
 

§ Université Pierre et Marie Curie, 4 Place Jussieu, 75005 Paris, France 
* University of California at Berkeley, 101 Sproul Hall, Berkeley, California 94704 
ⱡ International Computer Science Institute, 1947 Center Street, Suite 600, Berkeley, California, 94704 
ɣ Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA 94720 
 
 
This work was partially supported by funding provided to ICSI through National Science Foundation grant CNS‐
1065240. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the 
authors or originators and do not necessarily reflect the views of the National Science Foundation. 

 

Large‐scale Correlation of Accounts Across 
Social Networks 

 
Oana Goga§, Daniele Perito*, Howard Leiⱡ, Renata Teixeira§, and 

Robin Sommerⱡɣ 

 
TR‐13‐002 

April 2013 

 

Abstract 

Organizations are increasingly mining the personal data users generate as they carry out much 
of their day‐to‐day activities online. A range of new business models specifically exploit what 
users publish on their social network profiles, including services performing background checks 
and analytics providers who, e.g., associate demographics with consumer behavior. In this work 
we set out to understand the capabilities of machine learning techniques for linking 
independent accounts that users maintain on different social networks, based solely on the 
information people explicitly and publicly provide in their profiles. We perform a large scale 
study that assesses a range of correlation approaches for matching accounts between five 
popular social networks: Twitter, Facebook, Google+, Myspace, and Flickr. Our results show for 
instance that by exploiting usernames, real names, locations, and photos, we can robustly 
identify about 80% of the matching pairs of user accounts between any combination of two 
social networks among Twitter, Facebook and Google+. Our work is the first to demonstrate the 
feasibility of such conceptually simple privacy attacks at large scale, across several major 
networks, and with such efficiency. 



1 Introduction

With users now performing much of their day-to-day activities online, an increasing
number of companies (and governments) are already mining the data they make avail-
able online. For example, companies such as reputation.com mine publicly avail-
able users personal data to help them control their online reputation. On a more ethically
involved note, the security contractor Raytheon just developed a software that can mine
data from social networks to obtain an entire snapshot of a user’s life and display it
easily [2]. Such services exploit a variety of rich sources where users provide their per-
sonal information. For instance, LinkedIn reveals professional profiles, Facebook offers
a view into private lives, Twitter broadcasts interests, and MySpace still remembers the
past. While users often consider each of these networks a separate realm, organizations
are beginning to correlate personas across sites to assemble a more comprehensive pic-
ture of an individual than any source alone would provide. For example, background
checks for job applicants now routinely search for the accounts that a potential hire
maintains [22]. Companies like PeekYou and Spokeo1 advertise themselves as “people
search engines.” What these services provide is basically a way to list potential match-
ing accounts starting from information like usernames and real names. However, such
services operate behind closed doors. As results about correlation performance remain
unknown, it proves difficult for the public to assess this emerging privacy threat.

In this work, we set out to provide answers by evaluating the real potential of this
privacy threat. The main contribution of our effort is the analysis of account correla-
tion at scale, using a large, real-world dataset of user accounts to derive representative
results from major social networks: Facebook, Twitter, Google+, Flickr, and Myspace.
The first three are among the most popular today, Flickr provides insight into a different
community, and Myspace allows us to understand if one can link current profiles to an
individual’s past—“the Internet never forgets”.

Our study builds on earlier work by Perito et al. [21] that examines the utility of
different similarity metrics for matching accounts (i.e., finding pairs of accounts be-
longing to the same user on two social networks) by their usernames alone. Here, we
extend this approach to several features, to more social networks, and to more users. For
our study, we consider a set of readily available attributes that users commonly provide
openly (username, real name, profile photo, and location), from which we derive clas-
sification features used to match accounts. We examine accounts of more than 200,000
users common between different social networks among the five mentioned above, ob-
tained from crawling about 3 millions Google+ accounts. Compared to Perito’s work,
we find that combining features significantly improves performance over usernames
alone (up to 100% improvement). Our results show for instance that when combining
all features, for a false positive rate of 10−3, we can expect to find about 90% of the
matching pairs of accounts between any two social networks among Twitter, Facebook,
Flickr and Google+, and 60% between Myspace and Twitter, Facebook or Google+.
Our estimations also show that the percentage of accounts that we can match without
making any mistakes is only about 10% lower than when allowing for the 10−3 false
positive rate. Furthermore, for accounts that we cannot match directly between a pair of

1 http://www.peekyou.com/, http://www.spokeo.com/
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networks, we demonstrate the potential of building correlation chains that link match-
ing accounts on two social networks with the help of a third. Doing so allows us to
match 5% to 23% of the accounts that do not correlate directly. Finally, with our large-
scale dataset we are able to show that this new multi-feature correlation indeed remains
efficient at the scale of an entire social network, thanks to good performance even at
extremely low false positive rates. To generalize this result, we also extend our study
to a different set of users derived from an extensive list of email addresses. Compared
to Google+ users, we find that the performance decreases but remains high at 60% for
the Twitter/Flickr combination at 10−3 false positive rate (vs 85% for Google+ users).
For interpretation, a 60% true positive rate means that we could successfully correlate
hundreds of millions of accounts when considering entire social networks. Moreover,
using this new set of users, we show that the matching classifiers can be reliably trained
on the Google+ dataset with no bias.

We structure the remainder of this paper as follows. We start by describing our
data in §2. We then present the features we use as well as the metrics to measure the
similarity between them in §3. Our matching methodology is presented in §4 and the
results for matching different social networks are presented in §5. In §6, we extend the
techniques to match social networks by building correlation chains. We finish with the
related works §7 , some discussions §8 and the conclusions of our results §9.

