
A New Communications API

Ganesh Ananthanarayanan
Kurtis Heimerl
Matei Zaharia
Michael Demmer
Teemu Koponen
Arsalan Tavakoli
Scott Shenker
Ion Stoica

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-84
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-84.html

May 25, 2009

Copyright 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

A New Communications API

Ganesh Ananthanarayanan, Kurtis Heimerl, Matei Zaharia,
Michael Demmer, Teemu Koponen, Arsalan Tavakoli, Scott Shenker, and Ion Stoica

ABSTRACT
We present NetAPI, a flexible communications interface. Al-

though the ubiquitous Sockets API lets applications select

among a number of mechanisms to accomplish network-

ing tasks, it binds them tightly to their chosen mechanisms.

Consequently, the network stack has little freedom in se-

lecting the best protocols and mechanisms for each appli-

cation, and innovating below the API is extremely difficult.

NetAPI allows applications to specify their communication

intents against an abstract interface that hides implementa-

tion mechanisms, encouraging innovation below the API.

Application intents are combined with user policies and en-

vironmental conditions to let the network meet application

goals in varied ways. We describe the design of NetAPI,

comparing it to other system APIs that have supported evo-

lution. We have also implemented a prototype of NetAPI

called PANTS for the iPhone platform. We show that PANTS

can provide innovative mobile networking features, such as

disconnection tolerance, content quality adjustment and power-

saving policies, without application modifications.

1 Introduction
Virtually all networked applications today access the net-

work through the Sockets API [29], which was developed

for BSD UNIX over two decades ago. While the Sockets

API lets clients select between a number of network tech-

nologies, it binds them tightly to their chosen mechanism

(e.g. specifying a destination using an IPv4 address). Triv-

ial architectural changes, such as moving from IPv4 to IPv6,

require all applications to be modified. This inflexibility has

become problematic as the Internet has evolved. While the

original Internet was used largely for file transfer between

static hosts, today’s Internet consists primarily of mobile

hosts accessing a variety of content. The challenges to nam-

ing, addressing and content delivery introduced by this shift

have led to numerous research projects [7,25,27,28,31,33],

but these advances have been difficult to deploy.

To understand the limitations of the Sockets API, consider

another API used to access system resources: the filesystem

API for accessing storage. Alhough it is nearly as simple

as Sockets, the filesystem API has fostered far more inno-

vation. Today, applications using the filesystem API can

take advantage not just of new types of storage media and

placement algorithms, but of filesystems cached in memory

(buffer cache), served over the network (NFS), stored redun-

dantly across multiple disks (RAID), partitioned and repli-

cated on a cluster of commodity machines (GFS [39]), or

employing advanced deduplication techniques to conserve

space (NetApp). The same ls, cat and vi applications writ-

ten for BSD UNIX will work on this wide range of stor-

age systems without even needing to be recompiled. It is

also possible to extend the filesystem in user space through

FUSE [37], which has led to interesting and useful projects

such as GmailFS [1] and SSHFS [4].

What features of the storage API have made it so much

more capable of supporting innovation than the network API?

First, the Sockets API requires applications to invoke spe-

cific network mechanisms (e.g. specify whether to use TCP

or UDP, provide an IPv4 address for a destination host),

whereas the filesystem API hides storage technology details

(e.g. locations are given using paths instead of block num-

bers). Second, the Sockets API exposes no communica-

tion semantics to the network stack beyond a byte stream,

whereas the filesystem API captures a minimal amount of

information about application intent that aids the implemen-

tation (e.g. files are opened in read or write mode, which de-

termines what caching may be performed). Stretching the

filesystem analogy a little, the Sockets API resembles what

might have happened if the filesystem interface included prim-

itives for accessing blocks and inodes rather than named

files: performance improvements would be possible, but there

would be little room for broad architectural innovation. Our

goal in this work is to define a communication API that

provides enough abstraction to enable future innovation and

meets the requirements of today’s Internet applications.

To demonstrate the real-world need for a richer API and

provide another point of comparison, we note that while

the research community has been exploring new architec-

tures, practitioners have not been idle. Today’s practical

solution to many of the shortcomings of Sockets is HTTP.

HTTP has well-defined request semantics (e.g. GET versus

POST) that allow middleboxes to understand how to cache

responses, aiding content delivery. DNS load balancing and

redirection provide some flexibility in naming. HTTP pro-

1

vides limited disconnection tolerance by allowing partial-

content requests to resume a file transfer in the middle of

the file. Finally, cookies let applications establish sessions,

which can be used for tracking users across disconnections

and for level-7 load balancing of stateful applications. As

a result of these features and of the widespread deployment

of HTTP-aware middleboxes, many applications that used

to have their own protocols now run over HTTP, including

file transfer, RPC (SOAP), syndication (RSS), instant mes-

saging (XMPP), and streaming video (YouTube).1 Nonethe-

less, HTTP is ultimately limited in flexibility because it is an

application-layer protocol. For example, HTTP does not fa-

cilitate deployment of new naming mechanisms, or of trans-

port protocols other than TCP. Furthermore, the caching and

session features of HTTP are implicit conventions that were

tacked onto the protocol over time. Their implementation

in middleboxes is architecturally clumsy, and much of the

network stack is unaware of these features.

