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1.0 EXECUTIVE SUMMARY – WHAT’S WRONG WITH ASR, AND HOW CAN WE 
FIX IT? 
 

Automatic speech recognition (ASR) forms a critical link in the acquisition of information from 
audio and video data. Currently, the accuracy of this component in common real world acoustic 
conditions is quite poor. Depending on acoustic conditions and microphone placement, speech 
recognition error rates for conversational speech range from the mid-teens to 30-50%, even for 
the best systems. This range makes further analysis by humans or machines extremely difficult. 
 
Over the last year, with sponsorship from IARPA and AFRL, we have focused on determining 
the primary sources of these difficulties. We did this through two separate mechanisms: an in-
depth study of the source of errors in the acoustic model, using a novel sampling process to 
quantify the effects that the two major HMM assumptions have on recognition accuracy; and a 
broader study of problems in this area, in which we relied on a survey of area experts and of the 
relevant literature.  
 
In the in-depth study, we have obtained results that demonstrate, among other things, that a lack 
of robustness (to mismatched training/test conditions) is a significant source of error in our own 
experiments, and that the sensitivity to such mismatch in the acoustic representations is a 
prominent source of errors. However, our results also show that in the case of matched 
conditions, the incorrect assumptions inherent to our standard statistical models is the dominant 
source of errors.  
 
In particular, by exploiting a resampling method based on Efron’s bootstrap [1], we constructed a 
series of pseudo datasets from near-field and far-field meeting room datasets, that at one end 
satisfied the HMM model assumptions, while at the other end deviated from the model in the 
way real data did. Using these datasets we probed the standard HMM/GMM framework for 
automatic speech recognition. Experiments show that when the conditions are matched (even if 
they are far-field), the model errors dominate; however, in mismatched conditions features are 
neither invariant nor are they separable using the near-field models, and contribute as much to 
the total errors as does the model. We then studied unsupervised MLLR adaptation as a means to 
compensate for this issue in the model space; while this approach mitigates the errors, the 
conclusions about the lack of invariance of the MFCC features in mismatched conditions still 
holds true. As part of future work, this study paves way for principled investigations into other 
spectro-temporal representations [2]. 
 
Our surveys of ASR researchers and of the ASR literature have provided a further sense of the 
community’s perspective on the topic. Our informants believed that they were working with an 
emerging technology. In fact, there was a note of cynicism from many as they felt that the core 
recognition models were so old, that the technology had been an emerging technology for 30 
years. It was noted as immature in essentially all of the technical aspects of recognition. While 
there was minor dissatisfaction with recognition performance per se, the major complaint was 
that the speech recognition systems that are deployed today are not robust to conditions other 
than the training conditions. They degrade rapidly and not gracefully in noise, for novel 
speakers, in far-field or other unusual acoustic conditions, in accented speech, and for speech in 
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which other signals or noises share the acoustic channel.  
 
Our informants identified essentially every element of the current ASR technology as the focus 
of experiments to attempt to improve the technology. Failures were abundant, and performance 
continues to lag that of people in similar situations. 
 
Our two studies were primarily focused on finding the source of difficulties in ASR technology, 
and the determination of promising directions is much harder. That being said, given the 
extremely low error rates for data matching our models’ independence assumptions, it is likely 
that explorations of methods for properly representing the conditional dependence between 
frames and phones (given the state) should have a major effect. On the other hand, given the 
problems that our community identified with brittle systems and their lack of robustness, our 
results point to the relevance of acoustic representations that would be more invariant to such 
mismatches, or those that easily compensate for those conditions. Furthermore, the use of 
resampling techniques such as the ones we have used could provide a useful tool during the 
development of methods to handle these two issues – it could provide a more sensitive indicator 
than just looking at the word error rate for the real data. 
 
2.0 INTRODUCTION 

 
2.1 Historical Background 
 

Speech recognition is defined as the science of recovering words from an acoustic signal meant 
to convey those words to a human listener. Since the initial use of patterns in speech displayed 
by “spectrograms”, developed during World War II but released to the public in the years 
following the war, the art of speech recognition has gone through several phases. Early work 
centered on hand-crafted models of spectra and their movements, such as the early digit 
recognizers from Bell Laboratories. In the 1970’s recognition work was focused on Dynamic 
Time Warping (DTW), where some spectral distance was coupled with a time-warping algorithm 
and the space of potential warps was searched using a dynamic program. In the 1970’s, the 
Hidden Markov Model (HMM) approach was developed by Jim Baker at Carnegie Mellon, and 
by Fred Jelinek and his team at IBM, following fundamental developments by a small number of 
research scientists at the Institute for Defense Analysis (IDA) in Princeton, NJ. 

The IDA team brought the community together in 1982, in a seminar in Princeton, NJ, where 
they outlined the benefits and practice of HMMs. Shortly thereafter, the Bell Laboratories team, 
under Larry Rabiner, published several papers comparing the results of speech recognition using 
DTW and HMM models, noting the substantial improvements of HMM over DTW systems. The 
field then pivoted to HMM systems. Despite the earlier developments at other laboratories noted 
above, it was the Bell Laboratories publications that swayed the community at large to use 
HMMs. 
 
Additionally, DARPA funded several projects in speech recognition, from the earliest in the 
1970’s to the latest in the 2000’s. While the early projects focused on technology, later projects 
emphasized pushing the existing technology into more challenging areas, and creating systems 
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that worked in noisy, distorted, and spontaneous conditions. In addition, there was an attempt to 
create speech-to-speech translation in the Global Autonomous Language Exploitation (GALE) 
project, where the recognizer simply created a word string that was then manipulated to form 
words in the target language. Arguably, none of the later projects focused on improving the 
underlying technology of speech recognition. 
 
Commercialization of the technology has been successful in Interactive Voice Response (IVR) 
systems with limited vocabularies that provide self-service options for customers calling into 
contact centers, and in dictation products with motivated, engaged talkers. However, more 
complex, natural language IVR applications have required costly professional services 
engagements in order to tightly tune the applications to work. Additionally, ASR has not been 
successful for general transcription applications either, as error rates have remained stubbornly 
high. The advent of powerful smart phones with high quality audio systems, internet 
connections, and substantial computing power has created a new interest in speech recognition 
technology commercially. For example, as of 2012, a multitude of vendors providing contact 
center and customer service applications have developed speech-enabled customer care 
applications on smart phones. While these work well in many environments, they often fail in 
accented speech, in noisy situations, and in other challenging acoustic environments. Overall, 
NIST, who tracks performance of government funded speech recognition systems, has found that 
the tremendous decrease in error rates seen in the ‘70s and ‘80s has slowed to a crawl, and in fact 
the primary improvements they have reported in the last decade were with fairly structured data 
(e.g., Mandarin broadcasts) while reported improvements have slowed to a crawl in less 
structured tasks such as the transcription of natural meetings.  
 
There has always been a sense among the researchers in speech recognition that the modeling 
assumptions in HMM systems were too simplistic to be sensible. Larry Gillick and Steven 
Wegmann, working at Nuance in 2009, explored the hypothesis that the independence 
assumptions in acoustic models were instrumental in the failure of these models. After this, 
Steven Wegmann came to ICSI to work on an NSF-funded project to further develop the analysis 
required, working with Berkeley graduate student Dan Gillick (Larry’s son). This early work 
provided a proof-of-concept to support the current IARPA/AFRL project that examines the 
issues in some detail, including an analysis of conditions of acoustic mismatch between training 
and test. Concurrently, the project probes the large commercial and academic community 
working in speech and language technology to see how they viewed the technology, and if there 
was an obvious path to an improved technology that was emerging. 
 
Consequently, the two part study for the project is reported on in this document: (1) an in-depth 
study of the statistical properties of the standard GMM/HMM-based acoustic model, and (2) a 
breadth-wise study of the overall field based on a community survey and a corresponding 
literature search. 
 
2.2 In-depth study: The effects of standard HMM assumptions on performance 
 
It is a reasonable hypothesis that one of the major contributing factors to the oft-observed 
brittleness of ASR is the remarkable inability of the standard HMM-based acoustic model to 
accurately model speech test data that differs in character from the data that was used for its 
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training. While there has long been speculation about the root causes of this brittleness, ranging 
from the over-fitting of the acoustic model to its training data to the lack of invariance of the 
standard front-end (mel-frequency cepstral coefficients (MFCCs)), there is surprisingly little 
quantitative evidence available to back up one claim over another. Furthermore, while many 
authors have explored the circumstances under which recognizers fail (e.g., rapid speech, noise, 
confusable word pairs, etc.), the research aimed at improving HMM-based speech recognition 
accuracy has largely ignored questions concerning understanding or quantifying the underlying 
causes of recognition errors (with some notable exceptions, including [3, 4]). Instead, 
improvements–many of which are reviewed in [5, 6, 7, 8, 9]–to the front-end and the acoustic 
models have largely proceeded by trial and error. The research that we will describe benefits 
from our earlier research described in [10, 11] that used simulation and a novel sampling process 
to quantify the effects that the two major HMM assumptions have on recognition accuracy. In 
this previous work, we analyzed recognition performance on tasks1 where the properties of the 
training and test acoustic data were not challenging and were homogeneous, or matched, across 
the training and test sets. In this report, however, we will summarize analysis of recognition 
performance using the ICSI meeting corpus [12], where the acoustic data are more challenging. 
In particular, we are able to exploit properties of this corpus to compare recognition performance 
when the training and test data acoustics are matched or mismatched. 
 
More specifically, we have used the parallel recordings using near- and far-field microphones in 
the ICSI meeting corpus to construct three sets of related recognition tasks: (a) matched near-
field acoustic model training and recognition test data; (b) matched far-field acoustic model 
training and recognition test data; (c) mismatched near-field acoustic model training data and far-
field recognition test data.  
 
We are interested in understanding which properties of real data are surprising to the acoustic 
models that are in common use in the ASR community, where we will use recognition word 
error rates as our measure of “surprise”. There are many potential sources of surprise (or 
mismatch) that the data can present to the acoustic models. However, in the in-depth study 
described here, we are specifically interested in quantifying the effects of the surprise due to 
statistical dependence in the data, due to the deviation of real data to the parametric form of the 
marginal distributions in the model (GMMs), and due to training on near-field data and testing 
on far-field data. In order to obtain accurate estimates of the degree of surprise due to these 
factors we must, to the extent that it is possible, eliminate other sources of surprise that, while 
interesting in their own right, are conflating factors in this study. There are two broad categories 
of factors that we address involving, on the one hand, properties of the data, and, on the other 
hand, acoustic model technicalities. 
 

