISM Q routers use to communicate hop-by-hop; when
the packet arrives at the last-hop router for ISM Q, these
outer headers are replaced by headers appropriate for B’s
internal technologies.

By keeping intradomain and interdomain addressing
separate, Omega allows domains to change their internal
technologies without coordination. While today’s Internet
got some interfaces wrong, the L2 interface did indeed have
the right modularity, being shielded from all applications
and other domains. Thus, Omega does little more than to
turn domain-internal technologies into what we now think
of as L2. In Omega, the ISMs play the role of L3, but by
carefully ensuring extensibility of the various interfaces,
Omega allows many of these ISMs to coexist side-by-side.

5 Omega in Action

We have argued that Omega enables evolution but, given
the amorphous nature of Internet architecture, we have no
way of making this argument rigorous. To provide some
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Init SelectRouting(Name, Filter) → Result

Access IsReachable(Name) → Result
SendPayload(Name, Payload) → Result

Security RequestToSend(Name) → Result, (Capability)
AllowToSend(Sender Spec) → Result

Figure 6: Packet Delivery ISM.

Init SelectRouting(Name, Options) → Result

Access Find(Name, Options) → Result, Data
Register(Name, Data, Options) → Result

Figure 7: DONA ISM.

Init RequestToSend(Name, Filter) → Result
AllowToSend(Sender Spec) → Result

Access IsReachable(Name) → Result
SendPayload(Name, Payload) → Result

Figure 8: Optical ISM.

App

netAPI 
library

ISM

schema
schema

ISM

schema ...
userspace

kernel

UNIX
Domain
Socket

UDP
Tunnel Open vSwitch

Figure 9: Omega prototype implementation, end host view
with an application and ISM in use. UDP encapsulation of
traffic is used in PlanetLab tests, whereas Open vSwitch
is used with our IPv6 variant. The grayed ISM highlights
the fact that multiple ISM daemons co-exist and have their
own appropriate schemas.

concrete evidence, we implemented Omega and then used
it on PlanetLab to verify its support for architectural evolu-
tion. In the following, we first describe our implementation
and then several of our test scenarios. We return to the
deployment of Omega itself in Section 6.

5.1 Prototype Implementation

Our objective was to implement Omega’s interfaces and
sufficient back-end mechanisms to test the framework in
the context of varied architectures. Since our aim is not to
faithfully reproduce the details of various mechanisms of
the architectures used in these scenarios (all of which have
been implemented in other contexts), but rather to evaluate

Omega’s support for evolution, the mechanisms we built
are minimal.7 That is, we built the full-fledged Omega
framework and only sufficient but minimal architectures
and architectural components to live within it.

Our implementation (which we will make available for
others to use) executes at user level on Linux and Mac OS
X and includes components to model the application-side
APIs which link to applications, daemons to model ISMs,
and daemons for routers and gateways. The end host view
is depicted in Figure 9; routers and gateways are simply
standalone daemons. We also implemented a library
interposition-based wrapper to enable simple unmodified
BSD Sockets-based applications to run over Omega. Since
our aim was to test our implementation on today’s networks
and on PlanetLab, for the scenarios we describe in this
section, Omega packets are encapsulated within UDP
packets. For controlling packet forwarding of Omega built
on IPv6, we implemented a simple OpenFlow controller
for Open vSwitch, which we return to in Section 6. Our
Omega implementation consists of over 10k lines of C++
and 1200 lines of Python, not including protocol definitions
or third party libraries.