In this paper, we propose a simple communication API

called NetAPI that captures application intent and hides im-
plementation mechanisms, enabling innovation below the API.

NetAPI identifies services using Uniform Resource Identi-

fiers (URIs [30]), providing flexibility and extensibility in

addressing and naming. This is analogous to how the filesys-

tem API allows mounting multiple filesystems inside a com-

mon namespace. In addition, NetAPI operates on application-

level messages (data plus properties), letting it capture se-

mantics about content similarly to filesystems and HTTP.

Although our primary goal is to facilitate innovation in

the network, NetAPI provides other benefits as well. First,

NetAPI enables adaptability to environmental conditions in

the network stack. For example, a mobile phone can switch

a file download started on a cellular connection to a WiFi

connection when it enters a WiFi hotspot, because it knows

how to resume the transfer. Second, NetAPI enables cen-
tralized policies to control communications. For example, a

phone might present a setting for “best performance” versus

“best battery life”. Selecting the latter could lower content

quality in a video application and delay file downloads until

WiFi is available. This feature would be not be possible if

the network stack did not understand application semantics.

To evaluate NetAPI, we have built a NetAPI prototype for

the iPhone platform called PANTS (protocol aware network

technology selector), aimed at mobile networking challenges

like disconnection tolerance and use of multiple interfaces.

PANTS runs on the client only and interacts with legacy

servers. We built two sample applications using PANTS, a

file downloader and a news reader, and took advantage of

NetAPI to add disconnection tolerance, power-saving poli-

cies and content quality adjustment to these applications with-

out modifying them. We also implemented the “best battery

life” versus “best performance” setting explained above.

1Some of this is also due to corporate firewalls blocking non-HTTP
ports. However, many applications, such as video, also use HTTP
to take advantage of web caches and commodity load balancers.

We start by describing NetAPI in Section 2. In Section 3,

we show how NetAPI supports several popular Internet ap-

plications. We explain how NetAPI can be implemented in

Section 4. We describe our NetAPI prototype, PANTS, in

Section 5, and evaluate it in Section 6. In Section 7, we

discuss the implications of NetAPI adoption on the network

and applications. We survey related work in Section 8 and

conclude in Section 9.

2 NetAPI Design
NetAPI provides four basic operations:

• open(scheme://resource, options) ⇒ handle
• put(handle, message, options)
• get(handle, options) ⇒ message
• control(handle, options) ⇒ result.

The user starts a connection through the open() call, which

returns a connection handle. Instead of asking for an ad-

dress or DNS name when opening a connection, NetAPI

takes a Uniform Resource Identifier (URI) [30] of the form

scheme://scheme-specific-part. The scheme portion of the

URI selects one of a number of communication schemes.

Each scheme represents a class of network service, such as

web://, video://, or voice://. The scheme defines what types

of messages and options can be used in API operations and

how they are interpreted. The scheme also determines how

the scheme-specific part of the URI is resolved, enabling

novel naming mechanisms. We explain schemes in detail

in Section 2.1.

The put() and get() operations send and receive messages
over the connection. NetAPI messages are application-defined

data units (ADUs) [17], such as frames in a video scheme.

They consist of data plus a list of key-value properties. This

lets the scheme implementation distinguish between mes-

sages types and understand the semantics of each message.

The control() function is used for scheme-specific control

operations, such as seeking in a streaming media scheme.

It takes an options argument, which is a list of key-value

pairs interpreted by the scheme. It may return a result ob-

ject, which is also a collection of key-value attributes, for

schemes that wish to provide control operations with return

values. The other NetAPI operations also support scheme-

specific options, and may also return result objects (not shown

in the API definition above for simplicity) for schemes that

wish to return status information.

In addition to these four basic operations, NetAPI pro-

vides a close() operation for closing a handle, as well as lis-
ten() and accept() operations for creating a server, which

function like those in Sockets. Other content publishing

mechanisms, such as publish-subscribe, can also be sup-

ported, as described in this Section 2.3.

The rest of this section describes and motivates the main

design elements of NetAPI: schemes (Section 2.1) and mes-

sages (Section 2.2). We also discuss how various server

mechanisms can be supported in NetAPI in Section 2.3.

