
* International Computer Science Institute, 1947 Center Street, Suite 600, Berkeley, California, 94704
§University of Southern California, 850 West 37th Street, Los Angeles, California, 90089

This work was partially funded by the Deutscher Akademischer Austausch Dienst (DAAD) through a postdoctoral
fellowship.

NOSIX: A Portable Switch Interface for the
Network Operating System

Andreas Wundsam* and Minlan Yu§

TR 12 013
October 2012

Abstract
Even with the success of software defined networks (SDN), it remains challenging to write a
portable, correct, and efficient controller application. This is due to the mismatch between the
expectations of controller applications and (i) the heterogeneity of switches and (ii) the
primitives offered by OpenFlow, the prevalent SDN protocol. We introduce NOSIX, a portable
low level switch programming API. Like its OS name cousin, it facilitates the development of
portable low level applications (i.e., applications that directly built on the flow model) and at
the same time serves as a building block for higher abstraction frameworks [12, 10]. Designed
to be a minimalistic model, NOSIX purposefully only targets one switch as a time, leaving
network wide consistency, topology and distribution to higher layers. It provides applications
with a view of virtual flow tables without re source or feature constraints, while supporting
consistent and efficient rule updates and counter collection. Underneath NOSIX, vendor
defined switch drivers synchronize the virtual flow tables with the physical tables on the switch,
and thus hide heterogeneity and enable switch specific optimization.



1. INTRODUCTION
The software-defined network (SDN) paradigm, cur-

rently successful in both academic [2, 11] and commer-
cial environments [5, 3], gives operators the opportunity
to program the control plane of their networks, with the
ubiquitous OpenFlow network API [13] serving as the
linking element of the ecosystem.

While OpenFlow enables control plane programma-
bility, it is widely acknowledged that it is challenging
to write portable, correct, and efficient applications1 on
top of OpenFlow [19, 6, 16]. This is due to the mis-
match between application expectations and (i) switch
heterogeneity (ii) the primitives offered by OpenFlow.
Ideally, an SDN application programmer expects to gen-
erate rules with unbounded flow tables, a full Open-
Flow feature set, and high bandwidth in the forwarding
plane; the programmer also wants to correctly and effi-
ciently update rules and collect counters based on cer-
tain data plane or control plane events. However, in re-
ality, she may have to deal with non-idempotent prim-
itives like FLOW_MOD, FLOW_EXPIRE, handle spuri-
ous PACKET_IN messages, and emulate consistency
through under-specified synchronization primitives like
BARRIER. At the same time, OpenFlow switches dif-
fer significantly in architecture (e.g., hardware vs. soft-
ware), feature set (e.g., flow table sizes, supported rewrites),
and performance (e.g., fast vs. slow path) and their in-
terpretation of the specification (e.g., for the BARRIER
command) [17]. While many high level controller frame-
works aim to solve the diversity problem, they restrict
the programming model, and don’t lend themselves to
building low-level applications “close to the metal”. Con-
sequently, each controller framework or application has
to be adopted to specific switch design to work cor-
rectly and perform optimally, resulting in duplication of
effort and a combinatorial explosion of customization.
Not every developer will have the resources or exper-
tise to adapt their system to every switch, resulting in
sub-optimal performance and functionality.

We propose to focus on operations on the switch, sep-
arate the application expectations from the switch im-
plementation specifics, and create an interface that en-
ables portability while preserving efficiency and switch-
level expressiveness.

In contrast to previous work on powerful, abstracted
programming models for the entire network [12, 9, 10],
we introduce a new low-level API called NOSIX2, as
a minimalistic API optimized for low-level applications
“close to the metal” and for building other controller
frameworks (Figure 1). Thus, we focus on primitives

1In this paper, we use applications to denote both controller
frameworks and the low-level applications built directly on
OpenFlow-like flow model.
2In allusion to the well known POSIX standard that defines
a low-level OS API that enables portability for OS programs,
and serves as a building block for high level platforms.