At a high-level, the prototype has two key components:
(i) an application-facing library that provides the interfaces
to (ii) schemas and ISM daemons that can be considered
as part of the network stack. The two sides interface via
IPC calls, modeling system calls.8

Each ISM exposes its functionality as appropriate to
its design; for example, a packet-oriented ISM such as
BGP exposes functionality to send packets to a given
destination and the ability to determine whether a des-
tination is reachable. The content-oriented ISM exposes
functionality only to publish or subscribe to content by
name, with no packet sending primitives. Coupled with
each ISM are schema implementations appropriate to
that ISM; they provide the translation between the API
primitives and the ISM primitives. For packet-oriented
ISMs like pathlet routing and BGP, we implemented
schemas that provided basic but useful functionality—an
unreliable datagram schema similar to UDP and a reliable,
congestion-controlled byte stream similar to TCP; for our
DONA ISM we implemented a schema to publish and
subscribe to content. We also implemented a basic meta-
negotiation protocol as described earlier.

7Specifically, we have avoided implementing complex control planes
for protocols that would use them in the wild — e.g., gossip-based route
dissemination for pathlet routing —and instead have encoded such control
information in the scenarios themselves.

8In a full-fledged implementation, we would expect that the
application-side library would reside in a standard shared library (and
its associated header files), the daemon would be replaced by modules
within the OS kernel, and IPC would be replaced by system calls.
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Keyword Arguments Description
routervendor name feature list Specifies a common set of router features.

hostvendor name feature list Specifies a common set of host features.
domain name feature/setting list An abstract entity containing hosts, gateways, and routers.

router name vendor domain setting list An interdomain router entity.
gateway name domain An intradomain gateway entity.

host name namespace vendor setting list A host entity.
instance name host specification list An application instance running on a host; specifies scenario.
connect entityname entityname Designates the logical or physical connection of two entities.

start instancename Starts execution of the scenario.
wait seconds Pauses execution of the script.
wait instancename list Creates an execution barrier until instance(s) complete(s).
ism ismname setting list Specifies settings or policies for a given ISM.

Table 2: A concise specification of Evol as used in our architectural evolution scenarios.

We implemented the routers and gateways as standalone
daemons that communicate via UDP tunnels with other
nodes (both with end host nodes and other router / gateway
nodes) but operate largely in the same manner as the end
host ISM daemons. The primary distinction between an
Omega router daemon and an end-host ISM daemon is
that Omega router daemons (i) first multiplex between
ISM types before passing a packet to the relevant ISM
module, (ii) do not implement schemas (since these are
handled at the end host), and (iii) have support for on-
path operations that are required (e.g., for the DONA ISM,
routers track content requests that have been made and
cache content along the path). The gateway daemons are
somewhat simpler; their primary function is to engage in
a bootstrap protocol with end hosts, conveying supported
ISMs, default routing information, and name resolution
configuration for end hosts.

5.2 Evolution Scenarios

With this implementation in hand, we then sought to
explore different scenarios that test the evolvability of
Omega. To run these tests, we defined a simple archi-
tectural evolution language, Evol, and an interpreter for
it, implemented in Python.9 Each scenario controls the
actions of numerous instances of our implementation
that perform the actual communication as well as the
architectural evolution that may occur as a scenario
proceeds. The language adheres to several constraints,
including: hosts must connect to gateways; gateways must
connect to routers or hosts; routers must connect to routers
or gateways; if an entity name is given again with a new
feature list, that constitutes an architectural upgrade of that
entity; and “wait” pauses execution of the scenario until the

9We don’t claim Evol as a contribution; we simply needed a language
to assist the verification and defined one that met our needs.

given instance terminates to allow for an ordered sequence
of architectural transitions to test evolution. Vendor feature
lists denote support for the given technologies while for
entities denote the enabling of those features. We describe
the main keywords of Evol in Table 2 to give a flavor of
the types of evolutionary changes we can test.

We now discuss several scenarios we ran using our
Omega implementation on PlanetLab to test various
aspects of evolution. Table 3 summarizes the results.