2

2.1 Schemes

A general-purpose communication API must support appli-

cations that require vastly different services from the net-

work: media applications desire low jitter, real-time applica-

tions desire low latencies, content retrieval applications may

accept a copy of a document from multiple providers, some

applications tolerate dropping messages, some applications

tolerate disconnections, and so forth. The solution to this

problem in the Sockets API was to require applications to

manage communication mechanisms themselves, but this in-

hibits evolution. The solution in NetAPI is schemes. Schemes

are one of the main features of NetAPI, so we will explain

and motivate them in detail.

At a high level, a scheme is a protocol between the ap-

plication and the network stack for accessing one class of

communication service, such as web content retrieval, me-

dia streaming, or RPC. Schemes define the format and sig-

nificance of names, messages and options used in NetAPI

operations. They also define the meaning of the get(), put()
and control() operations, and the protocol for calling these

(e.g. does a communication contain multiple messages or

just one). Finally, schemes capture application requirements
(e.g. is the application latency-sensitive or disconnection-

tolerant). Schemes let NetAPI treat different types of com-

munication differently, and scheme implementations provide

a place in the operating system to change how a type of com-

munication is performed without modifying applications.2

Scheme implementations are responsible for resolving names,

binding to addresses, selecting a transport protocol, encod-

ing messages, and ensuring communication security. As shown

in Figure 1, this represents a significant shift from the current

responsibilities of the network stack. For example, an imple-

mentation of a generic file download scheme (download://)

may choose to employ new naming mechanisms [26], new

transport protocols [43], BitTorrent [14], delay-tolerant net-

working [34], or even a clean-slate architecture like DONA

[31]. The implementation may also choose which network

interface to use on a mobile device. Finally, the decisions

made by the scheme implementation may be guided by op-
tions provided by the application in the open() call, such as

an authenticate option requiring the file digest to be ver-

ified against a trusted database or a max delay option con-

veying the level of delay tolerance of the application.

This new division of responsibilities between the appli-

cation and the network stack lets applications specify their

communication goals at a high level while allowing network

technologies to evolve underneath them. Nonetheless, the

ability of schemes to select communication mechanisms does

not entail a loss of control in applications. For example,

the system can provide a datagram:// scheme analogous to

UDP and a stream:// scheme analogous to TCP for applica-

tions that desire fine-grained control over networking. These

2While we talk about scheme implementations being provided by
the operating system, it is entirely possible to run NetAPI in user
space. This is what PANTS does.

Application Logic
Message Framing

Naming
Security Policy

Protocol Encoding
Transport Selection

 Address Binding
Sequencing

Content Security
Name Resolution

Transport Protocol
Data Routing

Application Logic
Message Framing

Naming
Security Policy

Transport Protocol
Data Routing

Protocol Encoding
Transport Selection

Address Binding
Sequencing

Content Security
Name Resolution

DNS, Sockets

NetAPI
Application

Application

Network
Core

Network
Core

Scheme
Implemen-

tation

DNS, Sockets

Figure 1: Block diagram showing how the division of re-
sponsibilities shifts from the current model (left) to a new
functional model (right) with adoption of NetAPI.

schemes could accept raw IP address and port number pairs

as names. Even in this case, NetAPI is beneficial because it

allows new naming and addressing mechanisms to be added

in the future through new formats for the open() URI.

In addition to defining the structure and format of mes-

sages, schemes also define their semantics. The use of se-

mantic information can go far beyond encoding messages

differently or caching them, and into policy decisions. For

example, a web:// scheme may give higher priority to HTML

files than to media files like JPEG. This is useful when brows-

ing the web over constrained network links. Likewise, an

RSS scheme on a mobile phone might decide to fetch feeds

over the cellular interface, but synchronize any attached MP3

podcast files only when in range of a Wi-Fi network. Schemes

are also allowed to modify messages, so a multimedia scheme

on a mobile phone might adjust content quality depending

on the network interfaces available as in BARWAN [28]. Fi-

nally, scheme actions may be controlled by global settings

in the operating system, like the “best battery life” versus

“best performance” example explained in the Introduction.

Because of the great flexibility available to scheme imple-

mentations, we expect scheme specifications to include a list

of permissible implementation choices, similar to today’s In-

ternet RFCs, as well as options that can be passed to NetAPI

operations to provide hints to the implementation.

We also chose to give schemes the responsibility for com-

munication security, by having applications express security

requirements for their content through options in the open()
call. For example, a web:// scheme may support an op-

tion called secure in the open() call, which requires it to

use SSL, or a download:// scheme may support an option

called authenticate, which verifies the MD5 digest of the

received object against a trusted database. In contrast, to-

day’s applications tend to use their own security mechanisms

3

(often via libraries like TLS), hiding the security semantics

from potential in-network implementations (e.g. IPsec). In

our model, the scheme defines ways for applications to ex-

press confidentiality, integrity and authentication policies,

giving the implementation enough guidance to meet those

needs. This allows implementations to eventually upgrade to

newer security protocols. Of course, applications that want

more control over security can implement it themselves.