2.3 Breadth-wise study: The community/literature surveys on errors in ASR 
 
It was not possible in a one-year study to do a detailed analysis of every potential source of error 
in automatic speech recognition, certainly not at the level of the in-depth study of the acoustic 
model introduced above. On the other hand, it was agreed at the outset that we needed to at least 
consider a broader class of issues in order to better advise the government about fruitful 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  Based on the Wall Street Journal and Switchboard corpora	  
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directions for future programs. Consequently, we developed a plan to conduct a survey of the 
speech recognition community and a search of the relevant literature to get a representative 
sampling of expert opinions on the state of speech recognition. The project included a survey of 
many of the active participants in the speech recognition community. We wanted to evaluate 
what people told us about speech technology and its application in the context of our findings 
about the performance of modern speech recognition algorithms and their flaws. It is our hope 
that this analysis, in combination with the in-depth study of the statistical acoustic model, will 
lead to a way forward for the community to improve speech, or at least show us how to analyze 
the current state of the technology and uncover areas and ideas for future work. 
 
We set out to interview a significant number of major participants in speech and language 
technology, asking questions about their sense of the technology, their experience with 
improving the technology, and their projections for the future. Interviews were mostly by 
telephone, although some were in person, and we followed the “snowball” polling practice 
(described further in section 3.2), which promised a reasonably unbiased view of international 
experts’ views. We interviewed academics, commercial developers, and government employees. 
Both through our own intuitions and the suggestions of the interviewees, we also conducted a 
search of the relevant literature. The results of both of these efforts certainly show a wide 
diversity of opinions, but there are some major impressions that appear to be justified by the 
data. Both the common themes and the diversity of opinions are presented in this report, 
primarily in section 4 (with some description of the participant characteristics in Appendix B). 
 
 
3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 

Section 3 describes the methods for both the acoustic model study and the broader survey. 
Results from these studies will be presented in section 4. 
 
3.1 In-depth study of the acoustic models 
 
3.1.1 Simulation and Resampling Methodology 
 
We used simulation and a novel sampling process to generate pseudo test data that deviate from 
the major HMM assumptions in a controlled fashion. The novel sampling process, called 
resampling, was adapted from Bradley Efron’s work on the bootstrap [1] in [10, 11]. These 
processes allowed us to generate pseudo data that, at one extreme, agreed with all of the model’s 
assumptions, and at another extreme, deviated from the model in exactly the way real data do. 
Across this range, we could control the degree of data/model mismatch. By measuring 
recognition performance on this pseudo test data, we were able to quantify the effect of this 
controlled data/model mismatch on recognition accuracy. 
 
3.1.1.1 The simulation and resampling process 
 
The methodology used in this study allows six levels of simulation and resampling: (a) 
simulation, (b) frame resampling, (c) state resampling, (d) phone resampling, (e) word 
resampling, and (f) original test utterance. 
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Simulation: We followed the full generative process assumed by HMMs. The simulated data, 
therefore, matches all the assumptions of the model. These assumptions are: (a) the sequence of 
states are hidden and are constrained to follow a Markov chain (b) the features are independent 
conditioned on the states (c) what the specific form of the probability distribution of the data 
generated by a given hidden state is. We followed the standard practice in ASR and used 
Gaussian mixture models (GMMs) for these probability distributions. To generate the test data 
by simulation, we started with the test transcriptions, and looked up each word in the 
pronunciation dictionary to create phone transcriptions. We then used the state transitions and the 
output distribution associated with the states belonging to the triphones to generate the data. 
Since our feature set has ∆ and ∆∆ features appended to the static cepstral features and since the 
GMMs model--and are fit to--the marginal distribution of this feature set, the GMMs never learn 
about the temporal consistency between a sequence of cepstral vectors and their corresponding 
∆and ∆∆ features. Consequently, when we simulated from the model the resulting features 
correspond to the static cepstral features and their ∆ and ∆∆ features but they have lost (via 
marginalization) the temporal consistency that the original, real statics, ∆, and ∆∆ features had. 
 
Frame resampling: In this case, we did not use the full generative process. Nevertheless, we 
created data that respects the independence assumptions at different levels. To generate the data 
in this fashion the following process was performed: (a) We used the training model to perform 
forced alignment on the training utterances, so that each speech frame is annotated with its most 
likely generating state. (b) We walked through this alignment, filling an urn for each state with 
its representative frames; at the end of this process, each urn was populated with frames 
representing its empirical distribution. (c) To generate resampled data, we used the model to 
create a forced alignment of the test data, and then sample a frame (at random, with replacement) 
from the appropriate urn for each frame position; these resampled frames were concatenated. 
With this frame-level resampling, the pseudo test data was exactly the same length as the 
original, and had the same underlying alignment, but the frames were then conditionally 
independent (given the state).  
 
State, phone, and word resampling: By placing entire state sequences of frames in the urns, and 
then resampling (again, concatenating samples), we ended up with pseudo test data with 
dependence among frames within state regions, but independence across state boundaries (note 
that resampling units larger than single frames produces pseudo test data that may be a different 
length from the original). We further extended this idea to phones and to words; in all cases, the 
urn labels included the full triphone context. 2 
 
3.1.1.2 Enforcing common alignment for Near-field and Far-field data 
 
The method of resampling creates an alignment of the training dataset using the recognition 
model; it then uses the alignments to fill urns that are in turn used to create the pseudo test 
utterances. The differences in the alignments created by the near-field and the far-field model 
will lead to the creation of pseudo test sets that are not parallel, leading to the near- field model 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  Note that while some figures in this document focus on the frame resampling case for simplicity’s sake, 
the tables of results in section 4 and in Appendix A typically show results for all of these levels. 
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trying to compensate, in addition, for a mismatched alignment. In order to minimize this effect, 
we created alignments using the near-field model on the near-field data, and used this alignment 
to generate pseudo, far-field test data (for the mismatched case). 
 
3.1.2 Datasets 
 
We used a dataset of spontaneous meeting speech recorded at ICSI [12] where each spoken 
utterance was captured using near-field (NF) and far-field3 (FF) microphones. Our training set 
was based on the meeting data used for adaptation in the SRI-ICSI meeting recognition system 
[13]. For the test set we used data from the ICSI meetings drawn from the NIST RT eval sets 
[14, 15, 16]; this was done to control the variability in the data for the resampling experiments. 
 
The remainder of this subsection discusses the creation of the parallel NF and FF corpora for this 
project. First, we describe how we estimated and removed a variable length time delay that exists 
between the corresponding NF and FF utterances, so that each training and test utterance had two 
parallel versions– NF and FF–that are aligned at the MFCC frame level. This alignment and 
some further selection were used to choose the specific partitions of parallel NF and FF corpora 
data to be the training and test sets. These procedures are described in the following subsections. 
 
3.1.2.1 Time-aligning the corpora 
 
In order to synchronize the NF and FF recordings, we must deal with a time delay, or skew, that 
exists between the two recordings. These time delays arise from two factors: (1) different 
physical distances between the speakers and the microphones, and (2) systematic delays 
introduced by the recording software. The latter factor appears to dominate the skew between the 
NF and FF recordings. Fixed delays were introduced when the channels were initialized at the 
start of a recording. Since this systematic delay dominates the skew, the NF recordings have a 
time delay relative to the FF recordings. Fig 1(a) shows audio at the FF microphone that is 
advanced in time in comparison to the same utterance captured by the NF microphone. 
 
Time delay is more evident in the cross-correlation between the NF and FF signals, as shown in 
Fig 1(b). The delay could be estimated by searching for a peak in the cross-correlation sequence. 
In Fig 1(b) the peak is at a lag of 41.88 ms (670 samples at 16 kHz). However, this detection 
could be difficult because of the recording quality and noise. To guarantee a more precise 
detection, we divided each utterance into overlapping windows, where the window size was a 
third of the utterance length and the step size for successive windows was a tenth of the utterance 
length. For each step, the cross- correlation sequence was calculated and a delay was estimated. 
If the variation between the estimated delays in the windows for a given utterance was too large, 
then the estimated delay was regarded as unreliable and the utterance was discarded. 
Approximately 30% of the utterances were discarded because of these unreliable delay estimates. 
The delays between NF and FF channels for the reliable data ranged from 12.5 ms to 61.25 ms. 
This was implemented using the Skewview tool [17]. More about the delay can be found in [18]. 
 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3	  We used the SDM or “Single Distant Microphone” recordings for the far-field data.	  
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Figure 1. Time alignment – top figure shows near-field in blue, far-field in green, and the bottom 

figure shows the cross-correlation between the signals 

 
 
3.1.2.2 Data partitions 
 
Because of the parallel nature of the NF and FF corpora, the data partitions are identical. For 
simplicity, we describe the NF partitioning. The training set had a dominant speaker accounting 
for nearly a quarter of the data; this would skew the data generated by the resampling process. 
On the other hand, perfect speaker balancing cannot be achieved given that this is a corpus of 
spontaneous speech from natural, unscripted meetings. There is, therefore, a trade-off between 
amount of data and an egalitarian distribution of speakers. The resulting NF training and test sets 
consisted of about 20 hours and 1 hour respectively, and their statistics are reported in Table 1. 
 
Table 1. Training and test statistics for near-field (NF) and far-field (FF). The training data is 27.5 
hours from the Meeting corpus standard training data. We then removed delay and discarded data 
that did not survive the deskewing process described above. The test data comprises the ICSI 
portion of the RT-02, -04s, and -05s evals, after removal of any sentences with OOVs or that did not 
survive the deskewing process. 

Dataset Speakers Utterances Time 
Training 26 23729 20.4 (hrs) 
Test 18 1063 57.9 (mins) 
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3.1.3 Models and experimental setup 
 
We used version 3.4 of the HTK toolkit [19] for the front-end, acoustic model training, and 
decoding. In particular, we used the standard HTK front-end to produce a 39 dimensional feature 
vector every 10 ms: 13 Mel-cepstral coefficients, including energy, plus their first and second 
differences. The cepstral coefficients were mean-normalized at the utterance level. We used 
HDecode for decoding with a wide search beam (300) to avoid search errors. To evaluate 
recognition accuracy, the reference and the decoded utterances were text normalized and scored 
using standard NIST tools to obtain word error rates (WERs). The remainder of this section 
discusses the recognition acoustic models, dictionary, and language model. 
 
3.1.3.1 Near-field acoustic models 
 
The NF acoustic models used cross-word triphones and were estimated using maximum 
likelihood. Except for silence, each triphone was modeled using a three-state HMM with a 
discrete linear transition structure that prevents skipping. The output distribution for each HMM 
state was a GMM with each component being a multivariate Gaussian with diagonal covariance. 
We used GMMs with 1, 2, 4, and 8 mixture components. While significantly better performance 
could be achieved with mixtures of more components, the simplicity of a single component is 
preferable for our analysis; it also highlights the performance differences between our 
experiments. Maximum likelihood training roughly followed the HTK tutorial: monophone 
models were estimated from a “flat start”, duplicated to form triphone models, clustered to 2500 
states and re-estimated. 
 