C
on

tro
lle

r
S

w
itc

he
s

Figure 1: NOSIX

that are (i) local, i.e., that can be implemented on a sin-
gle switch, (ii) ubiquitous, i.e., that are required by most
applications, and (iii) expressive, i.e., that don’t restrict
the expressiveness of OpenFlow.

At the core of our API, we define the virtual flow ta-
ble, which is an idealized flow table that has no resource
constraints and full feature-set. It represents the appli-
cation’s view of the currently active flow-level rules.
NOSIX supports consistent updates of the virtual flow
table (i.e., no invalid intermediate states are exposed)
and collects counters efficiently from the switch. Un-
derneath NOSIX, vendor-defined switch drivers in the
controller map the virtual flow table to the physical flow
tables of the switches, and thus hide the switch diversity
and perform switch-specific optimization.

NOSIX facilitates writing portable SDN applications
through its simple model of an idealized OpenFlow switch,
which is expressive enough to be amenable to low-level
tasks. NOSIX is useful as a building block for other
high-level controller frameworks, reducing duplication
of efforts in programming diverse switches. Also, mov-
ing the common switch API from the switches up to
the controller opens up space for optimization below,
as vendors can utilize the specific strengths of their for-
warding hardware and optimize the controller-switch com-
munication protocol.

In the remainder of this paper, we first investigate the
switch heterogeneity and the resulting challenges of pro-
gramming a single switch (§2). We then present our
suggestion for a low-level API for switch programming
NOSIX in §3. Then, we discuss related work in §4 and
conclude in §5.

2. CHALLENGES OF PROGRAMMING
A SINGLE SWITCH

One key building block for programming SDN is to
program a single switch. Ideally, this should be a sim-
ple task enabled by OpenFlow. However, in practice,
switch implementations differ substantially in both the
forwarding plane and the control plane. There are hard-
ware switch implementations based on different plat-
forms (e.g., from HP, NEC, Quantas), which differ in
their features and performance [17]. In contrast, there
are software switches [1] that have fundamentally dif-
ferent trade-offs. This diversity is insufficiently hidden
and abstracted by the primitives offered by OpenFlow.

1



We now discuss some of the differences in the forward-
ing and control plane of the switches and the challenges
they entail.

2.1 Forwarding plane: resources, features
and performance

Heterogeneity: The forwarding plane forwards pack-
ets according to the rules in the flow table. An ideal
forwarding plane would provide an unlimited number
of flow tables of unbounded size, support the full Open-
Flow feature-set, and provide full bandwidth for all for-
warding. However, in practice, the forwarding planes
differ significantly depending on their internal forward-
ing architecture. Hardware forwarding planes are im-
plemented in discrete logic, using TCAM and hardware
hash tables, and their features depend on the switching
fabric that is used. Software forwarding planes have
fewer fixed resource constraints and more complete fea-
ture sets, but their performance is more unreliable.

As a result, forwarding planes are highly heteroge-
neous in three aspects: (1) Resource constraints: Hard-
ware switches differ in the size and number of exposed
forwarding tables. E.g., the HP ProCurve 5406zl sup-
ports 1,500 flows [7], while the NEC PF5820 supports
750 [14]. The software forwarding plane in Open vSwitch
supports a conceptually unbounded number of rules. (2)
Feature set: There are also differences in the flow fields
and the number and type of the actions that can be sup-
ported. For instance, one of three hardware switch eval-
uated by Rotsos [17] did not support IP address rewrit-
ing. Open vSwitch supports the full set of matching
and actions, and the number of actions is only limited
by OpenFlow’s 64 KByte limit [4]. (3) Performance:
Hardware switches provide data-plane forwarding at full
line-rate, independent from the switch CPU and host
bus. In contrast, the data-plane forwarding speed of a
software switch depends on the system speed, software
optimization, and may deteriorate with growing flow ta-
ble size [17, 8]. In hardware switches, features not di-
rectly supported by the hardware may be implemented
in the firmware on the slow path, several orders of mag-
nitude slower. Software switches typically don’t have
the concept of fast and slow paths.