The final responsibility of schemes is name resolution.

Although the many existing identifier spaces and proposals

for new naming systems [23, 24, 26, 31, 33] offer various ad-

vantages (and disadvantages), NetAPI mandates no specific

naming scheme beyond the basic URI syntax. Using URIs,

many different types of names can be expressed, includ-

ing location-based identifiers, explicit addresses, globally-

scoped flat names, domain-specific identifiers (e.g. private

network addresses) or user-specific identifiers [20]. This

general approach to naming has been adopted by other sys-

tems [35] due to its flexibility and extensibility. We expect

some schemes to support naming systems that others do not

(e.g. looking up a file in a peer-to-peer system), while other

naming systems will be shared among schemes (e.g. DNS).

Lastly, the task of standardizing and implementing schemes

is left to the community. For instance, the World Wide Web

could be implemented by a set of distinct schemes, each

providing a section of a traditional Internet communication

(hypertext, audio, video). However, this may hinder opti-

mizations, such as caching, that can shared among schemes.

Similarly, if multiple types of communication are supported

over a single protocol (e.g. interactive web browsing and

non-interactive file downloads over HTTP), there is a choice

between having a single scheme for this protocol and hint-

ing application requirements to it through options, or having

separate web browsing and file download schemes. These

tradeoffs are inherent, and as such we leave them to domain

experts in standards bodies. NetAPI aims only to ensure that

there is flexibility in defining schemes, and our PANTS pro-

totype provides one example of a functional set of schemes.

2.2 Messages

Messages in NetAPI are application-defined data units (ADUs)

[17] containing binary data and a list of key-value properties.

Properties are message fields interpreted by the scheme im-

plementation, whose semantics are defined by the scheme.

For example, in a video:// scheme, each message may be

a frame, and properties may include a type field saying

whether the frame is a keyframe and a timestamp field.

The use of ADUs allows applications to divide content

into logical units which can be treated individually by the

network stack, similar to files in a filesystem and request-

response pairs in HTTP. Properties let applications express

semantic information about content without being coupled to

a specific protocol encoding. NetAPI does not mandate how

messages are encoded and ordered. For example, properties

may map to flags in RTP or headers in HTTP. Messages may

be concatenated into a TCP stream in a web:// scheme, or

may be unordered UDP packets in a video:// scheme. Both

encodings and transport protocols are free to evolve. One

final advantage of a message-oriented API is that message

reconstruction is performed by the scheme, eliminating a

common source of code complexity, bugs and security vul-

nerabilities in networked applications.

2.3 Server Operations

Thus far, this section has focused on the needs of “client” ap-

plications, i.e. those interested in retrieving data or interact-

ing with a service. For applications acting as a provider, the

task is to respond to these client requests. One simple way to

implement providers is a pair of listen and accept operations

as in Sockets. The application calls listen(), providing a “lis-

ten URI” to listen on, which includes a scheme and possibly

a local identifier such as a port. It then repeatedly calls ac-
cept() to obtain client connections, and call get(), put() and

control() on the handles returned. However, NetAPI can

also support network architectures with radically different

content distribution mechanisms, such as DONA [31], which

uses a publish-subscribe paradigm. Either the implementa-

tion may provide a publish() operation to publish messages,

or it may require servers to open a client connection to a

special URI and post messages. However, because content

providers actively manage their servers and have an incen-

tive to move to improved content distribution mechanisms,

we do not strive to define a general-purpose content publish-

ing API in NetAPI. Instead, we are content with a general-

purpose client API and with identifying API features that

create flexibility (schemes and messages).

3 Usage Examples
We now show several examples of how NetAPI supports

popular Internet applications. We start with an in-depth look

at web content retrieval, to demonstrate that all the details of

the application can be accommodated by NetAPI. We then

present several other applications for breadth.

3.1 Web Content Retrieval

The web:// scheme is used for retrieving web content, with

a naming format similar to HTTP URLs, i.e., web://<url>
plus optional URL-encoded key-value query parameters.

A web page is returned over multiple messages, because

it may be arbitrarily large. The application calls get() repeat-

edly to receive chunks of the page, in the same way that the

read() call on sockets returns chunks of bytes. These chunks

are annotated with metadata such as position in the file, total

file length and an end-of-file flag to aid reconstruction.

In addition to URIs, web servers also use cookies and

HTTP headers like the user agent when they generate con-

tent for a request. These parameters may be passed to the

open() call as options. In the same manner, the applica-

tion may ask for security features like server identity authen-

tication and content protection through options to open().
For access controlled resources, the application may sup-

4

ply a username and password. Exposing the credentials to

the API allows the implementation to select security mech-

anisms most appropriate for a particular operating environ-

ment and to evolve them over time. For example, the im-

plementation could add support for a single sign-on protocol

such as Liberty [45] or use IPSec [44] without application

modifications.

