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Abstract
Current distributed routing paradigms (such as link-state,

distance-vector, and path-vector) involve a convergence pro-

cess consisting of an iterative exploration of intermediate

routes triggered by certain events such as link failures. The

convergence process increases router load, introduces out-

ages and transient loops, and slows reaction to failures. We

propose a new routing paradigm where the goal is not to re-

duce the convergence times but rather to eliminate the con-

vergence process completely. To this end, we propose a tech-

nique called Failure-Carrying Packets (FCP) that allows data

packets to autonomously discover a working path without

requiring completely up-to-date state in routers. Our simula-

tions, performed using real-world failure traces and Rocket-

fuel topologies, show that: (a) the overhead of FCP is very

low, (b) unlike traditional link-state routing (such as OSPF),

FCP can provide both low loss-rate as well as low control

overhead, (c) compared to prior work in backup path pre-

computations, FCP provides better routing guarantees under

failures despite maintaining lesser state at the routers.

1 Introduction
Recent large-scale deployments of delay and loss-sensitive

applications have led to stringent demands on routing. Lost

or delayed packets in applications such as Voice over IP

(VoIP), streaming media, gaming, and telecommuting/video

conferencing applications can result in significant perfor-

mance degradation. ISPs hence have strong incentives to re-

duce delay and loss on their networks, as these are often key

metrics used when negotiating Service-Level Agreements

(SLAs) associated with such applications. Routing conver-

gence is one of the key impediments to meeting strict SLAs.

Traditional routing paradigms—distance-vector, path-

vector, and link-state—differ substantially in the nature of

the state maintained by and exchanged between routers.

However, all these paradigms rely on protocol messages to

alert routers about changes in the network topology. It is only

after the news of a topology change has reached all routers,

directly in the case of link-state and indirectly in the case

distance-vector and path-vector, that the protocol can ensure

that the forwarding tables define consistent routes between

all pairs of nodes. Thus, all such routing protocols experi-

ence a convergence period—after the change has been de-

tected and before all routers learn about the change—during

which the routing state might be inconsistent.

While the convergence process is invoked whenever link

costs change, link and router failures are the events that cause

the most serious problems. They can cause losses [3] and, in

some cases, trigger LSA storms, resulting in high CPU and

memory utilization in routers and increased network insta-

bility [10]. Though the convergence period fundamentally

depends on network properties such as the diameter of the

network, it is exacerbated in practice due to system-level is-

sues such as protocol timers.

The attempts to solve this problem in the literature can be

roughly classified into three categories: (a) designing loop-

free convergence protocols, (b) reducing the convergence pe-

riod of protocols, and (c) using precomputed backup paths

to route around failures. The first category of proposals in-

volves protocol changes (such as ordering of LSAs [15])

to ensure that the convergence process does not cause tran-

sient loops. The second category involves reducing conver-

gence period by tweaking protocol parameters (such as LSA

propagation timers and periodicity of HELLO messages) [3].

These mechanisms often achieve lower convergence times

but at the expense of additional overhead, and lower stability

(as we show in some of our experiments). The third cate-

gory deals specifically with link failures alone by precom-

puting backup paths for links which can be used when the

link in question fails [18,19,27]. More recently, R-BGP [20]

proposes using a simple precomputation-based backup for

fast-failover during BGP convergence; R-BGP also provides

provable guarantees such as loop-prevention. These backup

mechanisms typically deal with the failure of single links

gracefully; however, in order to provide guarantees for si-

multaneous failures of multiple arbitrary links, the number

of precomputed paths needed is extremely high.

Using the state-of-the-art techniques, the convergence pe-

riod can be eliminated for single failures, and more generally

the duration and impact of the convergence period can be

reduced. While these changes are quantitatively beneficial,

they do not change the qualitative fact that these protocols

could (due to multiple failures) endure a convergence period

during when it is hard to provide routing guarantees.

In this paper, we propose a different routing paradigm,

called Failure-Carrying Packets (FCP) that eliminates the

convergence period altogether. Once a failure is detected lo-
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cally, packets are guaranteed to be routed to their destination

as long as a path to the destination exists in the network.

FCP takes advantage of the fact that network topology in

the Internet does not undergo arbitrary changes. In intrado-

main ISP networks and in the AS-level Internet graph there

is a well-defined set of potential links (i.e., those that are

supposed to be operational) that does not change very often.

The set of these potential links that are actually functioning

at any particular time can fluctuate (depending of link fail-

ures and repairs), but the set of potential links is governed

by much slower processes (i.e., decommissioning a link, in-

stalling a link, negotiating a peering relationship). Thus, one

can use fairly standard techniques to give all routers a con-

sistent view of the potential set of links, which we will call

the Network Map. FCP hence adopts a link-state approach,

in that every router has a consistent network map.

Since all routers have the same network map, all that needs

to be carried by the packets is information about which of

these links have failed at the current instant. This failure-
carrying packets approach ensures that when a packet arrives

at a router, that router knows about any relevant failures on

the packet’s previous path. This eliminates the need for the

routing protocol to immediately propagate failure informa-

tion to all routers, yet allows packets to be routed around

failed links in a consistent loop-free manner. We also present

a variant called Source-Routing FCP (SR-FCP) that provides

similar properties even if the network maps are inconsistent,

at the expense of additional overhead in packet headers.

Though we primarily present FCP to introduce a new rout-

ing paradigm that is qualitatively different from previous ap-

proaches, we show through simulation that it has the poten-

tial to provide quantitative benefits as well. Using real-world

ISP topologies and failure data, we show that the overhead

of using FCP — in terms of computation, overhead in packet

headers and stretch incurred — is very small. We also com-

pare FCP with OSPF and show that, unlike OSPF, FCP can

simultaneously achieve both low loss and low overhead. Fi-

nally, we show that compared to prior work in backup path

precomputations, FCP provides much lower loss-rates while

maintaining less state at the routers.

We present FCP primarily as a link-state protocol, and

hence applies directly to intradomain and enterprise routing.

However, we believe that the same idea can be used in the

context of interdomain routing as well. To this end, we out-

line a strawman proposal for applying FCP to interdomain

routing in Section 7; we leave a complete study of applying

FCP to the interdomain context for future work.

2 Failure-Carrying Packets
In this section, we introduce the FCP algorithm and its prop-

erties using a simple network model, similar to many intrado-

main settings, where routers use link-state routing.

With FCP, all nodes (we will use the terms router and node

interchangeably) in the network maintain a consistent Net-

Initialization: pkt.failed links = NULL

Packet Forwarding:
while (TRUE)

path = ComputePath(M − pkt.failed links)

if (path == NULL)

abort(“No path to destination”)

else if (path.next hop == FAILED)

pkt.failed links ∪= path.next hop

else
Forward(pkt, path.next hop)

return

Figure 1: Basic FCP protocol.

work Map, which represents the link-state of the entire net-

work; we will relax the map consistency assumption in Sec-

tion 2.2. In the absence of failures, FCP reduces to a link-

state protocol; when there are failures, FCP behaves quite

differently, as we now explain. For the purpose of our discus-

sion, we assume that all nodes know the network map, and,

unless otherwise specified, we assume that this map does not

change. We discuss how the network map is disseminated

and updated in Section 4.