Programming challenges: These limits and differ-
ences in the forwarding plane presents two key chal-
lenges in programming:

The number of rules applications generate vs. flow ta-
ble size: An access control application may require a
large number of fine-grained rules, more than the flow
table size at the switch. The application has to keep the
rules local at the controller and only installs the most ac-
tive rules in the switch, while emulating the other rules
through PACKET_IN events in the controller.

Features vs. performance: Applications may desire full
features and optimal performance, however, in many

cases there is a trade-off between the two, as features not
directly implementable in hardware can be emulated in
firmware. The application has to understand the perfor-
mance trade-off of using each feature and decide which
one to use. For example, if the switch has TCAMs, the
application can proactively install a wildcard rule; oth-
erwise, the application may choose to reactively cache
microflow rules.

2.2 Control plane: updates and counters
The switch control plane processes rule updates from

the controller to the forwarding plane, and delivers flow-
level counters to the controller. An ideal switch control
plane would be able to handle an unbounded number of
flow updates, taking effect instantaneously. The rules in
the switch flow table would be predictable by the con-
troller. However, in practice, there are limits imposed by
switch diversity, the semantics of OpenFlow primitives,
and the control channel, making it hard to program ap-
plications correctly and efficiently.

Heterogeneity in rule updates: Rule updates differ at
switches in two aspects: (1) Performance: In hardware
switches, modification and state queries of the forward-
ing plane are expensive and the modification rate is lim-
ited [17]. Thus, updates are scheduled, this causes de-
lays in flow installation and may lead to inconsistencies.
In software switches, changes are quicker, but may still
be delayed through the OF control channel. (2) Con-
sistency primitives: The FLOW_MOD commands may be
delayed or reordered. The BARRIER_REPLY message
has different semantics in different switches: the soft-
ware switch sends the message after the rules are up-
dated at the switch, while hardware switch with TCAMs
send the message after the rule updates are scheduled
but not necessarily effective in TCAMs.

Programming challenges in rule updates:
Flow-table synchronization: To effectively compute
forwarding updates, and enable fail-over between switches,
applications have to know the existing rules at the flow
tables. Therefore, applications often keep a local copy
of the flow table and synchronize it to the switch. How-
ever, this is non-trivial because switches may automati-
cally expire some rules and may delay FLOW_MOD com-
mands. When control channel is temporarily interrupted
and recovered, the application no longer knows the state
of the switch flow table. The most common practice is
to clear the switch flow table in this case, and repopu-
late it from scratch. While this restores to the flow ta-
ble to a known state, it also breaks forwarding during
recovery. Applications with a more sophisticated strat-
egy may query the switch flow table on reconnect, and
only delete surplus and add new rules. This does not
break the forwarding, but requires the entire flow table
to be transmitted from the switch to the controller. Also,
rules that have been correctly expired by the switch due

2



to timeouts may be re-installed by the controller.

Consistent updates: Naively updating a group of rules
in a flow table can lead to incorrect transient states. Imag-
ine a firewall middlebox configured to intercept traffic
passing through an ingress switch. At some point, the
operator decides to migrate the firewall to a more pow-
erful system on a different port due to increased traf-
fic. The configuration change thus consists of two up-
dates delete(ingress→ p1) and install(ingress → p2). If
these are executed in the wrong order and without per-
packet consistency [16] guarantees, traffic may pass into
the network unfiltered during the update. It is also non-
trivial to build network-wide consistency guarantees on
top of BARRIER [16], especially when the BARRIER_REPLY
is implemented differently.

Heterogeneity in counter collection: The controller
can use the FLOW_STATS command to query the cur-
rent flow-level counters at the switch. In TCAM based
switches, querying counters for the entire flow table is
an expensive operation. Thus, switches have different
design decisions on how often these counters can be
gathered without interfering with other control plane tasks.
Some switches have inadequate scheduling of FLOW_STATS
queries, leading to performance bugs that are hard to
identify [19]. Others provide custom optimizations (e.g.,
sampling, approximate counters as proposed in DevoFlow [7]).