2 Data Sets

For our study we examine five major social networks: Twitter, Facebook, Google+,
Flickr and Myspace. Extracting features from public profiles is straightforward. The
main challenge is to obtain a ground truth, i.e a set of accounts that we know belong to
the same user. Here we exploit the fact that Google+ allows users to explicitly list further
accounts they have on other networks on their profile pages. We randomly crawled
about 3 million Google+ profiles and arrived at the ground truth set summarized in
Table 1, which reports the number of matching accounts for different combinations of
social networks2 3.

To complement the Google+ dataset, we obtained a second set of ground truth users
that contains 19,000 matching pairs of accounts between Twitter and Flickr (this set is
disjoint from the previous one). This data was obtained exploiting the “Friend Finder”
mechanism with a list of emails obtained from a spam project. The Friend Finder take as
input the list of emails and outputs if the emails correspond to accounts on Twitter and
Flickr. Because everybody receives spam, we consider this dataset to be representative
of generic users. We call this data the email ground truth dataset and we use it in §5.4
to evaluate the representativeness of our results from the Google+ dataset. The value
of the email ground truth dataset comes from the fact that it contains a representative
sample of users in general, however it is much harder, and even impossible for some
social networks, to obtain it the large quantities suitable for our study.

2 The Google+ social network proves easy to crawl as it provides a comprehensive directory of
all accounts, and does not block crawlers.

3 Although our dataset allows to study the combination of Flickr with all other networks, we
limit ourselves to the pair Twitter-Flickr with serve for the comparison with the email dataset.



Table 1: Number of users in the Google+ ground-truth dataset for different combina-
tions of social networks.

Twitter - Facebook 76,332
Twitter - Google+ 205,709
Twitter - Myspace 9,015
Facebook - Google+ 164,333
Facebook - Myspace 9,610
Myspace - Google+ 36,440
Twitter - Flickr 35,208
Twitter - Facebook - Google+ 76,600
Twitter - Facebook - Myspace 4,207
Twitter - Google+ - Myspace 9,015
Facebook - Google+ - Myspace 9,610

For the accounts in the ground truth dataset we collected the public information
present in the corresponding profiles on the four social networks. For Google+ and
Myspace we downloaded the profile pages and extracted usernames, real names, lo-
cations, and profile photos from the HTML code. We use these four attributes because
they are generally available on most social networks. For Twitter and Facebook we used
their APIs to obtain the same features, except for Facebook where the API does not pro-
vide location information. We summarize the availability of features per profile in the
next section. We note that all the data we use in our study is publicly available and as
such generally approved by our local IRB for research usage.

3 Features and Similarity Metrics

For each account we have four attributes extracted from the users public profiles. From
these attributes we derive six features that we will use to correlate accounts: username,
real name, cross name, location, photo and face. To compare the similarity of these
features we borrow a set of established metrics from past work in the security and
multimedia community, which we describe in the following section. Our goal is to apply
current state-of-the metrics to our setting.

3.1 Similarity Metrics

Name similarity. Previous work in the record linkage community has demonstrated
that the Jaro string distance is the most suitable metric to compare similarity between
real names [9]. In a more recent study Perito et al. [21] showed that the Jaro distance
also works well for comparing usernames, and performs only slightly worse than more
complex methods also taking name popularity into account. Note that even if the Jaro
distance does not account for the popularity of the names, we can still reach very high
accuracy in linking by using additional information such as photos and location. Thus,
for our study we use the Jaro distance to measure the similarity between both real names
and usernames. In addition we also measure the similarity using the Jaro distance be-
tween the username on one social network and the real name on the other social network
and vice versa. We consider the maximum of this two distance as a new feature which
we call cross name. This new feature catches several matching accounts omitted by both
username and real name.



Photo similarity. This metric tries to identify users that are using the same photo on
multiple account. However, due to image transformations, the same profile photo can
come in different representations on multiple social networks. It may for example ap-
pear in different sizes and resolutions, be cropped, or have different filters applied to it.
To measure the similarity of two photos while taking such modifications into account,
we use perceptual hashing, a technique originally invented for identifying illegal copies
of copyrighted content [4]. While the description of perceptual hashing techniques is
outside the scope of this paper, the basics are relatively straight-forward: an image is
first reduced to a “fingerprint” by extracting its salient characteristics. This fingerprints
has to remain almost unaltered even if changes in the original image are introduced,
such as scaling, cropping, compression or rotation. The fingerprints of different im-
ages can be compared against each other using simple string similarity metrics, like the
Hamming distance. Images with very high similarity will likely be the same image.
Face similarity. While our photo similarity metric aims to find instances of the same
photo, we also deploy a face recognizer to measure the similarity between faces to iden-
tify different photos showing the same person. To this end, we used the freely available
OpenCV package [3] along with IDIAP’s Torchvision package [14]. The algorithm used
involves first performing facial feature extraction for all images, followed by training of
a Gaussian Mixture Model (GMM) used to obtain a similarity score. A more detailed
list of steps can be found in Appendix A.
Location similarity. For all accounts (except Facebook) we also have textual repre-
sentations of the users’ location, like the name of a city. However, as social networks
use different formats for this information, we cannot just perform a textual comparison.
Instead, we convert the location to latitude/longitude coordinates by submitting them
to the Bing API [1]. We then compute the distance between two locations as the actual
geodesic distance between the corresponding coordinates, normalizing the value into
the range between zero and one.