3.1.3.2 Far-field acoustic models: via single-pass retraining 
 
In one of our key experiments we wanted to isolate and understand how the transformation 
between the parallel NF and FF data impacts recognition performance when we use NF models 
to recognize FF data. In order to accomplish this, we wanted to construct parallel NF and FF 
models whose only differences arise from the transformation between the parallel NF and FF 
data. Thus, instead of building the FF acoustic models from a flat start, we exploited the parallel 
nature of the NF and FF training sets to build the FF models using single-pass retraining from the 
final NF models and the FF data. Single-pass retraining is a form of EM, which is supported by 
HTK, where, in our case, the E-step is performed using the NF models and data, while the M-
step and model updates use the FF data. We only updated the means and variances of the FF 
models, so the result was a parallel set of NF and FF acoustic models that shared the same state-
tying, but the (unknown) transformation between the NF and FF means and variances was 
determined by the frame-level transformation between the parallel NF and FF acoustic data. 
 
3.1.3.3 Dictionary and language models 
 
Our acoustic models were relatively weak since they were trained from only 20 hours of data, 
and this was reflected in their small size: up to 8 mixture models per state and only 2500 tied 
states. However, since the Meeting recognition task is difficult, recognition WERs obtained 
using the small LM trained from corresponding acoustic training texts are much higher than what 
is reported in the literature (e.g. in our case 64% in the matched NF condition versus ~30% in the 
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literature). To ensure more reasonable WERs and more confidence in our results, we used a 
much more powerful language model. In particular, we used a LM [20] that was trained at SRI 
by interpolating a number of source LMs; these consisted of webtext and the transcripts of the 
following corpora: Switchboard, meetings (CMU, ICSI, and NIST), Fisher, Hub4- LM96, and 
TDT4. We then removed words not in the training dictionary from the trigram LM, and 
renormalized it. The perplexity of this meeting room LM is around 70 on our test set. In order to 
use our simulation methodology we need pronunciations for each word in an utterance's 
transcription. Thus, we removed any test utterances that had any words OOV relative to the SRI 
dictionary. To be compatible with the SRI LM, we used the SRI pronunciations; that dictionary 
uses two extra phones in comparison with the CMU phone set –“puh” and “pum”– for 
hesitations. 
 
3.2 Breadth-wise study 
The survey was conducted using “snowball sampling”, which is a method for gathering research 
subjects through the identification of an initial subject or set of subjects who are used to provide 
the names of other potential subjects [22]. This was used in our study in order to gain access to 
experts within the field of speech recognition. As such, we started with a few targeted 
participants, and asked each of them at the end of the survey to give us contact information for 
two other people within the industry that might participate in our survey.  

Whereas the snowball sampling technique can be construed as presenting some bias, in the case 
of this study we were trying to reach participants with the broadest range of experience within 
speech recognition. Therefore, having participants nominate those in their peer group they felt 
had the most experience to draw from was an important factor.  

We also asked participants if they would be willing to take a more in-depth survey in the future if 
we did one. 

 
3.2.1 Demographics 
 
The identities of the interviewees in our survey were anonymized. That is, in keeping with the 
human subjects requirement from the UC Berkeley IRB, access to the raw subject data was 
restricted to a limited number of researchers on our team4. However, we collected basic 
demographic information about them to see if we could glean any trend information on who is 
working in the field. 

• Name 

• Sex 

• Age 

• Organization 

• Number of Years in Speech Technologies 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4	  This was approved by the UC Berkeley Committee for the Protection of Human Subjects, Protocol 
number 2012-04-4187, April 23, 2012. 
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• Position/Title 

• Questions as to the state of speech recognition 
 

3.2.2  The Questionnaire 
The questionnaire was designed to elicit the broadest possible range of answers, and was limited 
to six questions beyond demographic information.  

1. Are you currently working on speech technology products, if so what areas and why? 

2. Where has the current technology failed? 

3. What do you think is broken? 

4. What have you tried to do to improve the technology that should have worked but did 
not? 

5. Why did it fail?  

6. Have you solved any speech technology problems that were not published? If so, what? 
 

3.2.3 The Literature Review 

As noted in section 2, the community survey was augmented by a review of the relevant research 
literature. In addition to an abundance of survey articles that were apparent to us, we were also 
guided by suggestions that came from our interviewees. The key results are given in the next 
section, and Appendix C provides an additional list of references that either came from our own 
perspectives or from those of the interviewees. 

 

4.0 RESULTS AND DISCUSSION 
 

4.1 In-depth study of the acoustic models 
 
Near-field (NF) and far-field (FF) test data were created by simulation, and then by resampling 
frames, states, phonemes, and words; the corresponding recognition models are then used for 
decoding. Each resampling experiment was jackknifed five times (using different partitions each 
time for decoding), and the results are shown in the Tables 2, 3, and 4. In the matched NF 
experiments, NF models were used to recognize NF test data, while the matched FF experiments 
used FF models and FF test data. In the mismatched experiments, NF models were used to 
recognize FF test data. Listed in the table for the matched and the mismatched cases were the 
word error rate (WER), standard error (SE), and the relative increase in WER from previous 
level of simulation/resampling (the next highest row). The standard errors ranged from 0.03 
(simulation in the NF case) to 0.45 (word resampling in the FF case), so all the WER differences 
between matched and mismatched conditions were significant. Note that the WERs on the test 
data increased as we move from NF (44.7%) to FF (71.4%), and then to the mismatched 
conditions (84.7%), that is, for NF models and FF test data; this indicated the difficulty of the 
tasks. 
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4.1.1 Analysis of matched near-field results 

Near-field results are summarized in Table 2. It is remarkable to see that the WER for simulation 
and frame resampling is negligibly small in meeting room data, albeit with near-field 
microphones; for these cases all assumptions made by the model are satisfied by the data. When 
this is the case, the WER obtained by the system must be similar to human performance. The 
largest increase in WER is observed when we move from frame resampling to state resampling – 
a little more than a four-fold increase in errors. Another large increase in WER (123%) occurs 
when we move down to phone resampling. As dependence is introduced (going down the rows), 
we start observing larger WER. These results are consistent with what was observed in [11] on 
the WSJ and Switchboard corpora, both of which also had matched training and test conditions. 
 
 
Table 2. Rates shown are for simulation from the model and resampling at the different levels of 
granularity for the near-field matched case. The last column shows the % increase in WER 
obtained over the next higher level of resampling. All results are for the 1-Gaussian case; similar 
trends are observed for 8-Gaussian models, but with lower error rates overall (see Appendix A for 
full results). 
 
Resampling method WER (%) Standard Error ∆ WER (%) 
    
Simulation 1.4 0.03 - 
Frame 1.9 0.05 31 
State 9.6 0.17 416 
Phone 21.4 0.21 123 
Word 37.6 0.28 75 
Original data 44.7 - 19 
 

 
Figure 2 shows the word error rates for models ranging from 1 to 8 Gaussians per state and for 
two of the cases shown in the table: resampling at the frame level so that the conditional 
independence assumptions of the model are satisfied; and the original data, for which these 
assumptions definitely are not satisfied. Note that the differences in performance due to the 
number of Gaussians are inconsequential compared to the huge effect of the assumption 
violation in the original data. 
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Figure 2. Word error rates for framewise resampled data and for original data, near-field 
recordings on the ICSI meeting corpus, for triphone models ranging from 1 Gaussian per state to 8 
Gaussians per state 

 

4.1.2 Analysis of matched far-field results 
 
Although the WER is consistently worse for the FF results than they were for the NF results, the 
pattern of error rates over the different resampling methods for the FF case is consistent with 
what we observe in the NF experiments and in [11]. However, it is striking how small the WER 
for simulation (1.8%) is when we consider how large the WERs are on real FF data (71.4%). 
This shows that, when the training and test conditions are matched, and the model assumptions 
implicit in HMMs are met, MFCC features are essentially separable even for the more 
challenging FF meeting data. 
   
 
Table 3. Rates shown are for simulation from the model and resampling at the different levels of 
granularity for the far-field matched case. The last column shows the % increase in WER obtained 
over the next higher level of resampling. All results are for the 1-Gaussian case; similar trends are 
observed for 8-Gaussian models, but with lower error rates overall. 

 
Resampling method WER (%) Standard Error ∆ WER (%) 
    
Simulation 1.8 0.03 - 
Frame 3.4 0.02 88 
State 23.2 0.2 580 
Phone 45.5 0.41 96 
Word 63.5 0.45 40 
Original data 71.4 - 12 
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Figure 3 shows the word error rates for models ranging from 1 to 8 Gaussians per state and for 
two of the cases shown in the table: resampling at the frame level so that the conditional 
independence assumptions of the model are satisfied; and the original data, for which these 
assumptions definitely are not satisfied. Note that, although the WER for original data is far 
worse than it was for the near-field data, as with the earlier case, the differences in performance 
due to the number of Gaussians is inconsequential compared to the huge effect of the assumption 
violation in the original data. 
 

 
Figure 3. Word error rates for framewise resampled data and for original data, far-field recordings 
on the ICSI meeting corpus, for triphone models ranging from 1 Gaussian per state to 8 Gaussians 

per state 

 

4.1.3 Analysis of the mismatched case 

The results in the mismatched case are in stark contrast to those obtained for the matched cases. 
The WER for simulation is much higher at 43%, which indicates that MFCCs are not separable 
in this mismatched case, i.e., using the near-field models. While the errors due to statistical 
dependence–the WER from the state resampling to the original data–are considerable (from 
59.9% to 84.7%), they are no longer such a dominant cause of recognition errors. To better 
understand the mismatched simulation result, we compare it to the matched, NF simulation 
result. In both cases we use NF models to recognize simulated data: in the matched case this data 
is simulated by the NF models, while in the mismatched case this data is simulated from the FF 
models. Because we used single-pass retraining to create the FF models from the NF models, the 
unknown transformation between the NF and FF means and variances is inherited from the 
unknown transformation between the parallel NF and FF training utterances. Thus the 
transformation between the test utterances simulated from the NF and FF models is derived from 
the transformation between the NF and FF models, and it is related to, but much simpler than, the 
transformation between the parallel NF and FF training data. The NF models have a low WER 
on the simulated NF test data (1.4%), but they have a high WER (43%) on the simulated FF data, 
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which is transformed simulated NF data. If the features (MFCCs) were invariant to this 
transformation, then the WERs would be similar. However, since the WERs are very different, 
the features cannot be invariant, and the large difference in WERs is due to this lack of 
invariance. 
 
Table 4. Rates shown are for simulation from the model and resampling at the different levels of 
granularity for the mismatched case (near-field training, far-field test). The last column shows the 
% increase in WER obtained over the next higher level of resampling. All results are for the 1-
Gaussian case; similar trends are observed for 8-Gaussian models, but with lower error rates 
overall (see Appendix). 

 
Resampling method WER (%) Standard Error ∆ WER (%) 
    
Simulation 43.0 0.23 - 
Frame 59.9 0.26 39 
State 75.8 0.27 27 
Phone 80.6 0.29 6 
Word 80.6 0.15 0 
Original data 84.7 - 5 
 
Figure 4 shows the word error rates for models ranging from 1 to 8 Gaussians per state and for 
two of the cases shown in the table: resampling at the frame level so that the conditional 
independence assumptions of the model are satisfied; and the original data, for which these 
assumptions definitely are not satisfied. As with the matched cases, the differences in 
performance due to the number of Gaussians are inconsequential compared to the huge effect of 
the assumption violation in the original data. However, unlike the matched cases, the error rates 
for the framewise resampling are not tiny, indicating that even compensating for the conditional 
dependence in the data does not fix the problem.  
 