2.1 Basic FCP design
The main intuition behind FCP is that it is enough for a router

to know the list of failed links in the network, in addition to

the network map, to compute the path to a destination. FCP

uses the packet header to gather and carry the list of failed

links required for routing that packet. As we show later, the

packet need only carry the failed links that the packet has so

far encountered along its path, not all failed links in the net-

work, in order for this to work. Thus, the number of failures

carried in any packet header is typically very small.

Figure 1 shows the pseudocode of the basic FCP protocol.

When a packet arrives at a router, its next-hop is computed

using the network map minus the failed links in the header. If

this next-hop would send the packet out an interface that has

a failed link, then the router: (1) inserts the failed link into the

packet header, (2) recomputes the route using this new failure

information, and (3) returns to step one if the new next-hop

also incurs a failure or, if not, forwards the packet to its next-

hop. Note that each packet is treated separately, the failure
information contained in a packet is not incorporated into
the routing tables.

To understand FCP better, consider the example in Fig-

ure 2. Assume N1 sends a message to Nd, and that links

N3−Nd and N5−N7 are down. Since only nodes adja-

cent to the failed links know about the failure, the packet

is forwarded along the shortest path in the original graph,

(N1, N2, N3, Nd), until it reaches the failed link N3−Nd. At

this point, N3 computes a new shortest path to Nd based

on the map minus link N3−Nd, and includes the failed
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N1

N2 N3

N5

N4

N6

Source
NdN7

Destination

F = {}

F = {}

F = {N3-Nd, N5-N7} F = {N
3-N

d, N
5-N

7}

F = {N3-Nd}

F
=

{N
3-

N
d}

Figure 2: An example illustrating FCP routing.

link N3−Nd in the header. Let us assume that this path is

(N4, N5, N7, Nd). When the packet reaches N5, N5 adds the

failed link N5−N7 to the header, and computes a new short-

est path that does not include the two failed links. Eventually

the packet reaches the destination, Nd, along this path.

In general, there are two possibilities when a packet hits a

failed link: either there is no path to the destination, in which

case the packet is dropped, or there is some path to the des-

tination in which case the graph on which routers compute

the path becomes smaller (i.e., because it does not include

the failed link).1 With every new failed link inserted in the

packet header, the graph over which the packet is routed be-

comes monotonically smaller.

2.2 Source-Routing FCP (SR-FCP)
Basic FCP assumes that all nodes have the same map. We

now relax this assumption, by presenting an alternate de-

sign that employs source-routing. With source-routing FCP

(SR-FCP), the first router on the packet path inserts the en-

tire route to the destination in the packet header. Subsequent

routers simply forward the packet based on the source route

in the packet header until the packet either reaches the desti-

nation or encounters a failed link. In the latter case, the node

adds the failed link to the packet header (exactly like ba-

sic FCP), and replaces the source route in the header with a

newly computed route, if any exists, to the destination.

The main advantage of SR-FCP over FCP is that it works

correctly even when not all nodes have the same network

map. Thus, SR-FCP does not require that all nodes have the

same map. A second advantage is that, unless there is a link

failure, packet forwarding does not require a lookup opera-

tion, and thus can be implemented much faster in practice.

On the downside, SR-FCP increases the packet overhead,

by requiring each packet to carry the source route. Further-

more, the inconsistency across maps can significantly in-

crease the list of failed links, as any link that does not appear

in all maps can be potentially marked as a failed link.

1There is a third possibility that arises due to congestion: if the

router cannot hold on to the packet due to resource limitations,

packets might be dropped.

In order to reduce confusion, most of our discussion will

focus on basic FCP, and then we will discuss briefly the

properties of this alternate approach.

2.3 Properties
We present two key properties of FCP: guaranteed reacha-
bility and path isolation. Informally, the reachability prop-

erty says that as long as the network is connected and there

are no packet losses due to congestion, every packet is guar-

anteed to reach its destination despite any link failures. The

path isolation property says that a malicious node cannot im-

pact the path followed by a packet unless it is already on that

path. Finally, we show that SR-FCP can provide these prop-

erties even when the node maps are inconsistent.

Since a failed node can be represented as node whose all

links have failed, in the remainder of this section we con-

sider only link failures. Furthermore, unless other specified,

we consider only fail-stop failures, and assume that FCP em-

ploys shortest path routing. To state FCP’s properties more

precisely, we start with the following definition.

Definition 1. Let M be the network graph (map). Define the
liveness graph LG(t1, t2) as the maximal graph consisting
of only nodes and links of M that are alive at all times during
the closed time interval [t1, t2].

Note that once a link goes down during [t1, t2], it is

removed from LG(t1, t2) irrespective of whether the link

comes back again or not. This aspect captures the fact that,

in FCP, once a failed link is added to the packet header, it is

never removed from the header.2

Next, we give sufficient conditions that guarantee packet

delivery in FCP.

Lemma 1. Guaranteed Reachability: Consider packet p
entering network M at time t1. Assume link failures are de-
tected instantaneously, there are no packet losses due to net-
work congestion, and the propagation delay over any link is
one time unit. Let d(G) denote the diameter of graph G.

Then, FCP guarantees that p will be delivered to the des-
tination by time t2, where t2 is the smallest time, if any, such
that the following two conditions hold:

1. there are at most f failures during [t1, t2], where f ≤
(t2 − t1)/d(LG(t1, t2)) − 1

2. LG(t1, t2) is connected and spans (all nodes of) M

Proof. The main part of the proof is to show that packet p is

delivered to its destination by some time t2 that satisfies con-

ditions (1) and (2). From here it follows trivially that packet

p will be delivered by the smallest value of such t2.

The proof is by contradiction. Assume p is not delivered

to the destination by a time t2 that satisfies both conditions

(1) and (2).

2FCP does not reuse failed links to avoid cycles.
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We start with two observations. The first observation is

that a packet will not encounter the same failed link twice.

This follows from the fact that once a packet encounters a

failed link l, this link is carried in the packet header, and

each subsequent path computation will avoid l.

The second observation is that any packet forwarded dur-

ing [t1, t2] will take at most d(LG(t1, t2)) time to either

reach the destination, or encounter a (new) failed link. This

is because, unless a new failure is encountered, every node

uses the same map and failed link list (i.e., the one carried

by the packet) to forward the packet along the shortest path.