Basics. In this scenario we defined an end-to-end
communication test between two hosts within different
domains, each of which uses IPv4 as its intradomain
architecture, pathlets [9] as its ISM, and Omega Sockets
as its API. There is no evolution involved and the scenario
merely verifies the hosts’ ability to exchange packets.
This two host, two domain topology acts as our base
topology. However, for several scenarios, we defined
a topology of eight domains (six stubs and two transit)
and their constituent hosts. We label it as the medium
topology and indicate in Table 3 when the scenario used
it. Because these scenario definitions are verbose (the
medium topology scenarios being over 70 lines), we do
not show the definitions we used, but their structure and
content should be clear from our descriptions.

Address Format. Here we defined a scenario in which
one domain evolved its internal addressing scheme
from IPv4 to semantic-free flat addresses while no other
domains were aware of this change. A host outside this
changing domain was able to communicate with a host
inside this domain before and after the transition.

Path Selection. Here we ran a series of communication
tests where hosts required a specific property from their
end-to-end path (e.g., in-network congestion control,
geographic region, and QoS properties). In one version of
the checks we performed this request using the BGP ISM,
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ISMs
Scenario Pathlets BGP DONA Optical Notes

Basics • Communication between two compatible pathlets-based
hosts in two different domains.

Address Format • • • Communication between domains with different address
formats (IPv4 and flat addresses).

Path Selection • ◦ BGP is stuck with the default path which violates the
given path requirement (medium topology).

Pub/Sub API • Content published and subscribed to/from network.
No DONA ISM ◦ Applications attempt to use Pub/Sub API without domain

support for DONA.
Optical • Communication between domains after path establish-

ment.
Security • Destination host allows only from sender’s domain.

Several Changes • • • • Transition from BGP-only adding an ISM per step
(medium topology).

Table 3: A subset of Omega evolution verification tests run on PlanetLab; for each scenario we denote which ISMs
were in use and indicate whether the scenario succeeded (•) or failed (◦).

which does not support flexible path selection. When the
default path does not have the appropriate property, the
hosts are not able to communicate. We then considered a
case in which the domains along the path evolved their
ISM support to include pathlets; here the hosts were able
to find a path with the appropriate properties. The success
of this is clearly due to the choice of routing system—that
pathlets enables intelligent endpoint path selection—and
not due to Omega, but it is Omega here that enables
pathlets and other new ISMs to be incrementally deployed.

Publish/Subscribe API. We ran a scenario where hosts,
routers, and the relevant domains evolved to support
DONA [12]. With these changes, hosts were able to
publish and subscribe to content in a new DONA-content
namespace using the publish/subscribe API and the DONA
ISM. The main takeaway is that the deployment of DONA
required no modification of non-DONA code since Omega
enables easy multiplexing on the ISM, API, and protocol.
To confirm that our implementation and scenarios are
indeed capable of failing when deploying a new ISM, we
performed a version of this experiment in which a host
attempts to use the publish/subscribe API and DONA ISM
before its domain’s routers support it.

Optical. We similarly tested a scenario that deployed an
optical-like ISM (i.e., an ISM that requires signaling for
in-network path setup before end-to-end communication
can begin) which was then used by hosts to communicate.
No changes to applications, or to nonparticipating domains,
were necessary for this to work as only domains along the
path were required to establish state and end-system stacks

(not applications) were required to initiate path setup.

Security. Our pathlets implementation integrates a
capability-based mechanism to allow hosts to issue
capabilities for inbound packets. If the capabilities are
invalid, the associated packets are dropped at the border of
the domain by the ingress pathlets router. In this scenario
we used pathlets and verified hosts were able to block
access to themselves using capabilities. While this is
not novel functionality, Omega enabled its deployment
without any changes in nonparticipating hosts or domains
(or applications).