3.2 Availability

Users do not necessarily provide all our attributes on their profile pages. Table 2a shows
a general breakdown of attribute availability per network. Furthermore, Table 2b shows
availability for pairs of networks, i.e., how often each attribute appears in both of a
user’s accounts in our ground truth dataset (recall that on Facebook we do not have
location information available). Real names appear in more than 90% of Twitter, Face-
book and Google+ accounts but they only appear in 19% of Myspace accounts. The
availability of location depends on the social network and it varies from 26% for Mys-
pace to 80% for Twitter. The photo availability represents the number of accounts that
do not have the default avatar and varies slightly around the 90% range.

To confirm that generally our metrics can indeed separate accounts belonging to the
same user from unrelated ones, we compute pair-wise similarity scores for all Twitter
and Google+ profiles. Figure 1 shows the corresponding histograms per feature, sep-
arately each time for matching and non-matching pairs of accounts (zero means no
similarity and one means perfect similarity). For username, real name and the cross
name features, we see a clear distinction between the two distributions, suggesting that
they indeed all can contribute to identifying related accounts, however the distinction is



Table 2: Legend: T = Twitter, F = Facebook, G = Google+, M = Myspace, Fl = Flickr;
† for accounts in the email ground truth dataset.

(a) Attribute availability per network.

Twitter Facebook Google+ Myspace Flickr Twitter† Flickr†
Username 100% 100% 100% 100% 100% 100% 100%
Real name 91% 97% 93% 19% 75% 95% 30%
Location 80% 0% 69% 26% 53% 58% 11%

Photo 95% 97% 89% 91% 94% 99% 29%

(b) Attribute availability for pairs of networks.

T - F T - G F - G M - T M - F M - G T - Fl T-Fl†
Username 100% 100% 100% 100% 100% 100% 100% 100%
Real name 98% 98% 99% 15% 17% 20% 75% 30%
Location 0% 55% 0% 23% 0% 22% 47% 8%

Photo 94% 90% 89% 85% 89% 75% 92% 28%

less clear for location, photo and face. We will explain in the next sections the reason
why these latter attributes are still important for account correlation.

0 0.5 1
0

2

4

6
x 10

4

 

 

Matching
Non−matching

(a) Username
0 0.5 1

0

5

10

15
x 10

4

 

 

Matching
Non−matching

(b) Real name
0 0.5 1

0

2

4

6
x 10

4

 

 

Matching
Non−matching

(c) Cross name

0.2 0.4 0.6 0.8 1
0

2

4

6

8
x 10

4

 

 

Matching
Non−matching

(d) Location
0 0.5 1

0

1

2

3
x 10

4

 

 

Matching
Non−matching

(e) Photo
−0.2 0 0.2 0.4 0.6

0

1

2

3

4
x 10

4

 

 

Matching
Non−matching

(f) Face

Fig. 1: Histograms of similarity scores for matching and non-matching pairs.

4 Matching Methodology

Given two sets of accounts from different social networks, our goal is to find pairs that
belong to the same individual. We approach this task as a classification problem: we
train a binary classifier with similarity scores for matching and non-matching account
pairs from our ground truth set, and then use the resulting models to predict matches on
new data. We detail our methodology further below, including a discussion of classifiers
we use and training challenges that our setting imposes.



4.1 Classification Strategy

For each pair of accounts the classifier takes as input the similarity scores for each
feature, and outputs probabilities that accounts match. We interpret the probabilities
as an overall score of account similarity, and then select a cut-off threshold to sepa-
rate matching from non-matching pairs. Choosing a specific threshold constitutes the
standard trade-off between the proportion of pairs that we classify correctly (the true-
positive rate) vs. incorrectly (the false-positive rate). To evaluate the classifier’s perfor-
mance, we split our ground truth data into training and testing sets using 10-fold cross
validation.

Since we focus on matching accounts at large scale it is imperative to tune for small
false positive rates. For illustration, assume a classifier operating at 50% true positive
rate for 10−4 false positives. If we have only 1000 accounts on one social network
that we want to match with 1000 accounts on another, the matching algorithm will, on
average, return a list of 500 matching accounts and 100 non-matching accounts (since
there are 106 pairs in total); assuming each account on the first network has exactly one
match on the second. In this situation, that might indeed constitute a reasonable result
as the number of true positives is five times higher than the false positives. However,
if instead we have 10 million accounts on each network, the matching algorithm will
return 1010 false positives for just 5·106 correct matches, i.e., a few orders of magnitude
more. To come to a useful result in this situation, we need to instead tune the false
positive rate down to 10−7 or 10−8 for example.

Following standard practice, we use ROC curves in the remainder of the paper to
examine this trade-off, focussing on regions with low false-positive rates suitable for
our setting. A ROC curve is a simple representation of the relationship between false
positives and false negatives for different thresholds in a classifier. When using ROC
curves, it is important to take confidence intervals into accounts for all observations:
for two curves to differ significantly, these intervals must not overlap [13]. To compute
95% confidence intervals of each point in the ROC curve we use the threshold averaging
method [10], which we choose for its ability to report confidence for both true and
false positive rates. The method works as follows: for each classifier, the 10-fold cross
validation gives posterior probabilities that we use to generate 10 separate ROC curves.
The algorithm first randomly selects a subset of all thresholds used to generate the 10
ROC curves. Then, for each of these thresholds, it estimates the corresponding points
on the 10 ROC curves. Finally, from these points it determines the median and standard
deviation for true/false positive rates and uses them to derive the confidence intervals.