 
Figure 4. Word error rates for framewise resampled data and for original data, far-field recordings 
on the ICSI meeting corpus, for triphone models trained on near-field recordings, ranging from 1 

Gaussian per state to 8 Gaussians per state 
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4.1.4 Experiments with some standard methods of improvement 
 
The literature is replete with methods that have been shown to provide incremental reductions in 
word error rates under various conditions, and it is far beyond the scope of this report to cover all 
or even a majority of such methods. However, we have experimented with three of the common 
methods: MLLR adaptation, MPE discriminant retraining, and MLP transformation. Here we 
describe our results for these three in the context of the experimental methods of this study. The 
results of the breadthwise studies (given below in section 4.2) will provide a different 
perspective on the efficacy of the ensemble of such methods. Tables providing specific results 
for these tests are provided in the Appendix, but the most significant results are described here. 
 
4.1.4.1 Adaptation 

A standard approach to mitigating recognition errors due to mismatched conditions is to perform 
unsupervised MLLR [21], a form of linear mean adaptation. Since the large difference between 
the matched NF and mismatched simulation results is due to the lack of invariance of MFCCs to 
a (presumably non-linear) transformation between the NF and FF data, it is natural to try to 
compensate for this using MLLR. We treat the 1 hour of simulated test data as belonging to a 
single speaker, and use the recognition hypotheses to generate the adaptation transforms for the 
NF models. We do two passes of adaptation: in the first pass a global adaptation is performed, 
while the second pass uses a regression class tree. We experimented with up to 16 regression 
classes in the second pass, but we found that 3 classes were optimal. In this case the simulation 
WER improves from 43.0% to 15.4% (for the single Gaussian case). While this is a large 
improvement, the adapted WER, 15.4%, is still much higher than the 1.4% WER on simulated 
NF data (or the 1.8% WER on simulated FF data). For the case of framewise resampling, MLLR 
reduced the WER from 59.9% to 43.2%, again, this reduction is modest compared to the 
framewise resampling result for the NF case, which yielded a WER of 1.9% ; or for the FF case 
with matched models, which yielded a WER of 3.4%. 

In short, while MLLR provides good improvements for original data, and quite substantial 
improvements for simulation and framewise resampling from the NF model that is recognized 
using FF models, the remaining errors are still substantial even for these cases that provide test 
data that satisfy the statistical independence assumptions.  
 

4.1.4.2 Discriminant training via the Minimum Phone Error (MPE) approach 

It is also currently standard in large speech recognition systems to incorporate discriminant 
model training such as MPE to reduce WER beyond what has been obtained with Maximum 
Likelihood (ML) models. While this approach is motivated by the desire to more effectively 
discriminate between correct and nearby incorrect explanations of the data, another perspective 
is that MPE somehow partially compensates for the dependence in the data. This is suggested by 
our results with MPE on our meeting data. MPE provides no improvement for the simulated or 
framewise resampled near-field data, for which the conditional independence assumption is 
satisfied; in particular, for the framewise resampled case, retraining with MPE doesn’t decrease 
the error rate (from actually slightly increasing from 1.86% to 2.06% for the 1-Gaussian models, 
and staying the same at .70% for the 8-Gaussian models). For the matched far-field data case, the 
error rate actually increases after applying MPE, going from 3.42% to 7.10% for the 1-Gaussian 
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models, and from 1.32% to 1.50% for the 8-Gaussian models. In both cases, MPE provides the 
anticipated improvements for the original meeting data. For near-field data, MPE reduces the 
error rate from 44.70% to 39.00% for 1-Gaussian models, and from 33.10% to 30.90% for 8-
Gaussian models. For far-field data, MPE reduces the error rate from 71.40% to 67.50% for 1-
Gaussian models, and from 63.20% to 61.60% for 8-Gaussian models.  
 
For the mismatched case, similar trends are observed. For data generated by simulation using 
near-field models, MPE actually makes things worse, increasing WER from 43.04% to 69.60% 
for the 1-Gaussian models, and from 24.80% to 34.85% for the 8-Gaussian models. For 
framewise resampling, WER stays roughly the same for MPE as it had been for ML models, with 
WER only moving from 59.93% to 59.50% for the 1-Gaussian case, and from 24.90% to 24.75% 
for the 8-Gaussian case. As with the matched cases, MPE does help for the original data, 
bringing the 1-Gaussian WER down from 84.7% to 81.9%, and the 8-Gaussian case down from 
80.6% to 77.0%. These results suggest that the gain from using MPE is associated with somehow 
compensating for the conditional dependence in the data, since such gains are not observed when 
this dependence is artificially removed. 
 
The full set of results is given in Appendix A, with contrast to the maximum likelihood results. 

 
4.1.4.3 Discriminant features via MLP training 

ICSI has been a leader for many years in MLP processing of speech to improve acoustic 
processing. For a number of tasks in which we used MLP outputs (after log and PCA 
transformations) as additional features for HMM/GMM systems, we observed significant gains. 
However, in general these were for tasks in which the training was reasonably representative of 
the test set. In our MLP experiments within this study, we found similar effects. For the near-
field data, transforming the MFCC front end with a phonetically discriminantly trained MLP 
provided relative improvements (for the 1 Gaussian case) for the simulation, all levels of 
resampled data, and even (modestly) for the original data; e.g., WER dropped from 1.9% to 1.0% 
for the framewise resampling, and from 44.7% to 42.3% for the original data, using 1-Gaussian 
models. For the far-field data, similar effects were seen, although there was no improvement for 
the original far-field data. In particular, transforming MFCCs with an MLP reduced WER for the 
framewise resampling from 3.4% to 2.8%, while for the original data the error rate actually 
increased slightly from 71.4% to 72.2%. In both cases and for all conditions, augmenting the 
MFCC frontend with the MLP-processed MFCCs improved WER further. However, for the 
mismatch case, neither using the MLP features alone nor using them in combination with the 
MFCC front end provided any relief from the increased error rates; in fact, the MLP features 
worsened the results. For example, for framewise resampling, the error rate increased hugely 
from 59.9% to 92.5%. For at least this task, the MLP training seemed to overly specialize the 
representation to an acoustic that was clearly mismatched with the test data. 
 
The full set of results is given in Appendix A. 
 
4.1.4 Commentary on the efficacy of these 3 methods 
 
As can be seen from the results briefly described above, only MLLR provided significant relief 
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from the huge number of errors engendered by the mismatch in acoustic data characteristics 
between training and test. MPE provided modest gains for the original data, but when the issues 
of statistical dependence are accounted for, MPE provides no gain (i.e., for the simulation and 
framewise resampling cases). Transforming MFCCs with an MLP is even more disappointing, as 
it shows no improvement for either the original data or the simulated or framewise resampled 
case. 
 
There is an obvious difference between MLLR adaptation and the other two methods; the former 
uses information from the test set to improve performance on that very test. This is not 
“cheating”, as there is no use of supervisory information. But it does differ significantly from the 
other two methods. Both MPE and MLP feature training attempt to improve discrimination on 
the training data, and (at least is they are ordinarily implemented) make use of no information 
from the test data. On the other hand, both methods provide significant gains when used for 
matched training and testing. This suggests that adaptation methods for discriminant methods 
should be explored to see if they can provide similar or better (or complementary) gains to what 
is seen with MLLR. We expect to be working on adaptation methods for MLP-based feature 
transformation in the future. 
 
4.2 Breadth-wise study 
 
In this section we discuss the primary results of the community survey. In Appendix B, we 
provide detailed information about the characteristics of the respondents, including their 
professional affiliation (mostly industrial or academic, with some governmental), their age 
(essentially all over 40, median age in their mid-50’s), their position (mostly in research or 
development), and their professional focus (working in a range of ASR-related topics, but with 
roughly half directly focused on ASR itself).  
 
In the following subsections we focus on the responses to the six questions given in section 3.2 
above. Each interview was on average 30 minutes long, which also led to many anecdotal 
comments. We have encapsulated some of the more common themes below, and also provide 
figures showing a categorization of the responses. The answers to question 1, which were about 
the interviewees per se, are summarized in the previous paragraph and described in detail in 
Appendix B. 
 
4.2.1 Question 2: Where has the current technology failed? 
 
The interviewees cited many failures in the current speech technology. Often the failures were 
closely associated with the area in which the informant had been working, but in other cases they 
took a more global view of the technology, and attempted to tell us under which conditions the 
technology delivered an unacceptable result.  
 
Figure 5 shows the technology difficulties cited by our interviewees. Many of our informants 
identified the lack of robustness as a primary characteristic of speech and language technology. 
Many responses identified the particular characteristic of speech or language that caused this 
lack of robustness, such as noise, the acoustic mismatch between test and training, and variability 
in the speaker population. The second most frequent response was that the technology was too 
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complicated to use or too expensive to implement. Our interviewees often noted that in order to 
get an application to be usable, particularly a natural dialog application, there had to be an 
inordinate amount of tuning or tinkering to get it to work. They observed that the amount of 
work that had to be done increased the cost of the application. This, too, can be seen as a failure 
of manageable systems to deliver robust performance in practice. 
 
 

  

Figure 5. Categorization of responses to “Where has the current technology failed?”  

 
 

It is clear that the major issue in the current applications of speech technology is the inability of 
current systems to perform well across different conditions. The particular conditions which 
were called out were performance in noise, performance in other languages, the ability to handle 
the variability in actual speaker populations, and general performance in acoustic conditions 
which differed from the training conditions. Some informants complained about the accuracy or 
consistency of the process, but that was a relatively infrequent response.  
 

Representative responses we received included: 

“It’s not robust to acoustic environments, multiple sources.” 

“It fails for any conditions not seen in training, either environments or contexts.” 

“Models are tuned too finely. Features are wrong for the job, and training is wrong.” 

“The technology is ill equipped to handle data outside the training scenario.” 
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There was substantial agreement that systems were too complicated or expensive, and we believe 
that this is simply the result of the ASR systems inability to perform robustly with simple models 
in the current technology. Some of the comments we received included: 

“It’s not accurate enough, but to improve accuracy, or add a language or domain costs 
hundreds of thousands of dollars.” 

“It requires excessive training to get adequate performance.” 

“Pricing has impeded growth.” 

In short, this first technology question identified the inability of systems to generalize to noise, 
speaker, acoustic condition, and language as the primary problem. Current technology is brittle 
in a way that impedes widespread use. 
 
4.2.2 Question 3: What do you think is broken? 
 
This technology question was an attempt to elicit the specific cause of the technology failures 
noted in the previous question. While we were hoping for specific indications of technical areas 
that were not performing well, the question allowed for broad assessment of the problems in 
ASR technology.  
 