As an example, a web browser executes the following

Python-like pseudocode to download a web page, supplying

a cookie and requesting authentication of the source:

page = ""
handle = open("web://my.site.com/home.html",

authenticate_origin = true,
cookies = {"username": "john"})

while True:
message = get(handle)
page += message.data
if message.is_end_of_file:
break

print(page)

Clients can also submit data to a server through HTML

forms that processes it and returns a response (as in HTTP

POST). The application calls put() with the form data before

calling get() to retrieve the response.

Network bindings. In well-connected environments, the web://
scheme can be implemented over HTTP/1.1. The, open()
call triggers an HTTP get request, and data is returned in

get(). Submitting data to a server happens via HTTP POST.

A successful response is encoded as a NetAPI message, map-

ping the HTTP headers into the key/value properties. A

failure maps into an API error. If encryption is requested,

the transactions are layered over SSL/TLS. HTTP authen-

tication may also be used. Like today’s HTTP clients, the

implementation can use persistent connections and pipelin-

ing to optimize performance, letting applications use asyn-

chronous get() calls to request multiple objects in parallel.

NetAPI also makes it natural to run the web:// scheme

using other network technologies, such as DOT [27], DTN

[34], and BitTorrent [14]. To download a web object us-

ing BitTorrent, an initial resolution step identifies the con-

tent hash and location of the appropriate tracker for the pub-

lication URI, and then initiates the download process from

peers. DOT would similarly transfer the object over the most

appropriate transport method after locating it. In a DTN

context, a well-connected proxy polls pre-selected (or on-

demand subscribed) web sites for updates and proactively

pushes the most recent versions to an offline client-side proxy

that responds to get() calls with a locally cached copy.

Finally, unlike current HTTP libraries, NetAPI makes it

possible to install central policies across all applications that

use the web:// scheme. For example, a user interested in

blocking ads in both their web browser and their news reader

may install a global proxy, without having to configure each

application to use the proxy.

3.2 Multimedia Streaming

Multimedia content is naturally accommodated in NetAPI,

enabling efficient distribution protocols in a wide variety of

environments. For example, a URI in a media:// scheme

might contain a set of track descriptors, each with a reference

to a URI in the video-data:// or audio-data:// scheme for

streams with various encodings and various levels of qual-

ity. These per-track streams in turn contain multiple mes-

sages, one for each frame of the audio/video, with proper-

ties defining the frame content type and a time offset relative

to the start of the video. A media player selects the tracks

it desires, opens them, and calls get() repeatedly to receive

frames. The player may also move forward and backward

in the stream by calling a seek control() operation, and may

obtain network statistics such as lost frames or jitter by call-

ing a get-statistics control() operation.

Network bindings. On the Internet, video content is deliv-

ered in multiple ways, including HTTP, streaming protocols

layered on UDP, and peer-to-peer protocols. NetAPI enables

any of these methods to be used efficiently. Furthermore, the

fact that name resolution happens below the API lets NetAPI

take advantage of novel approaches for determining the near-

est content server without application modifications.

In a DTN context, instead of streaming the video frame-

by-frame, the whole video might be packed up into a sin-

gle DTN bundle, then unpacked at the client and delivered

frame-by-frame in response to get() calls.

Finally, on a mobile device, NetAPI can take into account

the quality of the available network connection (cellular vs

Wi-Fi) and any user policy settings (e.g. best battery life

vs. best performance) to choose an appropriate level of qual-

ity for the stream, again with no application changes.

3.3 Syndicated Content

Syndication protocols such as RSS distribute news, blog posts,

or other periodically updated items. NetAPI is a natural

fit for this publish/subscribe design pattern. In the news://
scheme, each URI identifies a news stream publication that

contains news items (one per message), corresponding to the

items in an RSS feed. Message properties identify feed ori-

gin, timestamps, and references to the complete articles.

As with multimedia content, clients call get() to obtain

news items one at a time as individual messages in the order

that they were published. If a client initializes having previ-

ously obtained and displayed some items, it can also check

for new items by calling a control() operation, passing the

identifier of the last message received.

Network bindings. RSS and ATOM are obvious choices to

implement the news:// scheme in well-connected environ-

ments. While a client has an open publication handle, the

implementation periodically polls the feed over HTTP, pars-

ing the XML items into NetAPI messages. Alternatively,

the implementation could use a true subscription-based pro-

tocol like Corona [32], or bundle multiple items together in

5

Operating Environment Resolution Mechanism(s) Message Transfer Protocol(s)

 Fixed Internet DNS, BitTorrent Tracker, DHT, DONA All current (and future) transport and application protocols

 Delay Tolerant Networks Opportunistic routing, configured proxy DTN bundle protocol

 Mobile Ad-Hoc Networks Flooding, swarming, gossiping Wireless broadcast protocols, gossiping

 High-Performance Computing Hard-coded lookup table Protocols on a lambda

Table 1: Examples of environment-specific resolution and message transfer mechanisms.