Sequence of Changes. The above scenarios each focused
on a particular architectural transition, but our hope is
that Omega enables ongoing and pervasive changes. To
verify this, we devised a few scenarios where multiple
evolutionary changes occurred in parallel. For instance,
in one we started with BGP as the only ISM. Then a
few domains evolved to support a pathlet-based ISM
in addition to the BGP-based one. Then another set of
domains evolved to support DONA as an ISM. At the end
of the scenario, we had pairs of hosts using BGP and/or
pathlets depending on what ISM the domain provided and
what properties BGP’s default path supported. Similarly,
some hosts used the publish/subscribe functionality
of DONA to access content, while other hosts could
only communicate end to end. Co-existing with these
were hosts using the end-to-end optical-like ISM (which
requires an initial path setup before actual communication).
In total here we used eight domains and four ISMs.
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Larger Networks. Finally, we also ran scenarios for
larger networks (of 144 PlanetLab nodes, representing
entities in 48 domains), with a sequence of architectural
changes. The scenarios began with all domains using BGP,
and hosts communicating via BGP. Subsequently, some
of the domains evolved to enable pathlets and their hosts
switched to communicate via pathlets (while unchanged
domains / hosts continued to use BGP). Finally, several
domains evolved to enable DONA and their hosts began
using DONA. In the scenario’s final state, we had 16
BGP-only domains, 16 domains with BGP and pathlets,
and 16 domains with BGP, pathlets, and DONA support,
with their hosts communicating using those three different
ISMs in parallel. All of these evolutionary steps behaved
as expected.

5.3 Evolutionary Constraints

We now step back and summarize what we have learned
about which evolutionary transitions are allowed. Table 4
identifies the inherent constraints on changes, which we
think are not specific to Omega but rather apply more
generally.10 For instance, when a domain wants to use
a new domain technology (e.g., a new version of IP
or Ethernet), the router vendor used by that domain
must support the technology, and the hosts within that
domain who want to use that technology must enable
support supplied by their OS vendor. To deploy a new
ISM, participating domains must support it, and the hosts
involved must support it (for simplicity the table assumes
these are pairwise interactions, but that need not be the
case). Deploying a new API requires support by the OS
vendor (on hosts that want to provide that API) and App
vendor (for applications that seek to use the new API). The
table also lists the constraints that apply to architectural
changes in end-to-end protocols and to properties or
protocols that cover the entire path. We omit for space
changes to namespaces or name resolution infrastructures.

The bottom line is that these are all the constraints that
evolutionary transitions face. Omega has removed artificial
constraints (such as tying applications to a particular
addressing or naming scheme).

10However, it is the case that in other architectures and frameworks,
including today’s Internet architecture, there are likely additional
constraints beyond those given here for Omega. More generally, it is an
interesting research topic for how to rigorously catalog these constraints.
We produced this table by inspecting various dependencies between
architectural modules, but this begs for a more formal treatment.

Component Router OS App Domain
Domain tech. ∃ D ∃ H ∃ D

ISM ? D H-H ? D
API ∃ H ∃ A

End-to-end H-H
Path property ? D H-H ? D

Table 4: Evolutionary constraints for the deployment of
new network functionality in Omega. In the table, ∃
indicates that the affected / relevant local party—a domain
(D), host (H), or application (A)—must be changed, H-
H indicates that communicating endhosts must both be
changed, and ? indicates that all the participating parties
must be changed.

6 Transitioning to Omega

The previous section provided evidence that Omega does
indeed make architectural evolution easier, but these
benefits will remain theoretical if Omega is never deployed.
Thus, we now turn to the daunting question of how Omega
might be deployed. The most promising way forward is
to leverage the ongoing efforts to deploy IPv6 and SDN.
Thus, in this section we demonstrate how to use IPv6 and
SDN to deploy Omega, an approach we call Omega-v6.

6.1 Building on IPv6 Extensibility

We rely upon IPv6 extension headers to carry necessary
Omega information in packets as follows:

Flow label. To identify the packet’s ISM, we use IPv6’s
Flow Label field. In doing so, we allow use of existing
hardware mechanisms designed for IPv6 to match against
the ISM type—we will return to the motivation for this
shortly.