4.2 Training Challenges

Our setting poses two challenges for applying standard classifiers. Firstly, we face a
large class imbalance as the number of possibly matching accounts is much lower
than the number of non-matches. Note that this imbalance stems from the nature of
the problem—not the way data is gathered—and thus carries important information
about prior class probability. To handle the imbalance, we train the classifier with all
pairs but assign higher weights to the matches, inversely proportional to their ratio in
the training set. Doing so prevents the classifier from predicting all the pairs of accounts



as non-matches. The second problem concerns features missing in some user profiles.
As discussed above, users may choose not to publish their location or forget to upload
a profile photo. We assume they are missing at random, and hence do not present an
opportunity for account correlation themselves. However, we must ensure that our clas-
sifiers treat such missing features robustly. In the following subsection, we discuss the
types of classifiers we examine and how they handle such missing data.

4.3 Classifiers

For our study, we examine the following types of classifiers.
Naive Bayes decides if two accounts match based on the probability that each feature’s
similarity score belongs to the matching class, assuming that the distribution of feature
scores in each class is based on a kernel density estimation. The Naive Bayes classifier
has a natural way of handling missing values of a feature: during training, feature in-
stances with missing values will not be included in the feature-value-class probability
computation. During testing, if a particular user has a missing feature value, then that
feature will be omitted from the prediction calculation. Hence, the computation of the
predicted-class will not always use the same set of features for all pairs of accounts, but
this does not bias the computation in any way.
Decision Trees decide if two accounts match by traversing a tree of questions until
they reach a leaf node; the leaf node then specifies the result. In our setting each node
represents a threshold for a given feature; the classifier tests the input account against
that value and takes the appropriate branch. The most popular way to handle missing
features is at training time to only create branches on present values, and at testing to
take all the branches of the node representing the feature whose value is missing and
then select the class with the highest frequency among the leafs. Decision Trees prove
useful for eliminating redundant features, and they allow to directly interpret results by
following the decision process. The drawback is that the decision boundaries are rough
because Decision Trees can only make horizontal and vertical splits.
Logistic Regression is a linear classifier that bases its decisions on a linear combination
of all the similarity scores of each feature. Logistic Regression does not have a native
way to handle missing values, so they must be imputed. The most common way is to
replace them with the median or mean of all existing feature values. We tested both
methods and the imputation with the median value gives better results.
SVM is a large margin classifier that obtains the decision boundary with the largest
distance between matching and non-matching observations. Boundaries can either be
linear or not. Missing values are imputed in the same way as for Logistic Regression.

Figure 2 compares the performance of different classifiers in terms of false vs. true
positive rates, trained on all features. The Naive Bayes and SVM classifiers (both linear
and kernel) perform the best, Logistic Regression is close to the first two while Decision
Trees exhibit the lowest performance for small false positive rates because of its rough
decision boundaries. Since Naive Bayes takes much less time to compute than SVM on
our large data set, we use it for computing all results for the remainder of this paper.
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Fig. 2: Comparison of the performance of different classifiers.

5 Matching Results

This section presents our matching results. We start by investigating each feature’s
matching performance individually in §5.1, and then study different combinations in §5.2.
Next, we change perspective to understand the number of accounts these results allow
us to match successfully between different social networks (§5.3). We discuss how the
results from our Google+ dataset are representative of the whole population in §5.4 and
we finish the section by investigating how our results generalize to very small false
positive rates suitable to match entire social networks (§5.5).

5.1 Examining Features Individually
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(a) Matching performance based on individual
features.
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Fig. 3: Performance of matching Twitter to Google+.

Figure 3a shows the ability of individual features to predict matching account pairs,
obtained by building a separate classifier for each feature alone. For testing we use all
the matching pairs we have in the ground truth set (e.g 76,332 for Twitter to Facebook
correlations) and an equal part of non-matching pairs that we randomly select from



all possible non-matching pairs ( §5.5 will shows results when testing with all non-
matching pairs). The Figures 3a and 3b show the true vs. the false positive rates for
matching Twitter to Google+ accounts but the observations we derive hold on matching
other social networks as well (we will take a closer look at them in §5.3). The x-axis is
in log scale to concentrate on small values. The vertical and horizontal lines represent
the 95% confidence intervals. Note that the vertical confidence intervals are very small
and barely noticeable on the plots and the horizontal confidence interval are very large
at the beginning of the ROC curve but quickly decrease afterwards. They are larger
at the beginning because we do not have many observations for this ranges of false
positive rates. Throughout the next four subsections whenever we give a true positive
rate without further specifics, we define that as meaning 10−3 false positive rate. We
explain how this results extend to much smaller false positive rates such as 10−8 in §5.5.
We limit ourselves to higher false positive rates in this section because estimating false
positive rates such as 10−8 requires a lot of resources and time and it is prohibitive to
do for all the classifiers we present here.

The plot compares the performance for matching accounts using username, real
name, cross name, location, photo and face. The three features involving names (user-
name, real name, cross name) perform best among all. Among them, real names scores
highest, achieving around 80% true positive rate for a 10−3 false positive rate. At a
first look photo seems to be a bad predictor alone; however upon inspecting the data
we found that there are just too few accounts sharing the same image in these two
networks (about 20% of accounts). However, for the accounts which do, photo does
predict matches with high accuracy. As expected, location is not a good predictor by
itself; finding two accounts at the same place rarely means they both belong to a single
individual. Face performs the worst probably because our face detection algorithm has
a bad performance since it is only trained with one photo for each user. We believe that
for the face to be a more effective feature, it must be trained with more photos.