Initialization
Resource
Discovery

Content
Transfer

Select Scheme
Implementation

Locate Provider and
Identify Protocol

Transfer Message
Content

Processing of
of Primitives

Handle
Primitives

Figure 2: General tasks required from an implementa-
tion of NetAPI.

a single transfer over an intermittent network. The news://
scheme can also naturally support publish-subscribe, data-

oriented network architectures such as DONA. The server

portion of NetAPI might support a publish() operation for

these schemes as described in Section 2.3.

4 Implementing the API
In this section, we discuss the tasks involved in implement-

ing NetAPI, and in the process underline the applicability

of NetAPI across diverse network environments. Figure 2

shows the four high-level tasks in implementing NetAPI:

initialization, resource discovery, content transfer and han-

dling of primitives. Potential implementations differ widely

depending on the needs of the application and the operating

environment. Table 1 provides some examples of implemen-

tation options.

Initialization. On the open() call, the implementation iden-

tifies the appropriate scheme from the URI, loads the scheme

module and returns a connection handle. One appealing as-

pect of NetAPI is that the scheme implementation is resolved

at runtime, so it is possible to support dynamically loaded

modules. This means that schemes may be implemented in

user space as in FUSE [37], and even that scheme imple-

mentations may be updated while the system is running. In

the latter case, existing connections over the scheme would

continue using their instance of the old scheme module.

Resource Discovery. Once initialized, the implementation

needs to locate the name specified in the URI. Name reso-

lution depends on the infrastructure available in the operat-

ing environment. In common scenarios, the implementation

uses an infrastructure like DNS to resolve the names. Reso-

lution in dynamic environments like mobile ad hoc networks

happens through flooding, swarming or gossip.

Content Transfer. The implementation must choose the right

mechanisms for transferring the data depending on the se-

mantics and needs specified in the scheme. For example, if

a scheme requires reliability, the implementation must use

a reliable transport protocol (e.g., TCP). In mobile devices

with constantly changing network characteristics and mul-

tiple network interfaces, the implementation must pick the

right communication interface. For example, a disruption-

sensitive scheme should use the cellular interface as it likely

has ubiquitous connectivity, while a throughput-oriented scheme

such as file transfer can opportunistically use WiFi access

points. When multiple applications are running, a central

module may need to allocate resources between them.

Handle Primitives. Finally, the implementation must con-

vey application data from and to the network. This requires

transforming application messages into the format used by

the transfer protocol or performing transformations of the

data itself (e.g. compression or encryption). The degree to

which this process is burdensome depends on how well-suited

the scheme is to the particulars of the transfer protocol, in

terms of its message units, formats and requirements. The

implementation must also handle local buffering and state

management, to handle rate mismatches between the net-

work and application consumption. Finally, once the ap-

plication closes the handle, the implementation can either

release the allocated resources, or cache them opportunisti-

cally for future use.

5 PANTS: NetAPI for Mobile Phones
To demonstrate the benefits of NetAPI, we implemented a

system for mobile devices. Networking for mobile is highly

challenging, as devices must regulary switch between net-

work interfaces and access points. This is often done at the

cost of battery life and application usability, much to the cha-

grin of users. From a developer’s point of view, managing

mobile networking is complex, leading to buggy applica-

tions and poor performance. The mobile environment thus

provides an ideal usage scenario for NetAPI. We built a mo-

bile phone implementation of NetAPI called Protocol Aware

Network Technology Selector (PANTS). We designed PANTS

for the jailbroken iPhone platform, which gave us a BSD en-

vironment and the ability to use many existing network li-

braries. We used PANTS to build disconnection tolerance,

content-shaping, and power-saving features in our scheme

implementations without modifying applications.

The goal of PANTS is to demonstrate the flexibility, adapt-

ability, and usability of NetAPI. For flexibility, PANTS takes

6

Figure 3: Variation in Wi-Fi Throughput for DS as a
function of time. Data collected at similar locations are
marked in clusters.

advantage of network characteristics and history to provide

applications with better service. For adaptability, PANTS

provides an area to implement innovative new schemes. This

allows NetAPI applications to utilize these innovations with-

out modification. Lastly, PANTS demonstrates the simplic-

ity of writing these NetAPI applications.

In this section, we first give a brief overview of the dif-

ficulties and opportunities available in mobile computing.

This is used as a justification for this particular use case. We

then go into depth about the PANTS implementation itself.