Programming challenges in counter collection: De-
pending on the performance of querying individual rules
and the entire table, the application has to optimize which
counters to query and how often to query them. For
switches with more efficient collecting features [7], the
developers have to understand and design their programs
based on these features.

2.3 Switch heterogeneity is inevitable
We believe switch heterogeneity is not a short-term

phenomenon, because the software side of SDN evolves
faster than the switch platforms, and there are different
target markets and architecture trade-off.

Some feature and performance differences among switches
stem from the fact that OpenFlow is not yet mature. The
first generation SDN prototype switches of most switch
vendors have been built on top of their existing switch
fabrics, limiting the achievable feature set. Currently,
the SDN software and OpenFlow protocol keep evolv-
ing rapidly, making it harder for the hardware to keep
up. Thus new features (e.g., multiple tables, group ta-
bles in OpenFlow 1.1) are as yet rarely supported by
the switch implementations. We expect this situation to
change only gradually, and that this evolution-based di-
versity will persist for several years until the SDN pro-
tocols and implementations become mature.

In the long term, switch heterogeneity will still exist
because of two reasons: (1) There will be switch imple-
mentations with different trade-offs of cost and scale.

Events, counters 

C
on

tro
lle

r
S

w
itc

he
s

Rules

Rule updates 
with transactions Events, counters 

er
N

O
S

IX

Figure 2: NOSIX architecture

For example, software switches often have richer fea-
tures than hardware switches but with worse performance.
(2) These switches will be customized for different ap-
plications and markets. and routers, there will still be
many different switch implementations in the future.

3. NOSIX: A PORTABLE SWITCH API
We propose NOSIX, a portable API to program a sin-

gle Switch by separating application expectations from
switch heterogeneity. In this section, we first discuss
our high-level design decisions in achieving the right
trade-off between portability and efficiency. Next, we
describe how to separate application expectations from
switch-specific designs. As show in Figure 2, we have
two key designs to enable NOSIX: the virtual flow ta-
bles that represent the application’s expectation of the
rules in an ideal switch; and the switch drivers written
by vendors in the controller that enable switch-specific
customization and optimizations.

3.1 Trade-off of portability and efficiency
The key challenge of programming SDN applications

on heterogeneous switches is to strike a right balance
between the portability and efficiency. If the applica-
tion does not consider specific switch implementations,
it is portable but may be inefficient. However, to op-
timize the performance of an application, the program-
mer has to write different code customized for each kind
of switches. To achieve the right trade-off between the
portability and efficiency, we make two design decisions:

Applications expose the expectations to the switch:
One way to handle switch heterogeneity is to expose
switch features to a runtime system (e.g., Frenetic [10]),
which automatically transforms the rules the application
generated to the new rules that match best to the switch
implementation. For example, if the switch supports
wildcard rules, the application may proactively gener-
ate the wildcard rules; if the switch does not support
wildcard rules, the application may reactively cache mi-
cro flow rules at the switch. While the runtime system
reduces the complexity of individual applications, it is
still challenging for the switches to expose detailed fea-

3



ture set (e.g., how BARRIER is implemented) and per-
formance trade-offs (e.g., how the switch schedule up-
dates and counter queries) to the runtime system. It is
also challenging for the runtime system to handle the
different switch dynamics in updating rules, generating
notifications, reporting flow-level counters without de-
tailed understanding of the switch design.

Instead of exposing the switch heterogeneity to the
upper layers (applications or the runtime system), we
argue that the applications should specify their expecta-
tions of the rules, updates, and notifications to the switch
as if it has an ideal switch. It is then switch vendors’
job to choose the best way to implement these expec-
tations, because vendors are in the best position to op-
timize for their own switches. Therefore, we introduce
a simple abstraction virtual flow tables, where applica-
tions can freely define the rules without worrying about
either the resource constraints and feature set in the for-
warding plane, or the delay and throughput of updates
and notifications.