We define the discriminability as the property of a feature to have a similarity thresh-
old which can split matching and non-matching pairs of accounts with a very high
accuracy. A high discriminability is the single most important property that a feature
needs to be able to match alone accounts at scale on different social networks. For ex-
ample, photo is a good predictor alone because it has a very high discriminability for
high similarity scores. Out of all the similarity scores between all accounts, there are
zero non-matching pairs with similarity scores higher than 0.7 while there are 18% of
matching pairs with such scores. This means that for scores higher than 0.7 the photo
can discriminate perfectly between matching and non-matching pairs. Even though we
cannot match a large percentages of accounts with photo alone, we can however match a
small percentage but with a high confidence (thus at scale). As we expect username, real
name and cross name have a very good discriminability for high similarity scores. For
example for username, there are zero non-matching pairs with similarity scores higher
than 0.85 wile there are 42% of the matching pairs with such values. On the other hand
for location, we still have 10% of non-matching accounts with similarity scores higher
than 0.99 and even 2% with similarity scores of 1. Therefore there is no similarity sores
that can perfectly split matching and non-matching accounts with location. Face is in
the same category as location.



Features can be either strong (high discriminability) such as photo and username
or weak (low discriminability) such as location and face. Other possible strong features
could be face detection based on multiple photos, location pattern similarity extracted
from all the posts, similarity between friends or any other feature that, when present,
can make a user unique. Other weak features can be religion, gender, employer or any
other descriptive attribute provided by a user in their profile that is not specific to him.

5.2 Power of Combining Features

To assess the power of using features jointly, we proceed by training classifiers for each
possible combination. Figure 3b presents the true vs. false positive rates for what we
consider the most interesting instance: the extent to which further features can improve
the performance of one of the best individual classifiers, usernames. Here we choose
username as the base since of all the name-based features—which generally work best
individually—it represents the one always available. The figure shows usernames alone;
combined with photo, location, face, real name, location/photo; and finally all features.
We see that combining usernames with real names yields to the largest individual im-
provement. Adding photo or location improves performance significantly as well; even
more so in combination. On the other hand, using face does not lead to much of a con-
tribution. Taking all features together, their combination achieves as much as 90% true
positive rate at 10−3 false positive rate.

When combining multiple features together, an important characteristic that shows
the potential of the combination is the complementarity of the features. The comple-
mentarity is a characteristic that says if two features detect the same or separate sets of
accounts. For example, if we choose a threshold corresponding to a 10−3 false positive
rate, 36% accounts that are detected by photo are not detected by username and 15%
are not detected by real name, thus photo and username or real name are complemen-
tary features. This explains the improvement when they are combined together. Also,
username and real name are complementary as 14% accounts detected by username are
not detected by real name and 38% the other way around.

When we combine a weak and a strong feature, the weak feature plays the role of fil-
ter or booster for the strong feature. For username and location, if two users have similar
usernames but they are in separate parts of the world we want them to be classified as
non-matching accounts. Thus location plays the role of filter for username. In the case
where two users have slightly different usernames but they live in the same place, we
would like the classifier to boost a little their similarity score. Indeed, there are pairs in
our dataset that are not matched by username alone because they have similarity scores
slightly below the threshold, but they can be matched when adding location. Thus, fea-
tures such as location when used in combination with strong features can improves the
overall performance of classification but they can only slightly alter the scores obtained
by the strong feature. If the username similarity is not already close to the threshold,
location cannot do much. However, if we combine two features that are discrimina-
tive (and complementary), for example username and photo, the classifier can detect
matching accounts that have very low similarity between usernames if they have high
similarity between the photos. Thus, when combining two strong features we can detect
accounts that would have never been detected by the other strong feature (even if this



strong feature is combined with other weak features). When matching social networks
it is a good idea to combine both strong and weak features as they can detect different
kinds of users.

5.3 Matching Across Social Networks

In this section we compare the performance of matching accounts across Facebook,
Google+, Flickr, Myspace and Twitter. The correlation performance varies between
these social networks; in this section we present the differences and examine their root
causes. Figure 4 presents the ROC curves for matching all pairs of networks using user-
name in 4a, and all features in 4b. We present them as we think they are the most
interesting because usernames are always present, and all features give the best perfor-
mance (see previous section). However we discuss in the text other features as well.
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Fig. 4: Matching performance across social networks

Figure 4a shows that we can match any pair using just username with a true pos-
itive rate around 50-60%, suggesting that the overall username similarity is quite uni-
form across different social networks. The true positive rate proves better for combi-
nations that do not include Myspace because on the older networks, users tended to
use aliases as their usernames. However, even for Myspace we can reliably match 50%
of all accounts for any combination. When matching with real names, we likewise see
that pairs including Myspace perform worse than others. Correlating Facebook with
Google+ yields the best results, which is unsurprising as these networks expects users
not to use pseudonyms. Facebook to Twitter and Twitter to Google+ performs slightly
worse because Twitter accepts aliases. When matching on photo alone we find the best
true positive rate between Twitter and Google+, followed by Myspace and Twitter, and
Twitter and Facebook; while the worst is Myspace to Facebook. Photos show different
matching patterns than names: users more often share the same photo between Twitter
and Google+, and Myspace and Google+. For location, users behave more consistently
between Myspace and Google+ than Myspace and Twitter, or Twitter and Google+.

When we combine all the features together, we observe that generally matching of
pairs that do not include Myspace again perform much better than others, see Figure 4b.



Matching Twitter to Facebook, Facebook to Google+, and Twitter to Google+ attains
true positive rates in the range of 90%; while Myspace to Twitter, Myspace to Facebook,
and Myspace to Google+ reaches only 60% true positives. This gap is actually caused by
the availability of real names on Myspace, as only 19% of Myspace users have specified
their real name in their profiles and the real name/username combination contributes the
most to the true positive rate when we combine all the features. However, we deem even
60% a high success rate for matching across two social networks.