Furthermore, at any time t ∈ [t1, t2), the shortest path is

at most d(LG(t1, t)). This is because, from condition (2)

and definition 1, both LG(t1, t2) and LG(t1, t) span M ,

and LG(t1, t) includes all links of LG(t1, t2), which yields

d(LG(t1, t2)) ≥ d(LG(t1, t)), ∀t ∈ (t1, t2).
Let k be the number of link failures encountered by packet

p during interval [t1, t2], where k ≤ f by hypothesis. After

encountering the kth failure, the packet is routed along short-

est path to destination. Since there are no packet losses, the

only reason p may not reach destination is either because (a)

p encounters another link failure, or because (b) some node

A, tries to forward p but does not have a route to D in the net-

work map minus the list of failed links. However, (a) cannot

be true, since by the second observation, p would encounter

the (k + 1)th failure by time t1 + (k + 1)×d(LG(t1, t2)) ≤
t1 + (f + 1)×d(LG(t1, t2)) ≤ t2, which violates condi-

tion (1). Similarly, (b) cannot be true as it implies that the

liveness graph is disconnected at some point during the in-

terval [t1, t2], which violates condition (2). This completes

the proof.

Note that FCP can fail even if there is a viable path in

LG(t1, t2), but this can only occur if the LG(t1, t2) is dis-

connected and the packet-in-flight gets stranded on a discon-

nected component. As an example, consider Figure 1. As be-

fore, N1 initially sends the packet to N2. However, at this

instant, let the links N1−N2, N3−Nd and N3−N4 all go

down. Since N2 and N3 are disconnected from the destina-

tion they cannot route the packet to Nd despite the fact that

the path N1−N5−N6−N7 was always active. Note that con-

dition (2) in the above Lemma filters out this scenario, as it

requires LG(t1, t2) to span the entire graph.

In today’s protocols, malicious routers can send fake route

updates, and hence subvert a network to cause more pack-

ets to flow through them [17, 30]. In FCP, once the map is

uploaded to each node, there are no dynamic link updates

that nodes exchange to modify this map. Furthermore, each

packet is treated independently of other packets—only fail-

ures that the packet encounters are taken into account for

computing the paths. Hence, a node which is not on the

packet’s path, as computed by FCP, cannot affect the fate

of the packet. The next lemma states this property.

Lemma 2. Path isolation: Assuming the map distribution is
secure, malicious nodes cannot perform off-path attacks.

Proof. The proof follows directly from the fact that an off-

path node has no way to contaminate the routing state of the

nodes along packet’s path, a these nodes compute the packet

route solely based on the disseminated map and the list of

failed links in the packet header.

The main assumption we make here is that the map dis-

semination is much less frequent than route updates in to-

day’s routing protocols, and thus we can afford to improve

the security of the map dissemination operation, even at the

expense of an increased overhead.

Note that the path isolation property does not provide se-

curity guarantees against arbitrary attacks. For example, a

malicious node can still mount denial of service attacks by

sending spurious packets with large lists of fake failed links

in the hope of overloading the CPUs of its neighbors. This

attack is similar to a malicious node sending a large number

of fake routing updates to its neighbors.

The next result shows that SR-FCP is able to provide these

properties, even in the presence of inconsistent maps. In this

case, the properties apply to the graph defined by the inter-

section of all maps in the system. Intuitively, this is because

SR-FCP potentially treats any link that is not in all maps as a

failed link. In particular, if a link l in a packet’s source route

is not in the map of a node A that forwards the packet, A
simply adds l to the list of failed links.

Lemma 3. Consider a network where the maps maintained
by nodes are not necessarily consistent. Redefine the notion
of link failure to include every link that does not belong to all

node maps.
Using the new definition of link failure, SR-FCP achieves

both the guaranteed reachability and the path isolation prop-
erties, as stated by Lemmas 1 and 2, respectively.

Proof. The proof for guaranteed reachability is similar to the

proof of Lemma 1. The only difference is that, in this case,

nodes may have different maps. However, by using source

routing, we ensure that the two observations in Lemma 1 are

still true. Let A be the node that has computed and inserted

the source route in a given packet p. Since, in the route com-

putation, A eliminates the failed links encountered by p so

far, this ensures that p will not encounter the same failed link

twice. Furthermore, every subsequent node along p’s path

uses the source route inserted by A to route packet p until

either p reaches its destination or encounters another failed

link. Since the map used by A to compute the source route

of p is a superset of LG(t1, t2) (where times t1 and t2 are

as defined in Lemma 1)3, it follows that it takes p at most

d(LG(t1, t2)) to reach the destination or the next failed link.

3By the definition of link failure in Lemma 3, LG(t1, t2) does

not contain any link unless the link is present in all maps, including

the A’s map
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The proof of the path isolation property follows again

from the fact that an off-path node has no way to contam-

inate the routing state of the nodes along packet’s path.

2.4 Challenges
We have described the basic algorithm and its fundamental

properties. In the rest of the paper, we address the main chal-

lenges of realizing FCP.

• Computational overhead (Section 3): Whenever a

packet carrying failure information arrives at a router,

the router needs to compute new routes. We present

mechanisms to reduce the computation overhead sig-

nificantly.

• Map dissemination and updates (Section 4): FCP relies

on all routers having a consistent view of the network

map, which requires a map dissemination and update

protocol.

• Quantitative performance (Section 5): While FCP’s cor-

rectness properties might be theoretically appealing, to

have any practical relevance FCP must be compared

quantitatively to current OSPF performance, as well as

backup path techniques that are commonly used in op-

erational networks today.

• Deployment (Section 6): For FCP to have practical im-

plications, the mechanisms should be deployable with

minimal changes to current infrastructure. We discuss

how we can leverage currently deployed mechanisms

(such as MPLS), and several earlier proposals (such as

RCP) to achieve our goals.

• FCP extensions (Section 7): Since much of the paper

discusses FCP as a link-state routing protocol, it is di-

rectly applicable only in the intradomain context. We

discuss how FCP can deal with incomplete maps and

with policy constraints needed for interdomain routing.

3 Reducing Overhead of FCP
Basic FCP requires computation for every packet that en-

counters a failure at every node that the packet traverses. We

present several mechanisms that reduce the overhead signif-

icantly by adding only a small overhead to router state.

3.1 Reducing per-packet route computation
To reduce per-packet computation at nodes where failures

are encountered, nodes perform some precomputation. Each

node (in addition to the default forwarding table), for every

adjacent link l, computes the forwarding table using the con-

sistent map minus l; this table is used when l is failed. How-

ever, in terms of actual forwarding state, such a precompu-

tation only doubles the memory requirement: for each desti-

nation, in addition to the default path P computed using the

map, we need to store the precomputed path computed using

map minus lP , where lP is first hop in P .