Vendors program switch drivers in the controller:
When the applications expose their expectations to the
switch, now the complexity moves to the switches. Un-
fortunately, switches are notoriously hard to program
and have poor CPUs. Therefore, we argue that ven-
dors should implement switch drivers in the controller to
hides switch heterogeneity from applications and enable
diversity and innovations of both the switch forwarding
plane and control plane. In the forwarding plane, instead
of following the same specification, vendors now have
the flexibility to design their own features and resources
(e.g., the types and number of flow tables), as long as
they can use the driver to manage the rules based on ap-
plications’ expectations.3 In the control plane, vendors
can design different mechanisms to process updates and
send notifications to the applications, as long as they fol-
low the same minimalist abstraction of application’s ex-
pectations.

By implementing switch drivers at the controller, we
actually move part of the switch control plane to the con-
troller (i.e., closer to the applications). This unlocks a
large potential for optimization: (1) The control chan-
nel between the controller and the switch may have de-
lay churns and failures, leading high complexity in pro-
gramming applications. With the switch drivers, the
vendors fully control the messages between the controller
and the switch (e.g., update rules, send notifications),
and thus can introduce different control protocols4. (2)
Today, the limited CPU at some switches significantly

3Note that today some vendors already use firmware to mimic
OpenFlow features they cannot support in their hardware (e.g.,
packet encapsulation). With switch drivers in the controller,
vendors have more flexibility to decide whether to support a
function in hardware or not.
4In fact, Open vSwitch already added its extensions to the
OpenFlow protocol

limits the control plane performance and the switch fea-
ture set. With switch drivers, vendors can leverage the
more powerful computing resources shared across switches
in the controller, and decide whether to implement a fea-
ture in the forwarding plane, the firmware, or the switch
driver. (3) A single driver in the controller can manage
all the switches belonging to the same vendor, enabling
more switch-specific optimizations.

3.2 Separate application view from switches
NOSIX separates the application’s expectations from

the switch-specific implementations. We design and build
two key components as shown in Figure 2: (1) A pipeline
of multiple virtual flow tables to represent application
expectations on what rules should be processed at the
switch. Each virtual flow table contains flow-based rules
with priorities that match packets on different header
fields, take actions, and accumulate counters. These
flow tables are then connected into the pipeline.5 (2) The
switch drivers that provide switch-specific optimizations
based on the applications’ expectations. Each switch
driver is responsible to transform the rules in virtual flow
tables into the actual switch flow tables in the forward-
ing plane. The driver also updates the switch flow table
according to the changes of virtual flow tables, and prop-
agates switch events to the applications. We now discuss
three design aspects of separating application expecta-
tion from switch implementations:

Flexible mappings between virtual flow tables and
physical switch tables. These virtual flow tables do
not need to have a one-on-one mapping with physical
flow tables. For example, the application may define one
table for measurement rules and another for forwarding
rules, and the switch driver may merge and map them to
the single TCAM table in a hardware switch.

The rules in the virtual flow tables do not need to be
always in the physical flow tables. For instance, the ap-
plication can define a single table of 50K access con-
trol rules, but the TCAM table in the switch may only
support 10K rules. The device driver caches 10K rules
in the TCAM and dynamically update the cached rules
based on the packet_in event. Since these packets
experience cache miss at the switch but matches rules
in the virtual flow table, they are handled by the device
driver and not propagated to the applications.6

The rules in the virtual flow tables do not need to be
of the same format with those in the physical flow ta-
ble. For example, suppose an application proactively in-
stalls a wildcard rule. If the switch does not have TCAM

5The pipeline is similar to the pipeline of flow tables defined
in the OpenFlow 1.1 specification. The key difference is that
these virtual flow tables are located at the controller instead of
the switches and do not have any resource constraints.
6In contrast, the switch driver simply passes the packet_in
event to the application if there is no rule to match the packets
in the virtual flow tables either.