5.4 Representativeness of Results

As we collected our ground truth dataset from Google+ where people voluntarily pub-
lish links to their accounts on other social networks, our results might not be represen-
tative for a more general user population. To investigate this effect, we cross-check the
results with the email ground truth dataset (see §2).
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Fig. 5: Matching performance for Google+ and email ground truth users.

The question we aim to answer concerns whether the classification results (ROC
curves) remain similar when we train with the email data, compared to using the Google+
data for that. Figures 5a and 5b show the ROC curves for matching Twitter to Flickr ac-
counts for classifiers both trained and tested with Google+ data, classifiers trained with
Google+ data but tested with email data, and classifiers both trained and tested with
email data. As we can see in Figures 5a and 5b the ROC curves for classifiers trained
with Google+ data/email data and tested on email data are the same. This suggests that
the Google+ data does indeed not introduce a bias into the classification and thus we
can confidently train classifiers with ground truth data from Google+ to match accounts
on different social networks.

Another observation from Figures 5a and 5b is that the overall true positive rate of
matching accounts from the Google+ dataset is higher than the one from the email
dataset. For a false positive rate of 10−3 we can see a difference of 20% between
Google+ and email users when matching on username, and 25% when matching on
all features. The difference has two reasons. First, Google+ users have more similar
usernames between their Twitter and Flickr accounts, and second the availability of



other features is higher for Google+ than for email users; see Table 2b. Figure 6 shows
the CDFs of the similarity scores between username, real name, location and photo for
accounts in the Google+ and email dataset. For example, only 41% of email users have
a Jaro distance between usernames higher than 0.8 while 58% of Google+ users do.
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Fig. 6: Comparison of CDFs of similarity scores for the Google+ and email data.

Thus, the results in Section 5.3 for matching different social networks are tilted to-
wards a category of users with usernames that are more similar across social networks
and who put more information into their profiles. We note however that many of the
users difficult to match in the email ground truth dataset never posted anything on Twit-
ter or Flickr and are therefore not the users for which finding the matching accounts
would be the most valuable.

5.5 Generalization of Results

Previous sections show how well different features and their combinations can match
accounts, as well as how the matching performance varies with the social networks
we consider. This section investigates how our results generalize to false positive rates
sufficiently small to match entire social networks.

The ROC curves in §5.1, §5.2 and §5.3 were obtained by testing the classifiers with
an equal number of positive and negative pairs of accounts (equal to the number of
matching pairs we have in the ground truth set) and show true positive rates for false
positive rates as low as 10−3 or 10−4. However, if we want to match entire social net-
works, this false positive rates are still too high. Indeed, Facebook has recently passed 1
billion users, Twitter and Google+ have more than 500 million, and Myspace more than
250 million users.4 A fraction 10−4 out of all possible non-matching pairs of accounts
between Google+ and Myspace would give 10−4 ·5 108 ·2.5 108 ≈ 1013 false matching
accounts for around 108 matching accounts, which is useless as the false positives are a
few orders of magnitude higher than the true positives. To match entire social networks,
a false positive rate of 10−8 would be a maximum suitable rate as it gives a similar
number of false positives and true positives.

To estimate the true positive rates for such small false positive rates we have to
test the classifiers with more negative (non-matching) pairs of accounts. If we test the
classifiers with 10,000 negative pairs, the minimum false positive rate we can observe
is 10−4 (10−3 if also estimating confidence intervals). Here, to estimate smaller false

4 http://en.wikipedia.org/wiki/List_of_virtual_communities_with_
more_than_100_million_users

http://en.wikipedia.org/wiki/List_of_virtual_communities_with_more_than_100_million_users
http://en.wikipedia.org/wiki/List_of_virtual_communities_with_more_than_100_million_users


positive rates, we test the classifiers with 100,000,000 negative pairs. We are able to do
this because we have extensive ground truth data that allows us to have enough examples
of negative pairs. Note that the number of negative pairs only impacts the range of
false positive rates for which we can see accurate estimates and does not modify the
rest of the ROC curve. We only present results for a subset of classifiers as testing all
our classifiers with such large number of pairs is prohibitive. We study two pairs of
social networks: Twitter to Myspace because it is one of the pairs that has the lowest
performance, and Twitter to Facebook because it is one of the pairs that has the highest
performance.
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Fig. 7: ROC curves including estimates for small false positive rates.

Figure 7 shows the results obtained for Myspace–Twitter and for Twitter–Facebook
correlation with a classifier using username alone. We observe that the ROC curve with
logarithmic x-axis has an almost linear body, i.e., the true positive rate decreases linearly
when the false positive rate decreases exponentially. For example, for the Myspace–
Twitter matching with usernames, the true positive rate goes from 60% to 46% to 34%
when the corresponding false positive rate goes from 10−2 to 10−4 to 10−6. However,
for even smaller false positive rates, the true positive rate stabilizes. At the extreme, we
have a positive (and even quite high) true positive rate even for a false positive rate of
zero (for instance, 27% for the Myspace–Twitter matching with usernames). This is due
to the fact that the score distribution for non-matching pairs is exactly zero beyond some
threshold smaller than one. Hence, for large enough thresholds, the classifier simply
does not catch any false positive. The interesting part is that, even for thresholds so close
to one, we still catch a large fraction of the true positives, especially when combining
all features (see Tab. 3 below).