N1

N2 N3

N5

N4

N6

Source
NdN7

Destination

F = {}

F = {}

F = {N3-Nd, N5-N7}
F = {N

3-N
d, N

5-N
7}

F = {N3-Nd}

F
=

{N
3-

N
d}

No recomputation needed
Default path = {Nd}, Backup path = {N4,N5,N7,Nd}

No recomputation needed even for multiple failures
Default path = {N7,Nd}, Backup path = {N6,Nd}

Figure 3: An example in which a packet experiences multiple link

failures but recomputation is not necessary.

Lemma 4. If a packet p encounters a failed link l at node
N , and the precomputed path Pl to the destination (using the
consistent map minus l) does not contain a link that belongs
to the set of failed links that p carries, then Pl can be used to
route p to the destination, and no recomputation is necessary.

Proof. Proof follows from the fact that a shortest path is un-

affected by removing a link not contained in that path.

Figure 3 illustrates the intuition behind the above tech-

nique. When the packet reaches node N5, multiple failures

are encountered. But since the backup path at N5 for the

failed link N5−N7 does not traverse N3−Nd, recomputation

is not necessary. Hence, when the fraction of failed links is

small, the chance that a recomputation is triggered is low.

3.2 Reducing recomputation time
Each node maintains a cache of the paths that it computes

based on failures seen in packets. For each combination of

failures, a node performs computation to find shortest paths

only once. This is because performing a shortest path com-

putation on M\F , where M is the map, and F is the list of

failed links, yields shortest paths to all destinations.

For performing recomputation, we borrow from the liter-

ature on incremental recomputation [13, 25]. Prior research

has shown that incremental recomputation can be performed

within the order of few milliseconds even for graphs with a

thousand nodes [3]. Performing recomputation within a few

milliseconds is very reasonable; since failure detection itself

could take that much time, recomputation does not substan-

tially worsen the vulnerability period.

Furthermore, since many of the incremental algorithms

construct shortest-path trees, the recomputation step yields

paths to all destinations. Hence, by saving this information,

the node can avoid recomputation for all future packets with

the same set of failed links irrespective of the destination.
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3.3 Reducing packet overhead
We now present a mechanism to reduce packet overhead fur-

ther at the expense of local mapping state at the nodes. Con-

sider a node N1 sending a failure header (that includes a set

of failed links) F to node N2. With the failure header F
the node N1 associates a label lf , and includes the mapping

lf → F when it sends the packet to N2. After N1 receives an

acknowledgment from N2 about the mapping, N1 includes

only the label lf rather than the entire failure header F . La-

bels don’t have global meaning but are specific to a pair of

nodes. For robustness, a time-to-live value T can be associ-

ated with a label; if no packet with a particular label is seen

for period T, the label is removed.

4 Dissemination of Network Maps
We now turn to the problem of disseminating the global net-

work map to all nodes periodically. The purpose of the map is

to provide all routers with a loosely-synchronized but glob-

ally consistent view of network state.

4.1 Network map information
To reduce overhead as well as react quickly to changes, the

network map does not include transient changes to the net-

work. For instance, if a link fails temporarily for a short dura-

tion, it is not removed from the map. Rather, only long-term

updates such as planned outages and newly provisioned links

are published in the map (short-term updates are handled by

the FCP protocol described in previous sections). In order to

reduce bandwidth consumption, only the difference from the

previous version of the map can be disseminated.

4.2 Basic map dissemination
The map is disseminated by an RCP-like coordinator [9] us-

ing reliable flooding. The coordinator sends the map via TCP

to a set of nodes, which in turn sends the map to their neigh-

bors along the outgoing links in the map, and so on. To avoid

receiving the map multiple times form its neighbors, a node

can ask a neighbor to cancel the map transmission once the

node gets the map from another neighbor. If a node is down

during the map distribution, the node will get the map from

its neighbors once it comes up.

To ensure path isolation property (see lemma 2), we use

public key cryptography, where the coordinator signs each

map with its private key. The coordinator’s public key is dis-

tributed to all nodes in the network either out-of-band (e.g.,
manually) or via a public-key infrastructure (PKI), if avail-

able. Since map dissemination is a relatively rare event, we

believe that the overhead imposed by the signature opera-

tions will be acceptable. Furthermore, since the overhead on

the coordinator is relatively independent on the network size,

we expect the coordinator to scale to large network sizes.

While we have described how maps are disseminated, the

following challenges remain, which we address next:

• How do we decide when the nodes switch to a new ver-

sion of the map? How does routing happen during the

window of switching maps when not all nodes route on

the same version?

• How do we make the coordinator resilient to failures?

4.3 Transitioning to new map
We first present a protocol that tries to ensure that all nodes

route using the same map. Then, we describe a mechanism

that ensures correct routing even when the protocol fails to

transition all nodes to the new map simultaneously.

When each node receives a new map, it sets a local timer

that expires after a period Tlp, where Tlp is a conservative es-

timate of the diameter of the network. A node switches to a

new map either when: (a) the timer expires, or (b) it receives

a packet that is routed using a new map. Intuitively, when

the timer at the first node that receives the map expires, all

nodes would have received the new network map completely.

Hence, when it starts routing using the new map, all nodes

that route packets would switch to the new map. This cascad-

ing process quickly resulting in the entire network switching

to the new map depending on the amount of traffic flowing

in the network. In the worst-case, all nodes would switch to

the new map within Tlp of each other.

In practice, for an intradomain topology spanning an entire

continent, we expect the that the longest shortest-path in the

network would be no larger than a few hundreds of ms (for

comparison, one-way delays for continental United States is

roughly 50ms). Hence, Tlp can be conservatively chosen to

be a few seconds to account for processing delays at each

node as well.

4.3.1 Packet forwarding during map transitions
We now present a practical packet routing method using the

map update process that works even in the case when the

map-dissemination exceeds Tlp. Here, we assume that every

node maintains not only the latest map, but the previous ver-

sion of the map, as well. The basic idea is to downgrade a

packet to using the previous version of the map if the new

map is not completely disseminated.

Each forwarded packet contains a sequence number that

indicates the sequence number of the map used to route that

packet. When a node starts routing a packet, its current active

network map (which is either the most recent map it has re-

ceived or the previous version). Let a node n receive a packet

from n′. Let the sequence number contained in the packet be

s′, the sequence number of the active map at the current node

be s, and the largest received sequence number received at

the current node be smax (smax ≥ s).

Case (a) s′ < s: Forward the packet using Ms′ .

Case (b) s ≤ s′: Set s=min(s′, smax), and forward the

packet using Ms.
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Using this protocol, originator starts forwarding the packet

p using its active map. In the worst case, p is demoted to us-

ing the previous map if the latest map is not fully dissem-

inated. Note that map demotion would happen only when

the timer expires before all nodes get the map, and should

not happen with conservatively chosen timeouts. Even if a

packet is demoted to using the previous map, the protocol’s

basic correctness is not affected. During map transition, all

nodes would not switch version numbers exactly at the same

time. However, eventually all nodes would update to the new

map, and eventually routing consistency is guaranteed. As

noted earlier, if a node n receives a packet with a new se-

quence number smax before its timer for smax expires, then

n updates s to smax.