4



to support wildcard rules, the switch driver can choose
to reactively cache the corresponding microflow rules in
the switch based on the wildcard rule. If the switch has
TCAM but supports rule cloning (as proposed in De-
voFlow [7]), the switch driver may also leverage the fea-
ture and proactively install the rules.

Since there are not any constraints on the mappings
between the virtual flow tables and the physical ones,
applications can freely generate the rules based on their
design.

Separation between rule update semantics and the
update mechanisms at switches: When an applica-
tion modifies the rules in the virtual flow table, the de-
vice drivers should update the rules in the switch accord-
ingly. Applications requirements may dictate that such
changes are applied with selectable consistency, i.e., with
no intermediate states exposed. Switches differ in their
support and primitives offered for updates and consis-
tency. We propose to separate the update semantics of
applications from update mechanisms at switches.

To represent the application’s expectation on rule up-
dates, we propose a simple transactional semantics with
two primitives: start_transaction(consistency_level) and
commit(wait). All the operations the applications spec-
ify on the virtual flow tables after start_transaction should
remain invisible to the underlying switches until the com-
mit command. Then, these operations are executed based
on the selected consistency_level (e.g., no consistency,
per-packet consistency, and per-flow consistency [16]).
The commit command returns based on the wait param-
eter (e.g., return immediately, return until the change is
effective, and return when the switch ensures the follow-
ing updates are scheduled after the current one).

The switches may have different ways of achieving
the consistency. Consider the firewall rule example in
Section 2.2. The application removes the rule (ingress→
p1) and installs a new rule (ingress→ p2), requiring per-
packet consistency. The switch drivers collect the mod-
ifications of the virtual flow tables (Δ) and provide dif-
ferent ways of enforcing the Δ at switches. If a switch
natively supports packet-consistent updates, its driver
would simply pass through the commands. To work
with a standard OpenFlow switch, its driver could deter-
mine that a packet_consistent order of these operations:
installing the new rule before deleting the old one.

The switch driver have to implement wait settings in
a custom way. Suppose an application expects the com-
mit to return after the rules are effective at the switch.
Note that there is no generic OpenFlow way to imple-
ment this wait_state effective: The driver must use its
specific knowledge of the switch to ensure the config-
uration is active when it returns. For instance, if the
switch is known to the driver as a soft switch with imme-
diate flow scheduling, the BARRIER_REPLY will in-
deed signify the rules are active. For a hardware switch,
BARRIER_REPLYs do not offer that guarantee, the driver

may use a vendor extensions or fall back on knowledge
of TCAM scheduling (e.g., flows get active in the TCAM
at most 2 seconds after the BARRIER_REPLY is issued)
to wait for an upper bound of the scheduling delay be-
fore continuing.

Although our transaction semantics and customized
switch drivers focus on a single switch, they are use-
ful as building blocks that simplify implementing the
network-wide consistency properties defined in [16].

Decoupling of application-specific and switch-specific
performance optimization of counter collections: The
performance of collecting counters from the switch to
the virtual flow table depends on both the application de-
sign and the switch implementation. To simplify the in-
teractions between virtual flow tables and switch drivers,
we propose to separate the application-specific perfor-
mance optimizations from the switch-specific ones.

The applications can optimize the performance based
on their design logic and performance requirements with-
out generic switch assumptions (e.g., the fewer queries,
the better.). For example, the runtime system in the con-
troller can merge the flow-level measurement rules from
different applications into a single one in the virtual flow
table [10]. The application can also choose to only col-
lect counters from a limited number of important flows
if they find it expensive to collect many counters at a
time.

Next, the switch driver can optimize the performance
based on the switch feature set and the trade-off of fea-
ture and performance. For example, if the switch sup-
ports more advanced ways of collecting flow-level coun-
ters [7], the switch driver can automatically decide how
to tune the parameters for these features. If the switch
has a trade-off between the counter collection and rule
updates (see Section 2.2), the switch driver can schedule
these operations based on the detailed understanding of
the trade-off.