Hop-by-Hop. We use the IPv6 Hop-by-Hop options
header to encode ISM-specific information. As per the
IPv6 specification, any devices along a path can ignore the
header if so specified by the sender.11

Destination options. Any header information that is local
to the receiving domain (but not specific to the end host)
and that is not already encoded in the destination address
or HBH header is encoded within the IPv6 destination
options header. End-to-end headers are contained within
the packet’s payload as usual so they do not require special
consideration, and are decoupled from the details of the

11 While today’s router hardware tends to rate limit the processing of
packets with Hop-by-Hop headers (and does so on the slow path), these
headers would not be exposed to unmodified routers due to the tunneling
discussed in next section.
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Option Data
(ISM Data)
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(ISM #)Traffic ClassVersion
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(HBH)Payload Length
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(Destination Interdomain Data)

Base Omega-v6 Header

HBH Option Type
(Omega Version) Option Length

Next Header HBH LengthBase Hop-by-Hop Header
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Option Data
(Intradomain Data)

Dest Option Type
(Intradomain 
Data Type)

Option Length

Next Header Dest LengthBase Destination Header
(optional)

Destination Option Header
(optional)

Figure 10: Structure of the Omega-v6 header. Shaded
fields represent re-use of IPv6 fields for encoding of Omega
values.

ISM in use.12

The syntax of the headers we use for Omega-v6 is
already predefined by IPv6, which meets our needs. Any
unmet future requirements can be accommodated by a
new extension type, also within IPv6’s header structure.
We show the overall layout of an Omega-v6 header in
Figure 10.

6.2 Forwarding Omega-v6 Packets

To enable forwarding of Omega-v6 packets, we built our
implementation around an unmodified OpenFlow data-
plane, Open vSwitch (OVS), accompanied with a custom,
centralized control plane. On the end-host side, we
introduced a minimal set of changes to an existing Linux
IPv6 networking stack that enable applications to choose
a specific ISM and instrument its operational parameters.
To validate our Omega-v6 implementation, we set up a

12For example, since our TCP and UDP-like schemas are not TCP
and UDP themselves, they do not have an inherent coupling to a specific
address scheme or L3 (i.e., the schemas treat the source connection
identifier, however the ISM returns it to us, as an opaque bag of bits for
the purpose of flow labeling).

Incoming 
IPv6 Packet

Next 
Header?

Next 
Header?

Type?

Us?

ISM 
3

HBH Omega

Yes

No

Default IPv6 
Processing

Forward ISM 
2

ISM 
1

Intradomain 
Routing

DST

Skip Optional DST Header

Figure 11: Packet processing by our Omega-v6 Open
vSwitch router.

testbed composed of Linux Containers which represent the
end hosts and a series of inter-connected Open vSwitch
instances that act as routers within domains that are tasked
with forwarding Omega-v6 packets.

Our implementation for forwarding Omega-v6 packets
differs little from the implementation we described in
Section 5. Specifically, in the end host portion of the
implementation, only packet emission code within ISMs
needed alteration, since the remainder of the code concerns
only end-to-end behavior (which includes schemas, boot-
strapping, and meta-negotiation). The key change in the
ISM code is to encode ISM information within an IPv6
header as shown in the figure.

The Omega router from our user-level implementation is
the most significantly changed component in Omega-v6. In
Figure 11 we show the packet processing done by an OVS
node to appropriately handle an Omega-v6 packet. The
changes required for an IPv6-supporting router to enable
support for Omega-v6 and then incrementally add support
for a new ISM—matching on the flow label and passing
the matching packets to an ISM module—are modest. In
the following, we’ll consider the overall transition process
from IPv6 to Omega-v6.

6.3 Deploying Omega-v6

Our proposed deployment path for Omega-v6 involves
nothing new—just parallel protocol stacks and tunneling
techniques—but they are useful to review to make a simple
point: the difficulty of deploying Omega on top of IPv6
is no greater than deploying IPv6, and yet the benefits
would outweigh that of IPv6 (or other single-shot clean-
slate designs) because of the evolution it would enable.