Implementation of the schemes providing benefits to mobile

devices follows in section 6.1.

5.1 Motivation

We present the variability as well as the repeatability of cel-

lular and Wi-Fi characteristics, motivating prediction mod-

ules, network selection, content shaping, security, and dis-

connected operation. We used a data set (DS), collected by

a user in his normal mobility patterns, for a period of three

days in the San Francisco Bay Area.

DS was collected by a working professional who spent the

significant fraction of his time either at his residence, work

or commute. DS used active profiling, i.e., downloading a

file across the internet, to measure the throughput on both

the Wi-Fi as well as the cellular interfaces. We use only the

“preferred” networks for Wi-Fi association. DS logged the

location as well as throughput every ten minutes.

Wi-Fi Throughput Our data set indicates high spatial cor-

relation and low temporal variance.

Wi-Fi throughput exhibits low spatial variability, i.e., at a

given location, the Wi-Fi throughput is relatively invariant.

Figure 3 plots the best available throughput as a function of

time for DS. Data collected at roughly similar locations are

clustered. The top clusters correspond to throughput at home

and the bottom clusters correspond to throughput at work.

Throughput drops to zero during commute as there is no Wi-

Fi connectivity available using preferred access points. Note

the low variability in values among points in the same cluster

and location.

Figure 4: Variation in throughput for cellular interface
for DS. Data collected at similar locations and times are
marked in clusters.

Cellular Throughput Cellular throughput exhibits both spa-

tial as well as temporal variance. Figure 4 plots the cellular

throughput with time. The throughput observed while in his

residence (top and middle clusters) is distinctly higher than

while at work (bottom clusters) and this is likely because

the load on the cellular network is much higher in industrial

areas with multiple simultaneous users. Another interest-

ing observation is the high throughput experienced during

off-hours (top clusters). These results indicate that the cellu-

lar throughput is a function of space as well as time of day.

Also, note that the cellular throughput never drops to zero

indicating ubiquitous connectivity with no disruption.

Conclusion These results demonstrate that there are many

advantages available for mobility. To take advantage of these,

we need a centralized network selection daemon that knows

both the connection requirements of the application and the

likely properties of the available connections. With low-

throughput applications, they may prefer to stay on cellular

during areas of good connectivity. High-bandwidth applica-

tions may wish to avoid the cellular connections all together,

lengthening the device’s battery life, or change protocols

to use lower-bandwidth links. Security can be enforced by

only allowing trusted connections we expect along our path.

Lastly, delay tolerant applications can wait for network char-

acteristics that allow for a pleasant user experience, rather

than attempting connections over shoddy links. NetAPI al-

lows for all of these.

5.2 System Description

The Protocol Aware Network Technology Selector (PANTS)

is implemented as a Twisted Python [54] daemon. It runs on

numerous mobile computing platforms. The primary sup-

ported platform is a jail-broken Apple iPhone. The PANTS

daemon also runs on Nokia’s N810 Maemo mobile Linux

platform [46], as well as Linux and Mac OS X laptops. Fig-

ure 5 is details the architecture of PANTS.

We also have an implementation of PANTS in the i-mate

HTC PDA running Windows Mobile 5.0 using the C#.NET

framework. It implements the most important PANTS fea-

tures.

7

Application

Scheme Implementation

PANTS CoreUser
Preferences

History
Module

WiFi GPRS ...

Operations, Messages

Scheme Requirements

Network Interfaces

Figure 5: The PANTS architecture

Application Interface. Applications communicate with PANTS

over any one of three different RPC protocols: text, XML,

and python pickling. Each of these is abstracted from the

schemes, so that any RPC format may be used to communi-

cate with PANTS. Most languages provide basic XML RPC

libraries, allowing them to communicate with PANTS. Ex-

tending PANTS to use new RPC or IPC mechanisms is sim-

ple.

User Preferences. The user preferences module informs PANTS

about what network properties the user would prefer. This

module is configurable, allowing for a wide range of user

input. We decided to implement a low-granularity solution,

allowing the user to optimize for performance or battery life.

This data is periodically read by PANTS and used to assist

in network selection.

Network Manager. PANTS requires a network interface ob-

ject for each physical network interface. This object inter-

faces with the specific interface, informing PANTS of the

properties of that interface. For instance, the iPhoneWifi

object scans the available Wi-Fi access points, as well as

computes the expected bandwidth of each access point. This

information is then returned to PANTS to assist in selecting

the appropriate network interface. The interface may also

cache the last scan or return the expected available access

points determined by querying a location database with GPS

data (see Section 5.1).

PANTS itself queries each configured network interface

object for available networks and their properties. To select

a network interface, it determines the most appropriate net-

work (see Section 5.2).