4.4 Coordinator fault-tolerance

We now describe a mechanism for replicating the coordi-

nator to improve fault tolerance. The main idea is to use

replicated coordinators (much like how RCP does) with

replica having a replica number that denotes the ordering of

the replica.4 For example, replica 1 is more important than

replica 2. Each replica independently chooses a map M (all

of them execute the same algorithm, and hence should pick

the same map, though they may not be synchronized), and

disseminates M skewed in time such that replica 1 sends the

map update at time t=0, replica 2 sends the update at time

t=T/n, replica 3 at time t=2T/n and so on, where T is the

periodicity of updates that each replica sends, and n is the

number of replicas. Each node floods only the map of the

replica with the lowest sequence number such that the map

is no older than time T+c, where c > 0 is the maximum time

for the map to get disseminated across the network; the other

maps it receives are suppressed to save bandwidth resources.

For routing, each node in the system would use the map

from the lowest numbered replica with the highest sequence

number such that that the map is no older than time T+c,

where c is defined as above. Even if there are network parti-

tions, within all connected components, the eventual routing

consistency would hold. Partitions heal at the network layer

during subsequent updates.

4.5 Periodicity of map updates

The map updation period would depend on how frequently

links are decommissioned or added to the network, planned

network outages, and frequency at which link costs change

(say for traffic engineering reasons). In the extreme case, one

could just disseminate the map as frequently as the default

OSPF LSA generation period (which is typically 30 sec-

onds). Unlike OSPF, the coordinator can send only the differ-

4In practice, since the coordinator performs tasks only at coarse

timescales, having a small number of replicas for the coordinator

might suffice.

ence from the previous network map to save bandwidth re-

sources. The only limitation is the overhead to sign the map.

5 Evaluation of FCP
We first present our experimental methodology, the data sets

we used, and protocol configurations we used for compari-

son purposes. We present results in two parts. In the first part,

we present results that show that the overhead of FCP is very

small. In the second part, we compare FCP with OSPF as

well as backup computation techniques. Finally, we present

the overhead involved in using SR-FCP as a function of de-

gree of inconsistency in the maps at the routers. To summa-

rize our results:

• The overhead of FCP is very low both in terms of com-

putation overhead and packet header overhead.

• Unlike traditional link-state routing (such as OSPF),

FCP can provide both low loss-rate as well as low con-

trol overhead,

• Compared to prior work in backup path pre-

computations, FCP provides better routing guarantees

under failures despite maintaining lesser state at the

routers.

5.1 Methodology
Protocols: We compared FCP with two alternate strategies:

the OSPF [23] link-state protocol, and an MPLS-like proto-

col that precomputes backup-paths. To compare with OSPF,

we leveraged the OSPFD software router developed by John

Moy [24], which completely implements the OSPF protocol

as specified by RFCs 2328 and 1765 [22,23]. We configured

OSPFD following the millisecond-convergence recommen-

dations given in [3], including the incremental Dijkstra’s al-

gorithm described in [25].

OSPFD also contains a network emulation toolkit for eval-

uating deployments, which we extended to support FCP and

backup-paths implementations. To compare with backup-

path precomputation, in our results, we use the sample selec-

tion algorithm used by Juniper Networks [19]. Although al-

gorithms exist to compute “optimal” backup paths we found

that such algorithms involved substantial computation time,

which led to poor results when applied to the dynamically

changing networks we consider here.

Configuration: To configure OSPFD’s timers, we con-

ducted a simulation study to determine settings that per-

formed well on our workloads. By default, we configured

OSPFD to send one probe every 400ms, and to consider a

link down if no probes are received after 2 seconds. To re-

duce sensitivity to flapping links, we configured OSPFD to

“treat bad news differently from good news” by propagating

link failures immediately but delaying propagation of link

arrivals for five seconds. Given that FCP and the Backup-

path scheme do not propagate failure information globally,
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Table 1: Protocol configuration parameters

Parameter OSPFD FCP/Backup computations OSPFD default
hello-interval 400 ms 50 ms 1 sec

dead-interval 2 sec 250 ms 5 sec

retransmit-interval 2 sec n/a 5 sec

throttle-interval 2 sec n/a 5 sec

we configured them with faster probing times (one hello ev-

ery 50ms). Each router sends pings to all other routers, with

one ping every 15 seconds5. Finally, to fully stress FCP rout-

ing, the network maps are never updated in the experiments

we present.

Data: Link failures and arrivals were driven by ISIS traces

collected on the Abilene Internet2 backbone [1]. These traces

contain timestamped Link State Advertisements (LSAs). We

modified the network emulator to drive link failures by play-

ing back LSAs based on their timestamps. To evaluate larger

networks and a wider range of parameters, we also used

Rocketfuel [28] topologies and used a shifted Pareto distri-

bution to drive the time-to-failure distribution for each link.

Though we had six AS topologies from the Rocketfuel data,

we report results from AS 1239 (Sprint) Rocketfuel topology

as a representative sample. The Sprint AS topology has 283
nodes and 1882 links.

5.2 Overhead of FCP
FCP introduces extra overhead only for packets that en-

counter a failed link. The overhead can be classified into:

(a) network overhead, i.e., stretch of routing the packet, (b)

packet header overhead, and (c) recomputation overhead.
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Stretch: After failure, FCP does not necessarily discover

the next-shortest path, incurring a stretch penalty. Figure 4

5We found that sending pings at a faster rate could overload the

OSPFD implementation.
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Figure 5: Packet overhead of FCP.

shows the CDF of stretch over all pairs of sources and des-

tinations for increasing failure rates (where failure rate is

measured by the number of links that fail per second in the

network). We found that the average stretch was very low

(1.0012), and the worst-case stretch was under 1.8. However,

for increasing failure rates, the average stretch increased to

1.0026, with a worst-case stretch of 1.83. This happens be-

cause the number of failed links a packet encounters in-

creases with increasing failure rates. Hence, FCP is forced

to reroute packets multiple times which reduces the chances

that the optimal end-to-end path is taken. However, as shown

later, we found this stretch was comparable to the backup-

path selection strategy that we compared against.

Packet header overhead: Figure 5 shows the CDF of min-

imum packet overhead incurred by the failure header with

FCP, using the OC48 trace from CAIDA [2] to generate real-

istic traffic workloads. For the Abilene failure trace [1], FCP

inflates the average packet size by a negligible amount. The

maximum header size during the run is 4 bytes per packet,

assuming each failure header takes 2 bytes. Although header

sizes can potentially be larger in networks with more simul-

taneous failures, we can reduce the byte overhead by us-

ing the label optimization described in 3.3. It is important

to note that headers are only added on link failure, unlike

MPLS, which appends a label (or stack of labels) to every

data packet traversing a label-switched path.