Looking more closely at the true positive rates for a false positive rate of zero, we
observe that the estimates obtained with a large number of negative examples are ac-
tually close to the estimates obtained with a smaller number of negatives (equal to the
number of positives as used in the previous sections). For Myspace to Twitter correla-
tion, testing with 9,000 negative pairs gives a 33% true positive rate while testing with
81 million negative pairs gives a 27% true positive rate. For Twitter to Facebook cor-
relation, testing with 76,332 negative pairs gives a 46% true positive rate while testing
with 100 million negative pairs gives a 43% true positive rate. Thus, we can reliably



use estimates obtained with a smaller number of negative pairs (at a reasonable com-
putational cost) to describe the true positive rates at false positive rate of zero. Table 3
shows the results for all combinations of social networks for classifiers based on user-
name alone and on all features combined. We observe that the true positive rates are
very high for all pairs of social networks, especially when we combine all the features
together. Matching any combination of Twitter, Facebook and Google+ stays in the 80%
range while matching any combinations that include Myspace stays in the 50% range.

Table 3: True positive rates for a false positive rate of zero

Twitter Facebook username 46%
Twitter Facebook all 83%
Twitter Google+ username 41%
Twitter Google+ all 81%
Twitter Myspace username 33%
Twitter Myspace all 51%

Myspace Facebook username 39%
Myspace Facebook all 50%
Google+ Facebook username 49%
Google+ Facebook all 88%
Myspace Google+ username 39%
Myspace Google+ all 49%

Flickr Twitter username 45%
Flickr Twitter all 79%
Flickr Twitter (email) username 37%
Flickr Twitter (email) all 55%

We conclude with an interesting observation. As mentioned above, the similarity
thresholds corresponding to very small (or zero) false positive rates are close to one.
This means that only pairs of accounts that have an almost perfect matching impact
the true positive rates. Consequently, even if we used similarity metrics that only mea-
sure if two usernames, real names, photos or locations are exactly the same, we would
not be too far from the performance of more mismatch-tolerant techniques to measure
similarity.

6 Correlation Chains

Our results so far show that we can link accounts between pairs of social networks with
high confidence. For example, we can correlate Twitter with Myspace with a true pos-
itive rate of 60%, and Twitter with Facebook with a true positive rate of 90%, both for
a false positive rate of 10−3. We now examine if we can also match the remaining 40%
and 10%, respectively, by constructing correlation chains that introduce a third account
from a different network when we cannot match a pair directly. Figure 8 illustrates the
general idea. Assume for example that the similarity between accounts 1 and 2 is lower
than the threshold needed for correlating them with the classifier discussed so far, yet
the similarity between accounts 1 and 3, and 3 and 2 is sufficiently high. Then we can
set up a correlation chain that matches accounts 1 and 2 indirectly by going through 3.
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Fig. 8: Correlation chains.

If we consider the four social networks Twitter, Facebook, Myspace and Google+,
we can build a total of 12 3-step correlation chains. For a correlation chain to become
effective, it needs to combine at least two discriminative features. For example, if be-
tween accounts 1 and 2 the username similarity is lower than the correlation threshold,
it would be almost impossible for the same feature to nevertheless work for both 1 and
3, and 3 and 2. Thus each branch of the chain 1→ 3 and 3→ 2 needs to exploit a dif-
ferent feature. Here, we systematically use classifiers that combine all features in order
to maximize the effectiveness of correlation chains.

Table 4: Performance of correlations chains. († out of pairs that cannot be correlated
directly.)

SN1 SN2 through SN3 % pairs matched
using correlation chains†

Facebook Myspace Google 23.33%
Facebook Myspace Twitter 19.00%
Facebook Twitter Google 19.72%
Facebook Twitter Myspace 5.63%
Facebook Google Twitter 22.15%
Facebook Google Myspace 10.77%

Twitter Myspace Google 19.48%
Twitter Myspace Facebook 11.34%
Twitter Google Facebook 22.31%
Twitter Google Myspace 11.72%
Google Myspace Facebook 13.20%
Google Myspace Twitter 18.36%

For each pair of social networks, we choose the correlation threshold as the thresh-
old corresponding a 10−3 false positive rate (this false positive rate is chosen to illus-
trate the correlation chains results but the method works with any false positive rate
and associated threshold). For a possible chain, Table 4 shows the fraction of account
pairs that are matched using the correlation chain, out of all the pairs that cannot be
matched directly. For all the combinations of social networks, correlation chains can
match between 6% to 23% of the total pairs that cannot be discovered directly. As a
result, correlation chains increase the overall matching performance between any two
social networks by a few percentage points.



7 Related Work

Our work is the first to investigate how to match accounts of a user in different social
networks at scale. However, a number of prior studies have investigated techniques to
correlate users accounts across social networks in different conditions.

Closest to our work are Perito et al.’s [21] work on exploiting the similarity between
usernames to correlate accounts across social networks and Irani et al.’s [12] study of
how one can find accounts of a user by applying simple modifications to her name. We
extend these studies to a richer set of features and to more social networks, and we
demonstrate the feasibility of such correlations at scale. A number of previous studies
exploited the similarity between social network profiles to improve the ranking perfor-
mance when searching for people. For example, You et al. [26] proposed to improve
ranking results by linking people names on the web to their names on social networks.
Motoyama et al. [16] and Bartunov et al. [7] proposed algorithms to match the con-
tacts of a given user on different social networks. Although some of these matching
approaches are similar to ours, our techniques are better suited to match entire social
networks. With a different approach, Balduzzi et al. [6] correlate accounts on different
social networks by exploiting the friend finder mechanism with a list of 10 million email
addresses. Most sites have since limited the number of e-mail addresses that one can
query making this approach unfeasible at scale. Other studies exploited different kinds
of information present in users profiles to correlate their accounts. Iofciu et al. [11]
used tags to identify users across social tagging systems such as Delicious, Stumble-
Upon and Flickr. Wondracek et al. [25] identified the users who visit malicious web
sites by matching their browser history against group memberships. The technique is
possible because the group membership present on many social networks can uniquely
identify users. Mishari et al. showed that community reviews could be linked across
different sites by exploiting the writing style of the authors [15]. Finally, Acquisti et
al. demonstrated the power of face recognition algorithms by linking online and offline
photos with Facebook accounts [5]. Despite the interest of these studies, the techniques
proposed can hardly scale to entire social networks.