As seen in Figure 6, there was not a consensus on what part of the technology was failing to 
deliver. The language model and the acoustic models were identified most frequently, but that 
was to be expected as, these are two of the basic building blocks of any speech recognition 
system. The features (or the signal processing system) followed more general complaints of lack 
of robustness and systems being too complicated. Less frequently cited, but still with substantial 
comments, were problems with adaptation and pronunciation. These were followed by more 
global issues of technical environmental awareness, system integration, small data, and the lack 
of funding for research. 
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Figure 6. Categorized responses to question, “What is broken?” 

 

Some of the comments we received included the following: 

“Acoustic models don't communicate well with language models.” 

“We are using old models with new computational abilities; the systems are non-robust.” 

“Most signal processing development was done in the 80's with close mic, and not using 
the devices we use today. There are no new models. HMMs and Cepstral analysis are still 
here.” 

“The core isn't robust, and it doesn't do a good job of modeling human conversation. It 
assumes regimented turn-taking.” 

“The core engines aren't robust, so we tweak as many parameters as we can, but  
 the caller is an unwilling participant.” 
 
Far down the list was the problem of matching the user interface to the capabilities of the 
technology. However, while not cited frequently as one of the top two core issues with speech, 
this issue was another recurrent theme throughout the interview process. It was often noted that 
the industry (researchers, vendors, press, analysts, etc.) has oversold the capabilities of speech. 
While not a technological problem, it is an underlying industry problem, which leads to less 
adoption, acceptance, and revenue generated from speech applications. This in turn drives the 
perception that speech is a less valuable area to invest in. 
 
The issue is that the industry claims that speech works well, which implies that it is easy to use. 
While some of the perceptual issues are caused by the deployment of speech applications that do 
not follow best practices in VUI design, this is only one symptom of the larger issues we 
uncovered in this survey. Some responses we received included: 
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“Its capabilities have been oversold. There are misunderstood constraints and limitations. 
Speech is also used inappropriately.” 

“It took too long to get to natural language as we have it today, but we have also over-
marketed the capabilities.”  

In short, every major subsystem of the current ASR technology was identified by at least some 
interviewees as being broken. Not a single informant told us that his or her applications were 
successfully served by the current technology. 

 

4.2.3 Question 4: What have you tried to do to improve the technology that should have 
worked but did not? 
 
In this technology question, we attempted to assess the mental model of the users in terms of 
how they understood the performance of the ASR technology. Of particular importance was 
understanding whether the part of the technology that they pinpointed as failing was due to being 
difficult to mediate, or was it incorrect in some other more serious way? 
 
The interviewees tended to think about this question more than any other. Here are some 
prominent examples of the replies: 

 
“The model doesn't match the data.” 

“Pronunciation modeling, acoustic modeling, and scaling in the language models didn’t 
work.  

“Pronunciation modeling has failed for us. We have worked hard for very little payback.” 

“Noise - new algorithms aren't good enough; accent models need to be broader.” 

“I worked on ASR for people and place names. One project I did grammars for every 
possible pronunciation and it slowed the recognizer down too much.” 

“We tried to get more data from our domains to get different accents. After hundreds of 
hours of data, there was very little improvement at all.”  

“Predicting user reaction to a prompt failed. We think we have a prompt nailed, and feel 
it’s intuitive, but in the real world it isn't.”  

“Tried emotion detection.” 

“Auditory representations haven't helped much. Brute force techniques need too much 
data, and it is difficult to incorporate NLP.”  

“Microphone related projects - impossible to predict performance from data.” 

“I tried to model different parts of the sentence differently. For example, we gave 
information at the beginning and content at the end, with the verb as the pivot point. But 
it didn't improve anything.” 

“I tried to model non-linear acoustics.” 
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Figure 7 shows the categories of what interviewees tried to fix in speech that should have worked 
but did not. The answers were reasonably in agreement. While “fixing” training, adaptation, or 
features were standard portions of ASR system efforts, it is striking that every respondent who 
tried to adjust pronunciation failed to make his or her systems significantly better. Attempts to 
substantially enhance performance with emotions or more sophisticated grammars generally 
failed as well, as did attempts to make the systems more sophisticated by redesign. While some 
people have had success using posterior probabilities rather than feature measurements in the 
process, the success was not universal. Note that major improvements through adaptation were 
done decades ago in the form of VTLN or MLLR, and these early successes have been difficult 
to extend further. 

 

 

 

Figure 7. Categorization of unsuccessful attempts to fix the technology 

 
 

4.2.4 Question 5: Why didn’t your fix work? 
 
The question of why did it fail was meant to elicit the reasons for the lack of success cited in the 
previous question. Again, answers were mixed between specific technical issues that were 
attempted and more general comments about the speech recognition technology itself. 

Figure 8 shows the answers given for “Why didn’t your fix work?” Respondents were generally 
in agreement that the technology was not mature. Several of them said this directly, while many 
others complained about the lack of standardization, the immaturity of the particular models 
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(especially the language model), having incorrect training data that did not match the speech 
recognition task data, and the unpredictability of rare events and of speech in general. We have 
lumped these all together under “immature technology”. 
 

 

 
Figure 8. Categorizations of responses explaining why their plausible solutions to ASR technology 

limitations had not succeeded  

 
 
Some of the comments we received as to the technology being immature included: 

“Combination of noise and spontaneous conversation” 

“Don't know. It worked somewhat in lab, but not live” 

“It was much more complex than originally thought, and there wasn’t enough data”. 

“There wasn’t enough training data to anticipate reaction, and the way people respond 
can change based on world, changes and other factors.” 

“People are unpredictable, and real world ASR doesn't understand that. ASR is dumb.” 

“We couldn't get enough data.” 

“The current models aren't tuned to spontaneous speech, and don't take into account 
semantic and syntactic info.” 

 
We received a number of comments on less problematic issues as well. Some interviewees said 
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that a serious issue was not having enough data. For example, when creating grammars for new 
languages, data was often sparse and restricted to a few speakers, and online text was not 
available. Others cited the short-term focus of research, and a small but significant proportion of 
the respondents were unable to specify the problems in detail. A few noted specific situations in 
which their attempts failed, such as with noisy or spontaneous speech. 

4.2.5 Question 6: Have you solved any speech technology problems that were not 
published? If so, what? 

The general answer to this question was “no”, and there were two reasons for the no’s. The first 
reason was that the respondent had done all of the work under government sponsorship or at an 
institution that made everything public. In this case, everything was essentially made available in 
some form, so there were no hidden solutions. The second reason for saying no came from our 
corporate interviewees, who said they weren’t allowed to say because the results were either 
trade secrets or in patents that were pending.  

There were some pointers to old work that would not be relevant to the current issues. For 
example, a few respondents spoke of integration issues, and a slightly larger number of people 
noted that their solutions were “simply” engineering solutions and not generally applicable to the 
larger technology. 

Several people told us of things that they had fixed, but didn’t publish because the projects ran 
out of funds, or that their work was accomplished in conjunction with other work that didn’t 
merit a separate research paper. Despite our hope that we would discover a hidden mine of 
essential but unshared technical gold, we were disappointed. 

4.2.6 Summary of responses to technical questions 
 
Our interviewees believed that they were working with an emerging technology. In fact, there 
was a note of cynicism from many as they felt that the core recognition models were so old, that 
the technology had been an emerging technology for 30 years. It was described as immature in 
essentially all of the technical aspects of recognition. While there was minor dissatisfaction with 
recognition performance per se, the major complaint was that the speech recognition systems that 
are deployed today are not robust to conditions other than the training conditions. They degrade 
rapidly and not gracefully in noise, for novel speakers, in far-field or other unusual acoustic 
conditions, in accented speech, and for speech in which other signals or noises share the acoustic 
channel.  

Our respondents identified essentially every element of the current ASR technology as the focus 
of experiments to attempt to improve the technology. Failures were abundant, and performance 
continues to lag that of people in similar situations. 
 
Our industry poll suggests that a critical issue with the current speech technology is that it is not 
robust to variability that is transparent to human listeners. That is, our artificial systems degrade 
much more quickly than human listeners for acoustic situations unlike those in the training 
material, accents or non-standard use of grammatical constructions, noise or reverberation, and 
all types of interfering signals. One other common thread is that performance of current systems 
is difficult to predict for any particular acoustic signal. 
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4.2.7 A historical and literature perspective  
 
 
The “standard” historical chart for speech recognition performance cited by many in the field is a 
NIST historical performance chart. It originally was created to track DARPA funded government 
programs, and has recently been extended to cover some non-DARPA programs. The chart may 
be found on the NIST website, and the most recent version dates from May, 2009.  

 	  
 

 
Figure 9. This shows the official NIST ASR History graph, found at 
http://www.itl.nist.gov/iad/mig/publications/ASRhistory/index.html 

 
 

Figure 9 summarizes system accuracy in terms of word error rate for the NIST evaluated 
programs over the last 20 years. Note the distinct flattening in performance over the last decade 
for sophisticated systems attempting difficult tasks such as conversational speech or meeting 
speech. Of particular concern is the lack of progress in meeting speech and in conversational 
speech in the past decade. Note that the U.S. government has not funded ASR foundational work 
over those recent years, but has focused on particular implementations and narrower data 
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regimes, or ASR as a component in a larger task (such as machine translation form speech). The 
meeting speech evaluations primarily took advantage of European funding of several groups. 

The NIST chart should not be taken to denigrate the work of many research teams who have 
each made incremental progress on the particular systems. It does indicate, however, the 
difficulty in finding robust technological advances with wide applicability. 

In the past two decades, there have been at least six surveys of speech and language technology 
that attempted to report the state of the art; the latest of which was actually a 2012 special issue 
of the IEEE Signal Processing Magazine that itself contained 6 relevant articles. We attempt here 
to summarize the major findings of these surveys, and to assess the similarity of their findings to 
our industry poll.  

 

4.2.7.1 As found in earlier surveys of speech recognition 
a. In the introduction to [24], Furui, Deng, Gales, Ney, and Tokuda note, “Despite the 
commercial success and widespread adaptation, the problem of LVCSR is far from being solved; 
background noise, channel distortion, foreign accent, and casual and disfluent speech or 
unexpected topic change can cause automated systems to make egregious recognition errors. 
This is because current LVCSR systems are not robust to mismatched training and test 
conditions and cannot handle context as well as human listeners, despite being trained on 
thousands of hours of speech and billions of words of text”. We note that this is essentially what 
our informants also told us.  
 
The following 6 paragraphs (b 1-6) give a few key points from each of six papers within this 
special issue. 

b.1 [25], the first of several relevant papers in the recent survey volume, is focused on speech 
recognition systems associated with government programs. The authors note advances in front 
ends, speaker adaptation, acoustic modeling, discriminative training, noise adaptation, and more 
sophisticated language modeling. However, they reiterate that LVCSR is far from being solved. 

b.2. In the second paper in this volume, [26], the authors note that front ends which mimic 
biological or psychoacoustic properties “have in many cases provided significant reductions in 
errors, and we are experiencing a resurgence in community interest.” They note RASTA and 
cepstral mean subtraction as proving significant improvement. (RASTA was developed in 1991 
[27], and cepstral mean subtraction dates from 1981 [28]. The authors do not report recent 
improvements, but rather report renewed interest in this area in hope of increasing the robustness 
of speech recognition systems. 