Recomputation overhead: Figure 6(a) shows a CDF of the

number of recomputations per packet in a network with 0.5
link failures per second. Roughly 0.2% of packets require

recomputation to be performed under the vanilla FCP imple-
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Figure 6: Recomputation costs of FCP: (a) Number of recomputations. (b) Recomputation times.

mentation. This value decreases to 0.01% when routes once

computed are cached. Figure 6(b) shows the time to recom-

pute paths after link failure as measured on a 3GHz Intel

Pentium processor with 2GB of RAM. Recomputation time

is below one millisecond on all topologies.

5.3 Benefits of FCP
5.3.1 Comparison with OSPF
In Figure 7(a), we vary the rate at which OSPFD sends

HELLO packets to neighbors, and measure the resulting ef-

fect on control overhead and the fraction of data packets de-

livered. As mentioned previously, we tune FCP with a fast

probing rate, since faster probing does not incur a penalty in

control overhead in terms of LSAs disseminated since none

of the link failures detected are announced. As the HELLO

probing rate is increased, the number of data packets lost de-

creases, since failures are reacted to more quickly. However,

probing at a faster rate also causes more short-term failures

to be detected and propagated, increasing control overhead.

On the other hand, FCP undergoes only a very small (yet

non-zero) loss-rate of less than 0.1%; the loss of FCP in our

experiments is non-zero since link failure detection takes a fi-

nite time and during this period, all packets trying to use that

link will be dropped. Although FCP exhibits similar behav-

ior to OSPF in terms of stretch and loss rate while varying

the probing rate (Figure 7(b)), its control overhead is not a

function of link failure rate, and hence its probing rate can

be increased without inflating control overhead. We found it

was possible to tune OSPF to achieve this loss-rate, but only

at the expense of a increasing its control traffic to above 300
messages per second per link.

Figure 7(c) which plots the average stretch shows a similar

phenomenon as well; as the probing rate decreases, it takes

longer to detect link repairs, and hence a larger fraction of

working paths are not discovered by a packet. Since we can

keep the FCP probing rate high without compromising over-

head, FCP has much lower stretch than OSPF.

5.3.2 Effect of varying parameters
In Figure 8(a), we vary the mean interarrival time for link

failures, but fix OSPF’s probing interval at 400ms, and plot

the loss rate and overhead. For a wide variety of failure rates,

FCP outperforms OSPF by an order of magnitude, while si-

multaneously maintaining a lower control overhead. Note

that OSPF’s overhead begins decreasing as the failure rate

increases past the ability of the probing protocol to keep up

with link events.

In Figure 8(b), we vary the probing rate and plot the frac-

tion increase in loss rate of OSPF over the loss rate of FCP

for various topologies. Although the amount of improvement

varies across topologies, FCP provides more than a order

of magnitude lower loss rate than OSPF. As shown in Fig-

ure 8(c), FCP also reduces control overhead. In general, we

found that denser topologies (e.g. AS 1221, with an average

degree of 6.2) had less benefit from FCP than sparser topolo-

gies (e.g. AS 3257, with an average degree of 3.7). This hap-

pens because in denser topologies OSPF has a larger number

of paths to choose from, and is hence more likely to discover

a working path.

5.3.3 Comparison with backup-path selection
Unlike OSPF, the backup-path strategy we used can attain

very fast failover times without a significant increase in con-

trol overhead. However, to minimize loss rates, the backup-

path strategy needs to account for every failure contingency,

and hence requires a substantial number of backup paths.

Precomputing a large number of backup paths to account

for different combinations of multiple link failures increases

state per router. This tradeoff is shown in Figure 9a. For ex-

ample, with 8 backup paths per link, the backup path strategy

requires 4210 entries per router, and experiences a loss-rate

of 0.05%. However on the same workload, FCP requires only

255 entries yet attains a loss rate of less than 0.002%. More-

over, unlike FCP, the distribution in state across routers is not

uniform, and hence the top 1% of routers require more than

20, 285 entries. However, for switching between maps, FCP

must temporarily maintain a second copy of its routing state.

Although this state is only maintained for a short period, and

can be stored as deltas (differences from the current map), in

the worst case this could double FCP’s state requirements (to

510 in this example).

Figure 9(b) shows the performance in the presence of si-
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Figure 8: Effect of varying parameters: (a) failure rate on control overhead and data packet loss rate. (b) topology on loss rate. (c) topology

on control overhead.

multaneous failures on two representative topologies. We fix

the number of backup paths to two, and vary the number

of randomly selected links to simultaneously fail. On both

topologies, the backup strategy and FCP have roughly equal

loss-rates during single failures. However, when more than

one failure occurs, FCP has significantly lower losses. (Note

that FCP has non-zero loss since the failure detection is not

instantaneous.) This happens because as the failure rate in-

creases, it becomes more likely the backup-path strategy will

encounter a set of failures not covered by any one of the

backup paths. Finally, Figure 9(c) shows that the backup-

paths strategy incurs a stretch penalty during link failures.

This happens because the backup-paths strategy attempts to

find link-disjoint paths as backups, which tend to be longer

than the path FCP finds around the failure.

5.3.4 Effect of inconsistent maps
So far, we have assumed that all nodes have a consistent state

of the network map. Here, we investigate the overhead in-

curred by SR-FCP—in terms of average routing stretch and

per-packet overhead—as a function of map inconsistency

factor (see Figure 10). Specifically, for a chosen map incon-

sistency factor d, we instantiate the network map Mn at each

node n by picking links randomly from the actual network

map M , such that the intersection of maps at all nodes forms

a spanning and connected subgraph of M , which contains
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Figure 10: Effect of inconsistency in network maps on the over-

head incurred by SR-FCP.

only a fraction (1− d) of links in M (with high probability).

The x-axis is capped at 0.3 since that is the largest fraction of

inconsistency for which the intersection of maps at all nodes

forms a spanning subgraph.

The plot shows that the stretch and packet overhead are

small even when maps are highly inconsistent. Even when

the inconsistency factor is 0.3, the average stretch is less

than 1.03, and the average size of a packet header is under

10 bytes (assuming 2 bytes per node for source routes and

failures). The reason SR-FCP performs so well is because

SR-FCP pays a penalty only if the source node performing a

route computation misses some links that could have resulted

in significantly shorter paths; an intermediate node just for-
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Figure 9: Comparison with Backup-paths: (a) Unlike FCP, Backup-paths cannot simultaneously provide low state and low loss-rate. (b) FCP

maintains low loss for a variety of failure rates. (c) Backup-paths stretch penalty for varying numbers of backup paths.

wards a packet based on the packet’s source route irrespec-

tive of whether downstream links in that source route (not

adjacent to the intermediate node) are present in the node’s

map or not.