Networks. Initially, we envision Omega-aware devices
deployed only at the network edges allowing for parallel ar-
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chitectures to co-exist. As core routers start reaching their
end-of-life, they will be slowly phased out of production
and replaced with more flexible forwarding devices. Once
critical mass is achieved, parallel architectural forwarding
planes will merge, allowing a single router to understand
multiple ISMs.

This leaves us with two requirements: (i) to make
the traffic pass through legacy routers but still (ii) to
instruct them to route any Omega traffic towards Omega-
aware routers. For passing traffic through, we turn to
tunneling. This corresponds to tunneling approaches
developed for carrying IPv6 over IPv4—mechanisms that
range from header extensions to UDP tunnels to IP-in-IP
encapsulation—and any of them would apply here as well.

For steering Omega traffic towards Omega-aware
routers, we assume that Omega routers know their next
Omega hops, and thus, can send the tunneled Omega-v6
packets towards the proper IPv6 destination address.
Omega traffic could be routed by software routers [5], and
only when the traffic volumes increase, the implementation
would have to move to hardware. Alternatively, due to our
IPv6 based approach, hardware router platforms could
also be extended with software forwarding; hardware
platforms would match the Omega-v6 flow label in their
hardware forwarding path to identify the packets requiring
software forwarding.

In addition, a network with SDN-enabled routers could
take advantage of hardware forwarding support for some
ISMs without requiring upgrades of routers. To do so, the
controller would set up rules for forwarding packets for
these new ISMs in hardware; for example, pathlet routing
can be implemented given an ASIC that can be directed
by the controller to do masking and bit matching, since
pathlets only contain short, opaque labels.13

End hosts. To enable applications to use Omega, we
need to introduce a new API in OS protocol stacks and
standard libraries. OS stack support consists of three
pieces: support for ISMs, schemas, and new APIs, though
they can be deployed independently. The former two are
network-facing and the latter is application-facing, yet
we contend that since both are introduced with regularity
by OS vendors, introducing support for them will not be
difficult. In addition, Omega support will not come at
the expense of legacy application support, as OSes can
continue to support BSD sockets-based applications and
corresponding protocols in the stack.

To verify the feasibility of adding such end-host func-

13Today’s forwarding ASICs often have significant constraints in their
abilities, enabling hardware forwarding for only the simplest ISMs. While
we expect their flexibility to increase, of course more complex ISMs are
unlikely to ever be implementable without custom hardware.

tionality, we implemented a proof of concept approach in
Linux for introducing new APIs, schemas, and ISMs in the
kernel. Our approach is extensible, uses kernel modules,
and does not introduce any new system calls or modify
existing networking code, though we only envision its use
during the transition to Omega. (We did not implement the
full suite of schemas and ISMs here, just enough to verify
the feasibility of the approach.)

Suppose a vendor develops a publish/subscribe API with
corresponding schema(s) and ISM(s). An application that
wants to use this API links to a new library, libpubsub,
which we built to provide publish() and subscribe()

interfaces. Besides the library itself, the vendor then
provides a kernel module; in this we implemented the
corresponding (skeleton) schema and ISM. We added
a new schema by adding a new protocol family via
Linux’s proto register() and the associated handler
via sock register(); to handle Omega-v6 packets we
used nf register hook(). To use the new functionality,
libpubsub creates an underlying socket with the desired
schema (family) and uses sendmsg() and recvmsg(),
which pass very general structs, for all communication with
the kernel module (in a manner akin to IPC). While this
approach does not lead to an elegant implementation, ven-
dors can use it to create new modules for APIs, schemas,
and ISMs without having to add new functionality to a
legacy kernel’s network stack, modify libc, introduce new
system calls, or other actions that require coordination and
agreement.