The authors note further that “While machines struggle to cope with even modest amounts of 
acoustic variability, human beings can recognize speech remarkably well in similar conditions: a 
solution to the difficult problem of environmental robustness does indeed exist. While a number 
of fundamental attributes of auditory processing remain poorly understood, there are many 
instances in which analysis of psychoacoustic or physiological data can inspire signal processing 
research” (page 36). It appears that the solution in practice remains elusive. 
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b.3. In the third paper of the special issue, [29], the authors recount experiments with an 
alternative to the standard phonetic representations. They, like our informants, find a brittle 
system; “That speech recognition is worse for both conversational and hyper-clear speech 
suggest that the representation used in today’s recognizers may be flawed” (page 46). While 
recounting in detail a subword alternative, they do not find substantial performance increases 
using these methods. 

b.4. In the fourth paper of the review, [30], the authors review many of the models for 
discriminative training of modern recognizers)5. In this paper, the authors recount many 
heuristics, including Minimum Bayes Risk, and Margin Based Training, showing gains of 10-20 
percent over ML systems. But these improvements are not new, and they do not improve the 
robust performance problem. In fact, the authors note that “it might be worth rethinking 
computing models and considering alternative architectures” (Page 68). 

b.5. The fifth paper, [31], discusses more sophisticated models for discriminative training. 
However, the authors do not offer performance measures, and they do note that “Though current 
state-of-the-art systems yield satisfactory recognition rates in some domains, performance is 
generally not good enough for speech applications to become ubiquitous” (Page 71). 

b.6. The sixth paper, [32], recounts the newest “big thing” in ASR is using many-layer nets, 
despite the fact that “DNNs with many hidden layers are hard to optimize”. The authors recount 
a large number of examples of speech recognition in which DNN systems perform better than 
“good” modern systems. The comparisons, while interesting, do not compare “best” modern 
systems with DNNs, and thus simply set the stage for more work. It does appear that DNN 
systems are efficient at training from limited data, but the heuristic nature of the solutions left the 
situation in doubt. In any case, these solutions were not assessed for their ability to generalize to 
unseen data, noisy conditions, or other novel situations. 

In summary, the latest substantive review of the state-of-the-art in speech recognition finds a 
number of key flaws in the current technology. It can be used in some circumstances, but there is 
not a clear direction forward, except for “more work”.  

 
Here are five other reviews of the state of the art in speech recognition that are also relevant: 

c. In a two-part article published in 2009 [33], the authors offer a view of ASR technology not 
dissimilar to the 2012 papers cited above. The authors cite identical “advances”, most of which 
occurred a decade or more before the review. They note, “The most significant paradigm shift 
for speech-recognition progress has been the introduction of statistical methods, especially 
stochastic processing with hidden Markov models (HMMs) in the early 1970s. More than 30 
years later, this methodology still predominates. Statistical discriminative training techniques are 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5	  The original HMM formulation, using Maximum Likelihood (ML) training, can be shown to converge 
to an error minimum (in the presence of infinite training data) only in the case that the data were 
generated by the same geometry as the model. For speech recognition this most basic constraint does not 
hold, and discriminative training has been used since the ‘80s to improve performance of models trained 
on the ML criterion. (One author was a member of the IBM speech recognition group at Yorktown in 
1984, where an initial implementation of discriminative training was used to improve the performance of 
Tangora, the early 5000-word office dictation system).	  
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typically based on utilizing maximum mutual information (MMI) and the minimum-error model 
parameters. Adaptation is vital to accommodating a wide range of variable conditions for the 
channel, environment, speaker, vocabulary, topic domain, and so on.”  

Despite all of this progress, the authors cite “grand challenges” which remain. Of those, the first 
is dealing with everyday audio. They note, “This is a term that represents a wide range of speech, 
speaker, channel, and environmental conditions that people typically encounter and routinely 
adapt to in responding and recognizing speech signals. Currently, ASR systems deliver 
significantly degraded performance when they encounter audio signals that differ from the 
limited conditions under which they were originally developed and trained”. The authors further 
suggest challenges of self-adaptive language, rapid portability, detection of rare events, and 
others. These comments are consistent with those of our interviewees. 

d. The view from across the ocean is the same. In [34], the authors write “The interaction 
between a human and a computer, which is similar to the interaction between humans, is one of 
the most important and difficult problems of the artificial intelligence. Existing models of speech 
recognition yield to human speech capabilities yet; it evidences of their insufficient adequacy 
and limits the introduction of speech technologies in industry and everyday life”. In other words, 
the poorer performance of speech recognition systems limits their use by the population at large. 

e. In [35], the authors note: “In most speech recognition tasks, human subjects produce one to 
two orders of magnitude less errors than machines. There is now increasing interest in finding 
ways to bridge such a performance gap. What we know about human speech processing is very 
limited.”  

f. A review that reads as remarkably modern (despite being 13 years old), [36], was written from 
a European perspective. They authors said, “Most of today’s state-of-the-art systems for 
transcription of broadcast data employ the techniques described in Section II, such as PLP 
features with cepstral mean and variance normalization, VTLN, unsupervised MLLR, decision 
tree state tying, and gender- and bandwidth-specific acoustic models. Over the past four years, 
tremendous progress has been made on transcription of broadcast data. State-of-the-art 
transcription systems achieve word error rates around 20% on unrestricted broadcast news data, 
with a word error of about 15% obtained on the recent NIST test sets. … Despite the numerous 
advances made over the past decade, speech recognition is far from a solved problem, as 
evidenced by the large gap between machine and human performance. The performance 
difference is a factor of five to ten, depending upon the transcription task and test conditions.” 

This analysis could have been written today – the basic observations still hold, and if anything 
the laboratory-measured error rates Gauvain and Lamel cite are optimistic! 

g. It is particularly sobering to read Richard Lippmann’s review of speech recognition from 1997 
[37]. He states “Error rates of machines are often more than an order of magnitude greater than 
those of humans for quiet, wideband, read speech. Machine performance degrades further below 
that of humans in noise, with channel variability, and for spontaneous speech.” This comment 
could be made today, although there are now a few situations where human performance is 
approximated in narrow domains (see below). 
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It is also interesting to look at outlying experiments in the use of the current speech recognition 
technology. Two in particular are of interest: 

h. In a recent (2012) Google tech report [38], the authors note that recognition performance falls 
to 17% search term error for language models built on 230 billion words of text. Informal 
discussions suggest that the acoustic models used are trained on centuries of speech. In short, 
much more data may help but it does not fix the performance issue for current systems. 

On the other hand, during the GALE project, SRI (and other participants) demonstrated 2.4% 
character error rates for the recognition of Mandarin broadcast news. After substantial analysis 
SRI researchers learned that Mandarin broadcast speakers in China are schooled in the same 
accent and, further, are taught to talk in a standard cadence. Thus, Mandarin broadcast news has 
a regularity unseen in other speech, but which the hidden Markov models capitalize on for 
superior performance. [39]. 

Some other relevant documents are listed in Appendix C. 

 

4.2.7.2 Commentary on the literature survey 

As is obvious from these papers and articles, the performance deficiency of current speech 
technology compared to human performance (noted by Lippman in 1997) is still observed for 
current applications of speech technology. While several techniques have been developed for 
more advanced acoustic observations, adaptation, language model smoothing, and vocal tract 
length modeling, the rate of decrease of error rates over time has slowed drastically over the past 
decade. (Of note is the fact that there has been no U.S. government funding of basic research or 
engineering in speech over that same decade). Each review, and many of the papers citing better 
performance in particular circumstances, notes that our recognitions systems are not robust to 
noise, reverberation, different speakers, and accent, and that they are too complicated to port 
easily to new circumstances or to new languages. In short, the speech recognition field has 
developed a collection of limited solutions to constrained speech problems, and these solutions 
fail in many situations in the world at large. Their failure modes are acute but unpredictable and 
non-intuitive, thus leaving the technology defective in broad applications, and difficult to 
manage even in well behaved environments.  
 

5.0 CONCLUSIONS 
 
The state of speech recognition, as reported by our interviewees, is awaiting a transition from a 
difficult, immature technology to a robust, mature technical system6. Our interviewees identified 
every portion of the current technology as defective, and in turn identified those same areas as 
the focus of work that has failed to fix the major problems. The major issue seems to be the lack 
of robust performance, leading to system failures for acoustic and linguistic variabilities that do 
not bother human listeners. This failure makes system design difficult, as our systems break in 
unpredictable and unintuitive ways. A secondary problem is that these systems do not perform 
well for sophisticated tasks like spontaneous dictation, although that may be a problem with 
more than the non-robust performance problem. 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6	  As one of us has noted in a recent presentation, one can be old and still be immature.	  
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The survey of practitioners of speech and language technology reported here finds that modern 
speech recognition systems are brittle, non-robust, and overly complex. The systems fail to 
generalize outside the domain of the training data, and within the training domain they fail for 
moderately complicated tasks such as meeting transcriptions. 

Every aspect of the speech recognition technology has been exercised in an effort to make the 
performance better and more robust. Despite several decades of small incremental improvements 
in performance (nearly all of which occurred prior to the last decade) overall performance 
appears to have plateaued. A survey of the literature in speech recognition confirms the 
continuing inability of our systems to mimic human performance in the presence of noise, 
reverberation, different dialects, different languages, and other variations which are part of the 
everyday environment. 

In the past decade, researchers have greatly increased the size of our datasets, the number of free 
parameters in our models, and the amount of computation available for both training and testing 
of our systems. While performance has been improved along many dimensions, the final result is 
qualitatively the same as those of a decade ago. 
 
For the specific issue of the acoustic model, by exploiting the method of resampling, we 
constructed a series of pseudo datasets from near-field and far-field meeting room datasets. The 
most artificial of these satisfied the HMM model assumptions, while at the other extreme, the 
resampled data deviated from the model in the way real data did. Using these datasets we probed 
the standard HMM/GMM framework for automatic speech recognition. Our results showed that 
when the conditions are matched (even if they are far-field), the model errors (i.e., errors due the 
incorrect assumption of conditional independence) dominate; however, in mismatched 
conditions, the standard ASR features computed from far-field data are neither invariant nor 
separable with near-field models, and contribute significantly to the total errors; these basic 
conclusions are illustrated in Figures 10 and 11. We then studied unsupervised MLLR adaptation 
and MPE training as the means to compensate for this issue in the model space; while these 
approaches mitigate the errors somewhat, the conclusions about the lack of invariance of the 
MFCC features in varying acoustic conditions still holds true. Finally, we also used 
discriminatively trained MLPs to transform the MFCCs, and these too failed to alter the 
conclusion about MFCCs. On the contrary, the highly discriminant MLP training actually 
worsened performance for all the experiments under the mismatched condition. 
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Figure 10. Inferred error proportions for sources of word errors in recognition of near-field 
meeting data from models trained on near-field data, ICSI Meeting Corpus. “Dependence” refers 

to the conditional independence assumptions common to HMMs. “Other” includes all other sources 
of error (LM, front end deficiencies, pronunciation models, etc.). This figure refers to the 8-

Gaussian models and the error rates given in Appendix A. 