6 Deployment Issues
FCP represents a substantial departure from traditional rout-

ing mechanisms, and hence unsurprisingly requires several

modifications to router design even for deployment at the in-

tradomain level. Although these changes are by no means

trivial, in this section we outline how they may be imple-

mented as extensions to existing protocols and designs.

Map dissemination: The role of the coordinator is akin to

the centralized node in the case of RCP [9]. Such a design

is amenable in case of ISP networks where the centralized

administrative node can act as the map coordinator and peri-

odically disseminates the network map. In addition, to better

handle packet forwarding during map transitions (see Sec-

tion 4.3.1), routers must store both the current and the pre-

vious map, instead of only the current map as most of the

existing protocols do.

FIB state: If dynamic failure-based path computations are

not cached, the FIB state is doubled since at the mini-

mum, the next hop information should be maintained for

current map and previous map. Even if path computations

are cached, the average additional state required is not high.

With the precomputation optimization for each outgoing link

(described in Section 3.1), the FIB state is again only dou-

bled overall, which we believe is a modest requirement.

Forwarding: In the optimized version of FCP, routers add a

label corresponding to a list of failed links to packet headers,

and perform forwarding based on the label. Appending and

forwarding based on labels is addressed by Multi-Protocol

Label Switching (MPLS) [12]. FCP also needs to invoke re-

computation for new failures encountered, by invoking spe-

cial processing via the slow path.

Applicability of intradomain routing controls: Since the

notion of having a link-state graph is retained, the key seman-

tics of intradomain routing maps remain unaffected. FCP

continues to provide cost-based shortest-path routing in the

absence of link failures. Hence, assignment of addresses and

access controls, traffic engineering, and other aspects of con-

figuration/maintenance remain unchanged. Specifically for

traffic engineering, long-term planning changes to the link

costs can be introduced by the central coordinator. For short-

term, reactive cost changes introduced by the routers them-

selves, there would be a short delay since the updates are not

installed instantaneously, but have to go through the coordi-

nator before the TE link-cost changes become active. Since

the link-cost changes go through the coordinator, it can be

ratified before it is incorporated into the network map in or-

der to preserve the path isolation property.

7 Extensions to FCP
We described FCP as a link-state routing protocol, and hence

is directly applicable to intradomain networks. Here, we

present extensions to FCP to broaden the scope of applicabil-

ity. Specifically, we turn to how FCP can be used to improve

interdomain routing, both in terms of iBGP and eBGP rout-

ing stability.

Figure 11: Mitigating iBGP disruptions using FCP.

7.1 Improving iBGP stability under link failures
Hot potato routing is commonly used by ISPs to select the

closest exit point amongst multiple equally-good interdo-

main routes. Failure of links within the network, failures

of next-hop links going out of the network from the border

routers, as well as small perturbations in intradomain costs
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can lead to hot-potato disruptions, where large amounts of

traffic oscillate between egress points. Such disruptions can

lead to routing loops, router overload, and externally visi-

ble BGP routing changes [32, 33]. Hence a scheme that can

prevent such instability during change of egress points is de-

sired [31, 32].

We present a simple modification to FCP to allow it to

operate over iBGP routes within a single domain for the case

of failure of links. We augment the link-state network map

maintained by internal routers to treat an egress route to a

particular prefix as a virtual link directly connected to the

destination prefix. FCP is agnostic to the the notion of virtual

links, as it treats virtual and actual links equally; we use the

term virtual link only for convenience. When either a normal

link or a virtual link fails, a router can use FCP to forward

the packet to an alternate egress connected to the same next-

hop AS. This ensures that routing to external routes remains

consistent even if failures are not immediately propagated.

A simple illustrative example is shown in Figure 11. The

network map consists of actual links E1 −R1, E2 −R2 and

R1 −R2, and virtual links E1 −P and E2 −P for prefix P .

Initially, let both routers R1 and R2 use egress E1 to reach

the destination prefix P . When the link (R1, E1) (or the BGP

next hop from E1 towards P ) fails, R1 appends the (R1, E1)
(or the virtual link (E1, P )) to packet headers causing R2 to

forward the packets via E2. Traditional iBGP/OSPF routing

would undergo a routing loop between R1 and R2 lasting

until R2’s scan process, i.e. visiting the BGP routing decision

for each prefix, completes.

7.2 Interdomain policy routing
Interdomain routing today suffers from long outages arising

from a slow convergence process that occurs after certain

routing events [21]. In this section, we discuss how we can

leverage FCP to avoid failures during the convergence pro-

cess of BGP. In our proposal, we only consider changes on

the data plane; we do not modify BGP’s route announcement

and propagation protocol. Next, we discuss two of the key

challenges faced by our proposal: (a) how are the network

maps defined and distributed? (b) how are policies respected

when FCP is used?

7.2.1 FCP network map
Unlike the case of intradomain routing, there is no natural

centralized authority to act as a coordinator for distributing

AS-level network maps. Hence, we assume that nodes work

with inconsistent maps and use SR-FCP (Section 2.2).

All routers in the network run BGP protocol for exchang-

ing routes as they do today. Each router defines the FCP map

using the latest set of BGP updates it has received from all

its neighbors.

7.2.2 Using SR-FCP with policy routing
Naively implementing SR-FCP would have adverse pol-

icy implications. This is because, by using AS-level source

routes, an AS can force downstream ASes to forward traf-

fic at the expense of violating their own policies. We next

present a solution to this challenge.

The main idea behind our solution is to treat any policy

violation as a link failure. We assume that ASes only imple-

ment policies that are a function of the neighbor from whom

they received the advertisement and local policy considera-

tions (as opposed to, for example, policies dependent on the

presence of an non-neighbor AS in the AS-path). Virtually

all today’s BGP policies fall into this category [34].

Consider a packet p routed from source AS S to destina-

tion AS D. When a router in the source AS S starts rout-

ing a packet, it adds the AS-level path (source route) in the

packet header, just as proposed by SR-FCP. Let a router R
belonging to an intermediate AS I receives the packet p with

an AS-level source route ASR(p). Let ASR(R,D) repre-

sent the AS-level route computed by R to the destination

AS D (based on its BGP route selection criteria). Finally,

let NextHop(Route) represent the AS-level next-hop for a

route. The following cases are possible:

1. N=NextHop(ASR(p))=NextHop(ASR(R, D))
and next-hop to N is alive. In this case, R simply

forwards the packet to N .

2. N=NextHop(ASR(p))=NextHop(ASR(R, D))
and that next-hop to N is dead. In this case, R invokes

SR-FCP by adding the AS-path I − N (recall that I
is the intermediate AS that R belongs to) to the failure

header. R then forwards the packet along the best

AS-path that it knows which does not have any failures.

3. NextHop(ASR(p)) �=NextHop(ASR(R,D)). We

discuss this case next.

If the AS decides that the source route present in the

packet is not compatible with its choice of routes, it does the

following operations for preventing transient loops. First, it

adds NextHop(ASR(p) to the failure header of the packet.