Although we may not achieve the optimal performance
with the separated optimizations, we can still highly im-
prove the performance because vendors have better knowl-
edge of switch implementations. We will compare the
separated optimizations to the joint optimization with
both application and switch knowledge in future work.

4. RELATED WORK
There have been many works on improving the pro-

gramming of software-defined networks. Onix, POX,
and Floodlight [12, 9, 15] provide a layered architec-
ture, by assuming applications to be logically central-
ized and work on an abstracted graph of the network.
Frenetic and Nettle [10, 18] take a programming lan-
guage approach to reducing the complexity of program-
ming SDN. They define a declarative or functional lan-
guage to enable composability and reduce the complex-
ity, and leverage a runtime system to optimize the per-
formance. In the OS analogy, these controllers are like

5



high-level frameworks like JVM and PostgreSQL. They
require complex runtimes that handle the idiosyncrasies
of the OpenFlow programming model and the diversity
in switch designs. Complementary to these works, NOSIX

focuses on programming a single switch and hiding switch
heterogeneity. NOSIX provides a simple abstraction (like
POSIX) to separate the applications requirements from
switch heterogeneity and introduces vendor-defined switch
drivers for switch-specific customization and optimiza-
tion.

5. SUMMARY
Programming a single switch is a key component to

program the network. Yet, this is surprisingly difficult
when the switches are heterogeneous, and applications
have to choose between portability and efficiency. In-
stead of exposing full switch capabilities to the appli-
cations, NOSIX allows application to express their ex-
pectations on virtual flow tables, while relying on the
vendors to build switch drivers at the controller to opti-
mize for specific switch implementations. NOSIX opens
many switch-specific optimizations while keeping the
applications simple to program.

6. REFERENCES
[1] http://openvswitch.org/.
[2] EU Project Ofelia.

http://http://www.fp7-ofelia.eu/.
[3] Nicira Networks Inc. http://www.nicira.com/.
[4] Ben Pfaff. Email on the ovs-discuss mailing list, 23 Mar 2012.

http://openvswitch.org/pipermail/discuss/
2012-March/006759.html.

[5] BigSwitch Networks.
http://http://www.bigswitch.com.

[6] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford.
A NICE Way to Test OpenFlow Applications. In USENIX
NSDI, 2012.

[7] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula,
P. Sharma, and S. Banerjee. Devoflow: scaling flow
management for high-performance networks. In SIGCOMM,
2011.

[8] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici, and
L. Mathy. Towards high performance virtual routers on
commodity hardware. In Proc. ACM CONEXT, 2008.

[9] Floodlight Controller.
http://floodlight.openflowhub.org/.

[10] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker. Frenetic: a network
programming language. In Proc. ACM SIGPLAN ICFP, 2011.

[11] GENI: Global Environment for Network Innovations.
http://www.geni.net.

[12] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker. Onix: a distributed control platform for large-scale
production networks. In USENIX OSDI, 2010.

[13] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. OpenFlow:
Enabling innovation in campus networks. CCR, 2008.

[14] OpenFlow Wiki: NEC Univerge PF5820.
http://www.openflow.org/wp/switch-nec/.

[15] POX - An OpenFlow Controller. www.poxrepo.org.
[16] M. Reitblatt, N. Foster, J. Rexford, and D. Walker. Consistent

updates for software-defined networks: Change you can believe
in! In Proceedings of the 10th ACM Workshop on Hot Topics in
Networks, ACM HotNets Workshop, 2011.

[17] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore.
OFLOPS: An Open Framework for OpenFlow Switch
Evaluation. In Proc. PAM, 2012.

[18] A. Voellmy and P. Hudak. Nettle: Taking the sting out of
programming network routers. In PADL, 2011.

[19] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann.
OFRewind: Enabling Record and Replay Troubleshooting for
Networks. In Proc. USENIX ATC, June 2011.

6