 

 
 

Figure 11. Inferred error proportions for sources of word errors in recognition of far-field meeting 
data from models trained on near-field data, ICSI Meeting Corpus. “Dependence” refers to the 
conditional independence assumptions common to HMMs. “Other” includes all other sources of 

error (LM, front end deficiencies, pronunciation models, etc.), but the LM and pronunciation 
models are presumed to be as good here as for the matched case; the primary difference is likely to 
be acoustic, so the front end is the likely suspect. This figure refers to the 8-Gaussian models and 

the error rates given in Appendix A. 
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6.0 RECOMMENDATIONS 
 

6.1 Make use of diagnostic analysis to drive development of remedies 
 
It has been suspected for some time that, for instance, the inaccuracy of the standard conditional 
independence assumption in the acoustic model is a key reason for the high error rates in fluent 
speech recognition; further, it has been largely assumed that the lack of invariance of ASR signal 
processing to variability in acoustic conditions is also a significant source of errors. Our study 
has confirmed both of these points. However, there is potential for much greater gain than 
“simply” confirming our preconceptions. As researchers propose potential remedies, there is now 
a method for analyzing the effects of their proposed methods with greater specificity and utility 
than simply seeing if the word error rate went down. For instance, while segment models and 
episodic approaches both might be able to better handle local statistical dependence, the details 
probably matter – and using methods such as those that we developed here could be useful in a 
host of decisions made in the development of alternative methods. 
 
6.2 Extend diagnostic analysis to other components 
 
We have shown that the independence assumption in acoustic modeling, particularly for frames 
within a state, is a significant remaining problem, even under matched acoustic conditions. Is 
there a related problem with other components, such as the language model? Much as with the 
acoustic model, attempts to transcend the limitations of the simple n-gram have yielded only 
incremental improvements. It is likely that moving beyond this point will not be possible without 
effective diagnostics, ones that are more specific than word error rate (or certainly more effective 
than perplexity). 
 
6.3 Update the model 

This would be an opportune time to reconsider the decades-old HMM formulation, and search 
for models that better capture speech and language characteristics. We should enlist the help of 
theorists (such as those who will be associated with the new Simons Center for Theoretical 
Computer Science at Berkeley) to derive a better model. Whoever studies the problem should 
have a particular focus on the case of mismatch between training and test data, i.e., on 
generalization.  

6.4 Seek low dimensional parameters to characterize speech variability 
 
Many phenomena arise from complex interactions between many components; the production 
and perception of speech by the human brain is an example of such phenomena. Consequently, it 
may be the case that the recognition of speech is and must be complicated. On the other hand, 
some of the cases of significant progress in ASR (e.g., VTLN, RASTA, cepstral mean 
subtraction) are surprisingly simple. Consequently, it would be worthwhile to seek to develop 
systems that automatically account for predictable variations from the training data without 
specific training for that condition, where the obvious conditions one would like to compensate 
for are far-field acoustics, additive noise, speakers with light accents or dialects, and informal 
spontaneous speech. 
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6.5 Study the brain 

There is an existing significant example of speech recognition that actually works well in many 
adverse conditions, namely, the recognition performed by the human ear and brain. Methods for 
analyzing functional brain activity have become more sophisticated in recent years, so there are 
new opportunities for the development of models that better track the desirable properties of 
human speech perception. While many such methods have been tried before and have provided, 
at best, limited improvements, recent improvements in basic brain scan technology (e.g., “eCog”, 
which collects data directly from the surface of the human cortex) provides an opportunity to 
significantly limit the vast search space of all possible ASR approaches. In particular, this field 
of knowledge should be mined to assist in the design of new acoustic front ends that would be 
more invariant to signal variability that is independent of the linguistic content. 

6.6 Beyond ASR 

The “in-depth” study described in this report was focused specifically on speech recognition. 
That being said, since the use of HMMs has spread far beyond speech processing, there are many 
fields of inquiry that are also limited by the limitations of these models. One application of the 
methods described here to many other fields, e.g. speech synthesis, machine translation, part of 
speech tagging, bioinformatics (e.g., DNA sequencing, gene prediction), protein folding, and 
time series analysis.  

More generally speaking, HMMs are a staple of machine learning as applied to many tasks 
requiring the decoding of sequences, and there are likely improvements that could be found in 
many areas given improved diagnostic methodology. In speech recognition research, very little 
diagnostic analysis has ever been undertaken, and we would argue that as a result progress in the 
field has proceeded largely by trial and error and it has been susceptible to fads (success of an 
interesting technique in a very different field leads to "trying it out" in speech recognition: 
wavelets, compressed sensing, deep learning, etc.). In the more general field of machine 
learning, very little effort has been expended on understanding how algorithms fail when applied 
to real world problems outside the laboratory. We anticipate that encouraging more of a 
diagnostic spirit for machine learning research could have very broad effects, much as the 
introduction of HMMs to this field did earlier. 
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8.0 APPENDIX A – DETAILED NUMERICAL RESULTS, IN-DEPTH STUDY 
 
In the two subsections that follow, we provide tables summarizing all of the major results for the 
simulation and resampling studies. 
 
8.1 Maximum Likelihood and Minimum Phone Error results, simulation and 
resampling studies 
 
Table 5 provides the word error rates for all conditions: matched near-field, matched far-field, 
and mismatched (near-field models, far-field data), for both maximum likelihood and 
discriminatively trained (MPE) models. 
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Table 5. Maximum likelihood vs MPE word error rates for the 3 conditions under study, and for 1, 
2, 4, and 8 Gaussian components per crossword triphone. The µ columns give the average word 
error rate over the different jackknife cuts for each case, and the SE columns give the 
corresponding standard error measure. The left hand column of each table gives the type of each 
experiment, ranging from simulation from the model through the different levels of resampling, 
and ending in the case of recognition with the original meeting data 
 

 

 
 
8.2 MLP transformed results 

Tables 6-8 show the effects of MLP feature transformation on word error rates for the all of the sampling 
conditions (as well as simulation and the original data). Table 6 gives results for near-field data and near-
field models; Table 7 gives results for far-field data and far-field models; and Table 8 gives results for far-
field data and near-field models. 
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Table 6. For near-field data and near-field models, the table shows the effect of transforming 
MFCCs with a phonetically and discriminantly trained MLP. Nine acoustic frames are used as 
input for the MLP. The “+” symbol indicated augmentation of the MFCC (including 1st and 2nd 
order deltas) with the MLP features. The models use a single Gaussian per triphone state. 
 

Feature MFCC MFCC-MLP Rel. Imp. to 
MFCC 

MFCC + 
MFCC-

MLP 

Rel. Imp. 
to MFCC 

sim 1.4 0.6 57.1% 0.5 64.3% 
frame 1.9 1.02 46.3% 0.78 58.9% 
state 9.6 6.1 36.5% 5.4 43.8% 

phone 21.4 16.1 24.8% 14.6 31.8% 
word 37.6 34.4 8.5% 31.3 16.8% 

original 44.7 42.3 5.3% 39.6 11.4% 
 

Table 7. For far-field data and far-field models, the table shows the effect of transforming MFCCs 
with a phonetically and discriminantly trained MLP. 
 

Feature MFCC MFCC-MLP Rel. Imp. to 
MFCC 

MFCC + 
MFCC-

MLP 

Rel. Imp. 
to MFCC 

sim 1.8 0.73 59.4% 0.5 72.2% 
frame 3.4 2.8 17.6% 1.15 66.1% 
state 23.2 19.5 15.9% 15.0 35.3% 

phone 45.5 38.7 14.9% 35.6 21.7% 
word 63.5 60.4 4.9% 57.3 9.7% 

original 71.4 72.2 -1.1% 67.3 5.7% 
 

Table 8. For far-field data and near-field models, the table shows the effect of transforming MFCCs 
with a phonetically and discriminantly trained MLP. Presumably the use of multiple frames for the 
MLP reintroduces statistical dependence, and the discriminant MLP training may also increase the 
fitting to the training set, which differs from the test set. 

 

Feature MFCC MFCC-MLP Rel. Imp. to 
MFCC 

MFCC + 
MFCC-

MLP 

Rel. Imp. 
to MFCC 

sim 13.5 71.2 -427.4% 22.3 -65.1% 
frame 23.9 71.4 -198.7% 35.5 -48.5% 
State 44.2 78.7 -78% 49.2 -11.3% 

Phone 58.6 80.4 -37.2% 58.8 -0.3% 
word 68.4 80.5 -17.7% 68.6 -0.3% 

original 72.2 82.5 -14.2% 73.0 -1.1% 
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9.0 APPENDIX B – DEMOGRAPHIC INFORMATION FOR SURVEY 
 
The makeup of our participants was self-selected by the snowball process. As shown in Figure 
12, more than 50 of our participants were from industry, while slightly fewer classified 
themselves as being associated with academia. More than ten interviewees identified themselves 
as working for government. The numbers add up to more than the 86 interviewees, as some had 
more than one role. At the end of each survey, when we asked the interviewees to give us the 
names of two additional people who might participate in the survey, we made it clear that they 
didn’t have to limit the type of person they were recommending. Therefore, we believe that the 
makeup of our survey approximates the makeup of people working in the speech and language 
technology area.  
 
 

 

Figure 12. Distribution of interviewees by organization type 

 
 
The ages of our interviewees (Figure 13) were evenly represented between 40 and 65 years of 
age. Interviewees tended to recommend people with a substantial background in the research 
field, and this accounts for the dearth of younger participants. In fact, this was a recurring theme 
in our interviews, as the general perception was that there were not a lot of younger entrants into 
the field, and that this was an issue that needed to be addressed. 
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Figure 13. Distribution of interviewees by age. Ages were rounded to the nearest 5 years, so “40” 
represents ages from 37.5 to 42.5 years old. “70” refers to those aged 67.5 and above. 

 

We then asked our interviewees what their current job, or “professional affiliation” was. Figure 
14 shows the job categories as self-reported.  

 

Figure 14. Distribution of interviewees by job type; subjects sometimes identified themselves as 
working in more than one area (e.g., research and teaching). 
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Our interviewees identified more than 12 technology areas in which they are currently working 
in, although there is substantial overlap in the categories. This was particularly true if the 
interviewee was working at a speech technology company or in a speech research group within 
industry. Additionally, there were a smattering of management personnel, and a few analysts and 
consultants, whose work in the field is more varied than those doing research or development. 
The resulting distribution is shown in figure 15. 

The predominant identification was work in automatic speech recognition. However categories 
of mobile-embedded, acoustics, keyword spotting, and language modeling could also have been 
considered ASR. The other categories included text-to-speech, human-computer interfaces, and 
various identification tasks (language, speaker, and other biometrics). 