Second, it uses the best route it has to the destination that

does not have any failed links, and adds that source route to

the packet. We leave the degree to which an AS allows routes

that are not the most-preferred to be used in the source route

as a meta-policy decision of that AS. This meta-policy repre-

sents the tradeoff between the degree to which the AS allows

FCP to recover from failures and the extent to which poli-

cies are obeyed. For instance, an AS can decide that it allows

only the top two preferred routes.

7.2.3 Discussion
Since BGP propagates only routes that can be potentially

used downstream, routers will not obtain the entire link-state

of the network. However, after BGP converges, all the nodes

should have consistent route selection information, i.e., all

nodes will pick the same AS-level path for each destination

prefix. In other words, at all nodes, the AS-level source route
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in the packet header will be identical to its most preferred

route to the destination (Case (1) above).

During the convergence process, routing using the above

modified SR-FCP protocol ensures that packets will not enter

into transient loops. This follows from the fact that packets

are routed using SR-FCP, hence at every stage the packet ei-

ther makes progress based on the source route or that a link is

added to the list of failed links in the packet header. Eventu-

ally, the packet will reach the destination or will discover that

there are no more paths (based on links in the failure header),

and will be dropped. Also, as we mentioned above, the ex-

tent to which FCP will help route around failures depends on

the flexibility of the policy at the ASes to use source routes

that are not the most preferred.

One practical challenge of our scheme is deployability, as

it require one to insert the AS source route and the list of

failed links in the network (IP) header. While one can use IP

options to store this state, a comprehensive solution to this

challenge is subject of future work.

8 Related Work
Prior work to address the problem of routing convergence in

the literature at the protocol level can be roughly classified

into three categories: (a) designing loop-free convergence

protocols, (b) reducing the convergence period of protocols,

and (c) using precomputed backup paths to route around fail-

ures. We don’t discuss attempts at addressing such issues at

the higher layers, for instance using overlays to get around

underlying routing problems.

The idea of carrying information to route a packet in the

header of the packet itself is inspired by Stoica’s work on dy-

namic packet state [29]. FCP is similar in spirit to LOLS [26]

used for routing in wireless adhoc networks. However, FCP

separates network map information and transient failures by

not introducing transient failures into the map, and hence can

provide better routing guarantees.

Loop-free convergence. Several approaches ensure that

convergence takes place in a way that it obeys certain cor-

rectness constraints. For example, link-state vector rout-

ing [5] advertises a subset of links, and uses a termination-

detection algorithm to break loops. Diffusing computa-

tions [16] achieves theoretical loop-free routing convergence

using a distance-vector paradigm. However, as the authors of

that paper note, the performance after node failures and net-

work partitions is a concern because all network nodes have

to be involved in the same diffusing computation.

Reordering LSAs during propagation has been proposed

to ensure that transient loops are avoided, for the spe-

cific cases of protected and planned link failures and cost

changes [15] alone. Not-via addresses [8] uses a mechanism

very similar to the precomputation optimization presented in

Section 3.1. Consider a router R that performs the follow-

ing computation: For dealing with node failures, by iterating

over each other router R′, R precomputes backup paths to

all destinations assuming that R′ is down. For dealing with

link failures, it performs a similar precomputation by iter-

ating over neighboring links. However, the draft states that

they do not aim to handle multiple simultaneous link/router

failures. Nearside tunneling [7] dynamically constructs tun-

nels to the closest router adjacent to the failure, and forward

traffic via the tunnel during the convergence process. A sim-

pler scheme is to simply forward via a loop-free alternate

path in the presence of failure, or to forward to a U-turn al-

ternate when no loop-free alternate exists [4]. While these

approaches improve properties of the convergence process,

they still require routing updates at the control plane, and

are hence subject to the control overhead versus availability

tradeoff we discussed in our results.

Reducing convergence times Some efforts have addressed

failure recovery directly at the level of routing protocol. For

instance, Alaettinoglu et al. [3] propose to modify IGP im-

plementations to reduce convergence time to a few millisec-

onds even when links fail, by modifying timers, and im-

proving run-time of the route computation algorithm. How-

ever, reducing timers can increase the control overhead and

worsen network stability, as shown by our experimental re-

sults. In general, there has been substantial debate over what

parameters to use, and it is not clear that there is a single

correct choice of these timers or if they can be eliminated

completely.

Such protocol tweaks are restricted by protocol con-

straints; for example, arbitrarily reducing the timer values for

detecting change in link status could potentially make routes

oscillate due to false positives in detecting failed links. Fur-

thermore, adjusting link weights in OSPF can temporarily

destabilize the network, even with fast convergence, because

often multiple weights need to be adjusted simultaneously.

Using precomputed backup-paths Several works, have

proposed using precomputed backup routes when primary

paths in the network fail, for example IP restoration [18], and

MPLS Fast-Reroute [27], and several others [4, 6, 11, 19]. A

short evaluation of the fast reroute techniques is presented

in [14]. More recently, R-BGP [20] proposes using a simple

precomputation-based backup method for fast-failover dur-

ing BGP convergence process that has some provable guar-

antees such as loop-prevention and valley-free routing.

Backup routes are practical only when there are small

numbers of simultaneous failures; to achieve the guaranteed

reachability property of FCP with multiple failures, several

backup paths would be needed. In fact, from our experi-

ments, we see that even with low failures rates, multiple fail-

ures can simultaneously occur in real networks. In contrast to

precomputed backup paths, FCP not only provides correct-

ness guarantees in the face of multiple link failures, but does

so by requiring much lesser state at the routers than backup

path computations typically do.
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9 Conclusion
We proposed Failure-Carrying Packets (FCP), a new routing

technique which eliminates the convergence period endured

by traditional routing protocols. The basic idea behind FCP

is simple both conceptually and practically: once all routers

have a loosely-synchronized, consistent view of the network,

it is enough for a router to know the list of failed links to

correctly compute the path to a destination.

Though we primarily present FCP to introduce a new

routing paradigm that is qualitatively different from previ-

ous approaches, we also present simple optimizations that

makes FCP feasible in practice. Using real-world ISP topolo-

gies and failure traces, we show that both the computation

overhead as well as packet overhead incurred by FCP is

very small. We also present comparisons with both OSPF

(with timers carefully chosen) as well as a commercially-

used backup path technique. In the former case, we show

that unlike OSPF, FCP can provide both low loss-rate, as

well as low control overhead. In the latter case, we shows that

FCP provides better routing guarantees under failures despite

maintaining less state at the routers. Though the basic model

of FCP as a link-state routing paradigm is directly applica-

ble only to intradomain networks, we discuss how FCP can

be applied to interdomain policy routing as well. Studying

the applicability of FCP in different routing networks (such

as interdomain routing, wireless networks, sensor networks)

more deeply is topic of future work.
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