7 Related Work and Discussion

There have been many approaches to architectural innova-
tion, the earliest being overlay networks. However, while
overlays make it easy to deploy a new architecture on
top of an old one, they do nothing to make it easier for
two architectures to interact. That is, one can deploy new
architectures—say, AIP [1]—using an overlay, but this
only allows AIP hosts to talk to other AIP hosts; the overlay
does not enable an AIP host to exchange packets with an
IPv4 host. Thus, while overlays are useful for experimental
deployments (particularly virtualized overlays like GENI
[7]) and to achieve a wholesale replacement of one
architecture by another (a grindingly slow process), they
do not enable pervasive and ongoing change.

Active networks [14] enables certain forms of archi-
tectural evolution, particularly on the datapath, but this
approach does not address architectural aspects such as
naming and interdomain routing. Nebula [2] offers a great
deal of extensibility in network paths and services, which is
an important dimension of evolvability. However, the core
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of the architecture (i.e., the datapath) is universal within
and across domains; it is not clear how independently
domains can evolve internally.

Plutarch [4] represents an entirely different approach
to evolvability, stitching together architectural contexts,
which are sets of network elements that share the same
architecture in terms of naming, addressing, packet formats
and transport protocols. These contexts communicate
through interstitial functions that translate between the
different architectures. The more recent XIA proposal
[10] enables the introduction of new services through the
definition of principals. To cope with partially deployed
services, XIA relies on a directed acyclic graph in the
packet header that allows the packet to “fall back” to
other services that will (when composed) provide the
same service. For instance, a DAG could have paths for
CCN [11] and a source route over IP addresses, with edges
permitting intermediate routers to pick either means of
reaching the data.

Thus, XIA’s main approach to partial deployment
(which is a key step in enabling evolution), much like
Plutarch before it, is to require translations between
architectures at network elements that understand both.
In this respect, both Plutarch and XIA deploy new
architectures “in series”, and any heterogeneity along the
path is dealt with by having the network explicitly translate
between architectures.

It is interesting to contrast this with the current Internet,
which was founded on two principles. The first is that
there should be a universal connectivity layer, so that in
order to support n different internal network designs (what
we call L2 today) we would not need n2 translators. The
second is the end-to-end principle, which pushes (to the
extent possible) intelligence to the edge. We feel that XIA
and Plutarch are unfortunate repudiations of these two
principles, requiring architectural translations within the
network to achieve evolvability. Moreover, we feel that
architectural evolution can easily be accomplished while
leaving these principles intact.

The design of Omega is similar to the FII proposal
outlined in a recent CCR editorial [13]. While there
are important differences (particularly in the realms of
interdomain routing and DoS, where the approaches
are quite different), the more fundamental distinction
is that the previous discussion was motivated by high-
level architectural arguments; here we arrive at these
design decisions by looking for simple modifications to the
Internet’s current interfaces that would enhance modularity
and extensibility. A similar approach was taken in [8], but
with no implementation or evaluation.

In Omega, we take a more software-like approach to

architectural evolution. Domains will likely support many
ISMs with some of these being widely supported, and
others in the early stage of adoption. The decision about
which ISM to use is made at the edge, not internal to the
network, so there is no need for ISMs to be translated
into each other. This is fully consistent with the Internet’s
founding principles, and more in tune with how we design
software systems.

We arrived at our design not by inventing new mech-
anisms, but through a basic code review of the current
architecture, pointing out where modularity and extensi-
bility were being ignored in the interface designs. All
modern software systems are built with modularity and
extensibility in mind, but these concepts have gotten
lost in discussions of Internet architecture because the
networking community tends to focus on the details of
Internet protocols rather than view the various headers
and mechanisms as abstract interfaces subject to the same
scrutiny that we apply to software. Whether one agrees
or not with our claims about evolvability, we hope the
Internet community begins to take a more systems-oriented
approach to Internet architecture, so that we can avail
ourselves of the decades of experience building evolvable
software systems.
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