 

 

Figure 15. Distribution of interviewees by current work area 

 
 

10.0 APPENDIX C - BIBLIOGRAPHY – OTHER RELEVANT PUBLICATIONS 

The reviews given in the main body of the report have extensive bibliographies of papers and 
books in the speech and language technology arena. These are readily available, and we have not 
attempted to replicate or mimic them here. 

In the process of our surveys we located many other papers that seemed relevant to our study, 
and in particular the experts interviewed in our community survey also recommended a number 
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of other significant papers. Here are a few of the more instructive additional documents that we 
found. 

a. An early paper, [40], is interesting because of the breadth of adaptation methods known at that 
time, and which are still used in our modern systems. The paper outlines MAP estimation, 
Cepstral Mean Normalization, MLLR, Vector Field Smoothing, VTLN, and Speaker Adaptive 
Training. It is stunning that these basic methods are still in use, and that they have been evolved 
over the past two decades, without fixing the basic performance issues in ASR. 

b. An intriguing exercise in modern speech recognition system building may be found in [41]. 
The author carefully exercises modern acoustic and language models, including language model 
and acoustic adaptation, to build a system for one talker. The descriptions are succinct and clear. 
The performance of the resulting system is typical: 20 to 40% word error for simple sentences. 
This is a detailed and dismal view of current technology. 

c. There have been attempts to field the current ASR technology in large scale applications. [42] 
describes the monumental effort to create speech recognition for voice search at Google, along 
with the appropriate user interface and other infrastructure. The bottom line is that this 
indefatigable creator of technology has created a speech recognizer with a word error rate of 
17%. While this performance is apparently commercially viable, it gives the technician looking 
for success substantial heartache. It means that the current technology, fed by essentially infinite 
data and compute, is substantially defective! 

d. There is a move afoot to look at robustness directly. In [43], the authors show that large 
margin measures create slightly more robust processes. It is encouraging to see movement 
towards robustness, but broader statistics, while part of the answer, ignores the difficulties in the 
models themselves. 

e. An attempt to move away from the simple HMM models dating from the 1960’s may be seen 
in [44]. The authors attempt to use an underlying hidden generative model and demonstrate 
improved performance on phonetic recognition of TIMIT. This movement away from simple 
HMM states points out the potential gain from more sensible models of the speech generation 
process. 

f. Adaptation using unsupervised data is described in [45], creating a “robust” system on-the-fly. 
They demonstrate that transcription is not a necessary part of adaptation. 

We asked our informants about papers or books which might inform a reader about the issues in 
the state of the art performance, or which were particularly enlightening about the engineering or 
scientific issues. Most declined to make a recommendation, but several interesting suggestions 
were made. We list them here: 

1. The recent writings and papers of Larry Gillick 
a. D. Gillick and S. Wegmann, L. Gillick. Discriminative Training for Speech Recognition 

is Compensating for Statistical Dependence on the HMM Framework. Proceedings of the 
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 
2012), pp. 4745-4748, Kyoto, Japan, March 2012. 

b. D. Gillick, L. Gillick, and S. Wegmann. Don't Multiply Lightly: Quantifying Problems 
with the Acoustic Model Assumptions in Speech Recognition. Proceedings of the 
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Automatic Speech Recognition and Understanding Workshop (ASRU 2011), pp. 71-76, 
Big Island, Hawaii, December 2011. 

c. S. Wegmann and L. Gillick. Why Has (Reasonably Accurate) Automatic Speech 
Recognition Been So Hard to Achieve? ArXiv.org CoRR abs/1003.0206, February 2010. 

2. Good’s paper on smoothing in Biometrica 
a. I. J. Good. The Population Frequencies of Species and the Estimation of Population 

Parameters. Biometrika, Vol. 40, No. 3-4, pp. 237-264, December 1953. 
3. The papers of Dan Povey 

a. O. Vinyals and D. Povey. Krylov Subspace Descent for Deep Learning. Proceedings of 
the 15th International Conference on Artificial Intelligence and Statistics (AISTATS 
2012), La Palma, Canary Islands, April 2012. 

b. D. Povey, M. Hannemann et al . Generating exact lattices in the WFST framework. 
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal 
Processing (ICASSP 2012), Kyoto, Japan, March 2012. 

c. K. Reidhammer, T. Bocklet, A. Ghoshal, and D. Povey. Revisiting Semi-continuous 
Hidden Markov Models. Proceedings of the IEEE International Conference on Acoustics, 
Speech, and Signal Processing (ICASSP 2012), Kyoto, Japan, March 2012. 

d. N. T.Vu, T. Schultz, and D. Povey. Modeling Gender Dependency in the Subspace GMM 
Framework. Proceedings of the IEEE International Conference on Acoustics, Speech, and 
Signal Processing (ICASSP 2012), Kyoto, Japan, March 2012. 

e. O. Vinyals, S.V. Ravuri, and D. Povey. Revisiting Recurrent Neural Networks for Robust 
ASR. Proceedings of the IEEE International Conference on Acoustics, Speech, and 
Signal Processing (ICASSP 2012), Kyoto, Japan, March 2012. 

f. D. Povey, A. Ghoshal, et al. The Kaldi Speech Recognition Toolkit. Proceedings of the 
IEEE Automatic Speech Recognition and Understanding Workshop (ASRU 2011), Big 
Island, Hawaii, December 2011. 

g. D. Povey, G. Zweig, and A. Acero. Speaker Adaptation with an Exponential Transform. 
Proceedings of the IEEE Automatic Speech Recognition and Understanding Workshop 
(ASRU 2011), Big Island, Hawaii, December 2011. 

h. D. Povey, L. Burget, et al. The Subspace Gaussian Mixture Model– a Structured Model 
for Speech Recognition. Computer Speech and Language, Vol. 25, Issue 2, pp. 404-439, 
April 2011. 

i. D. Povey and K. Yao. A basis representation of constrained MLLR transforms for robust 
adaptation. Computer Speech and Language, Vol. 26, Issue 1, pp. 35-51, January 2012.  

j. H. Xu, D. Povey, L. Mangu and J. Zhu. Minimum Bayes Risk decoding and system 
combination based on a recursion for edit distance. Computer Speech and Language, Vol. 
25, Issue 4, pp. 802-828, October 2011.  

k. D. Povey and K. Yao. A Basis Method for Robust Estimation of Constrained MLLR. 
Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal 
Processing (ICASSP 2011), Prague, Czech Republic, May 2011. 

l. D. Povey, M. Karafiat, A. Ghoshal, and P. Schwarz. A Symmetrization of the Subspace 
Gaussian Mixture Model. Proceedings of the IEEE International Conference on 
Acoustics, Speech, and Signal Processing (ICASSP 2011), Prague, Czech Republic, May 
2011. 

m. Y. Qian, D. Povey and J. Lu. State-Level Data Borrowing for Low-Resource Speech 
Recognition Based on Subspace GMMs. Proceedings of the 12th Annual Conference of 



46 
 

the International Speech Communication Association (Interspeech 2011), Florence, Italy, 
August 2011. 

4. Colin Cox – Statistical Significance 
a. D.R. Cox. Statistical Significance Tests. British Journal of Clinical Pharmacology, Vol. 

14, pp. 325-331, 1982. 
5. HMMs for Speech Recognition by Huang et al 

a. X. D. Huang, Y. Ariki, and M. A. Jack. Hidden Markov Models for Speech Recognition. 
Edinburgh University Press, 1990. 

6. Kai Fu Li Thesis 
a. K. F. Li. The Development of the SPHINX Recognition System. Springer, October 1988. 

7. Holmes and Mattingly writings (a small selection noted here) 
a. J. Holmes, I.G. Mattingly, and J.N. Shearme. Speech synthesis by rule. Language and 

Speech, Vol. 7, No. 3, pp.127-143, 1964. 
b. I.G. Mattingly. Synthesis by rule as a tool for phonological research. Language and 

Speech, Vol. 14, No. 1, pp. 47-56, 1971. 
c. J. Holmes. Formant synthesizers, cascade or parallel. Speech Communications, Vol. 2, 

pp. 251-273, 1983. 
d. J. Holmes. Influence of the glottal waveform on the naturalness of speech from a parallel 

formant synthesizer. IEEE Transactions on Audio Electroacoustics, Vol. 21, Issue 3, pp. 
298-305, June 1973. 

8. David MacKay on Information Theory and Algorithms 
a. D. MacKay. Information Theory, Inference, and Learning Algorithms. Cambridge 

University Press, various years.  
9. Bourlard, Hermansky, and Morgan on daring to risk increasing the error rate by trying 

radically new ideas 
a. H. Bourlard, H. Hermansky, and N. Morgan. Towards increasing speech recognition 

error rates. Speech Communication, Vol. 18, pp. 205–231, 1996. 
10.  Bridle and Richards on Hidden Dynamic Models 

a. H. B. Richards and J. S. Bridle. The HDM: A Segmental Hidden Dynamic Model of 
Coarticulation. Proceedings of the IEEE International Conference on Acoustics, Speech, 
and Signal Processing (ICASSP 1999), Phoenix, Arizona, 1999. 

11. Deep Neural Network papers from Microsoft 
a. G. E. Dahl, D. Yu, L. Deng, and A. Acero. Context-Dependent Pre-trained Deep Neural 

Networks for Large Vocabulary Speech Recognition. IEEE Transactions on Audio, 
Speech, and Language Processing, Vol. 20, Issue 1, pp. 30-42, January 2012. 

12. Li Deng’s writings (These are extensive – this is an important example, but there are literally 
hundreds of references) 
a. L. Deng, Dynamic Speech Models—Theory, Algorithm, and Application (book review). 

IEEE Transactions on Neural Networks, Vol. 20, Issue 3, March 2009. 
13. Miami Children’s Hospital 

a. A. T. Winfree. When time breaks down – the story of fractals. When Time Breaks Down: 
The Three-Dimensional Dynamics of Electrochemical Waves and Cardiac Arrhythmias, 
Princeton University Press, April 1987. 

14. The autobiography of Craig Venter 
a. J. C. Venter. A Life Decoded: My Genome: My Life. Penguin, 2007. 
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11.0 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 
 
ASR: Automatic Speech Recognition 

DNN: Deep Neural Network 

DTW: Dynamic Time Warp 

ECoG: Electrocorticography 

FF: Far-field 

GMM: Gaussian Mixture Model 

HMM: Hidden Markov Model 

HTK: HMM Tool Kit 

IVR: Interactive Voice Response 

LM: Language Model 

LVCSR: Large Vocabulary Continuous Speech Recognition 

MFCC: Mel Frequency Cepstral Coefficient 

ML: Maximum Likelihood 

MLLR: Maximum Likelihood Linear Regression 

MLP: Multi Layer Perceptron 

MPE: Minimum Phone Error 

NF: Near-field 

NIST: National Institute of Standards and Technology 

RASTA: RelAtive SpecTral Analysis 

ROVER: Recognizer Output Voting Error Reduction 

STT: Speech To Text 

VTLN: Vocal Tract Length Normalization 

VUI: Voice User Interface 

WER: Word Error Rate 
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