Another line of research related to our study is the work on de-anonymizing databases
and graph data. Even though it is a conceptually different problem, some of the tech-
niques are related and might be applied to match accounts on different social networks.
For example, Narayanan et al. [20] proposed an algorithm that can de-anonymize the
graph of a social network using the graph of another social network as auxiliary infor-
mation. Two other studies showed that text posted on blogs can be de-anonymized [18], [17].
Srivatsa et al. explored how mobility traces can be de-anonymized by correlating their
contact graph with the graph of a social network [23]. Sweeney [24] de-anonymized
medical records with the help of external auxiliary information and Narayanan et al.
de-anonymized Netflix movie ratings [19].

Finally, several papers study the footprint users leave online. For example, two stud-
ies show how many attributes users leave on different social networks and what is their
consistency [12], [8].



8 Discussion

Matching entire social networks. Even though our correlation techniques scale to en-
tire social networks, one might counter that crawling them proves infeasible, and hence
large-scale attacks remain theoretical. We believe however that, with appropriate re-
sources, collecting the necessary data is indeed realistic for two reasons. Firstly, one
only needs to gather four attributes for each account: the username, real name, loca-
tion and profile photo. Such information can often be obtained easily through APIs, and
potential rate limits can be bypassed by proxying the requests through multiple comput-
ers (from a cloud for example). Secondly, some social networks such as Facebook and
Twitter maintain user directories56, listing usernames and real names of all their users
for direct access, obliviating much of the need for recursive crawling.
Defenses. Although it takes some effort, the best defense against the type of correlation
we discuss is straightforward: using different usernames, real names, locations and pro-
file photos on each social network. An important aspect is however to consider all social
networks, as correlation chains can link accounts even if all the features are different
between a specific pair.
Extensions. Our correlations can achieve between 50% to 80% true positive rates for
a false positive rate of zero depending on the social networks we consider. One could
use the pairs of accounts that we link as a starting point and then apply further graph
matching techniques to correlate the remainder, as done by Narayanan et al. [20].
Other applications. Not all applications of account correlation raise privacy concerns.
For example, account similarity can help to detect fake accounts. Indeed, there are bots
that use real names and photos scraped from social networks to create fake identities on
other social networks to avoid detection. A specific advantage of using the Jaro distance
and perceptual hashes for computing similarity (in contrast to more complex options)
is their low resource demands, making them suitable for large-scale screening of newly
created accounts in real-time.

9 Conclusions

Our work is the first study that sheds light on the ease of correlating accounts across
different social networks by exploiting a combination of what users voluntarily publish
in their profiles. Even though intuitively one may indeed anticipate the threat of such
attacks, we consider the main contribution of our work in devising the actual correlation
techniques; evaluating their performance on several major social networks; analyzing
the root causes that enable their success; and finally demonstrating that these attacks
prove feasible in practice even when matching across entire social networks.

Our results show in particular that when we combine several features extracted from
user profiles attributes (usernames, real names, cross names, location, photo, and face)
we reach excellent correlation performance, with improvements up to 100% over user-
name alone. Specifically, we can match accounts between any pair-wise combination
of Twitter, Facebook, Google+, and Flickr with a true positive rate of about 90% for

5 https://twitter.com/i/directory/profiles/
6 https://www.facebook.com/directory/



a false positive rate of 10−3, and any combination between Myspace and one of these
four with a true positive rate of about 60%. From our study, we also derive impor-
tant insights on the matching power of different features and of their combinations that
can be extrapolated to other features as well. Regarding the metrics, we found that, at
very large scale, the most straightforward equality metric is essentially as good as more
mismatch-tolerant similarity metrics.

We come to these numbers by using an extensive ground-truth set collected by
crawling Google+ profiles. To explore how the results generalize to the overall user
population, we also inspect a second ground-truth set derived from a large, independent
list of email addresses. We find that while performance decreases, it remains high at
60% true positive rate for 10−3 false positives, meaning that we can correctly associate
hundreds of thousands of accounts.
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A Face similarity

Feature extraction for each user’s profile image involves the following steps:

– Face and eye coordinate detection using OpenCV’s pre-trained Haar cascade filters.
– Face size and scale normalization using the eye coordinates, such that each face

becomes 64 pixels wide by 80 pixels high.
– For images where eye coordinate detection fails, substitute the average eye coordi-

nate positions from images where detection succeeded.
– Performing a 2-dimensional Discrete Cosine Transform (DCT) on each image, and

store the coefficients as features.

The stage for generating user similarity scores for users of a pair of social networks
involves the following steps:

– Train a 16-mixture user-independent GMM on all image features for which the
original eye coordinate detection succeeded, from one of the two social networks.

– Adapting the user-independent GMM to obtain a user-specific GMM for each user.
– Obtain similarity scores for user pairs by computing the log-likelihood of the fea-

tures of images for the other social network, with the user-specific GMMs from the
first social network.

http://www.socialintel.com/
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