History Module. The history module of PANTS is in the

process of being developed. We have only a simple imple-

mentation that provides a place to store and compile statis-

tics. The module is queried before every network selection

and informed of the choice following it. This would allow

us to skip networks we know require MAC or browser au-

thentication, or are highly intermittent.

Schemes. Schemes implement the NetAPI primitives: open(),
close(), put(), get() and control(). The scheme is the pri-

mary area for semantics specifications, as the particulars of

the communication with the client API is defined by the

scheme itself. On a command requiring a connection, the

scheme asks PANTS for a network connection. PANTS re-

turns this connection, as well as the properties of this con-

nection. With this information, the PANTS scheme is able

to intelligently schedule data transfers to optimally deliver

content to the application.

PANTS Core. The PANTS core has a number of jobs. It

creates schemes to handle user connections. It merges user

and applications requirements, network history, and network

properties to select a network connection. Lastly, it periodi-

cally checks if any of these have changed, and if so, select a

new optimal network interface.

For the first task, we create a configurable table of schemes.

When PANTS receives an open command, it parses the URI

to determine the correct scheme handler and instantiates it.

This handler is given the client information, and all com-

munication from the client application now goes through the

handler.

For the second, we merge all of the application require-

ments into one set of requirements. This is done by taking

the maximum of each particular application demand. This

treats all schemes as equals, which need not be the case.

However, this fulfills the requirements of all of the individual

schemes.

Next, we apply heuristics to decide if the user or the ap-

plication requirements take precedence. The first heuristic

takes into account that the user likely wants their applica-

tions to continue. Thus, if any application is not disruption

tolerant, we either choose the more mobile connection or

keep the existing connection. Secondly, the user’s demand

for power or performance is viewed as more important. We

then decide on the appropriate interface based solely on that

metric. Without user input, we just order the application de-

mands by strength, and then select based on the most im-

portant feature. With this, we are able to select the optimal

interface.

Lastly, the periodic network check is scheduled for every

ten seconds. It simply reruns the network selection algo-

rithm, and compares the result to the existing interface. If

they are the same, we do nothing. If they differ, the current

open schemes are informed that their connection is about to

be revoked, allowing for them to make changes before the

adoption of the new interface.

6 Evaluation
We implement two schemes, web and voip, and show how

applications can easily and automatically take advantage of

the features in the schemes. We also measure the implemen-

tation complexity and performance overhead of PANTS.

8

6.1 Support for Innovation

To evaluate our PANTS prototype, we implemented two sam-

ple schemes, web and voip. Our sample applications using

these schemes could automatically take advantage of the fea-

tures in the schemes. To achieve backward compatability, we

also implemented a socket scheme and an http proxy over the

web scheme.

6.1.1 Web Scheme

We implemented the scheme itself and two applications us-

ing it: a File Downloader and a News Reader. We begin by

briefly describing the web scheme and then the sample appli-

cations. Later we explain how we extended the web scheme

to add various networking functionalities like disconnection-

tolerance and power-efficiency, automatically resulting in ap-

plications taking advantage of them.The web scheme, in its

basic form, is mostly a wrapper around Twisted Python’s

HTTP libraries, with some extra logic that we have added be-

low to extend the basic scheme. The scheme handler makes

an HTTP request, parses select fields of the header to com-

pute the file size, and passes back the data read to the appli-

cation until the download is complete.

File Downloader: Our first application was a File Down-

loader (Figure 6(a)) that fetches a large file over HTTP. This

is representative of applications such as music stores, video

stores, and software updaters. This is an example of an ap-

plication that would clearly benefit from features like dis-

connection tolerance and smart resumption of downloads.

News Reader: The News Reader (Figure 6(b)) represents

a more interactve application. It downloads an RSS feed

every 60 seconds and displays a list of stories. The user may

click a story to view its summary in a HTML content control.

In addition to the disconnection tolerance, we used PANTS

to implement a power-saving policy: download media files

(like images or audio) only when Wi-Fi is available.

Both applications use less than 10 lines of code to interact

with PANTS. The following listing shows the relevant code

from the Downloader application (in Python):

fileData = ""
client = PantsClient(self.url)
while True:
result = client.get()
fileData += result["data"]
curPos = float(result["currentPosition"])
fileLength = float(result["fileLength"])
self.progress = curPos / fileLength
if result["done"]:
break

The code simply opens a client and calls get on it re-

peatedly to receive portions of the file. The result object

returned by get contains a field called "done" on the last

portion. It also contains fields indicating the current posi-

tion in the file and total file length, which are used to display

progress. The code for the News Reader is very similar.

(a) Downloader (b) News Reader

Figure 6: PANTS sample applications.

Adding Disconnection Tolerance The initial version of the

web scheme attempted to open a connection right away and

return the data to the client, raising an error otherwise. We

made the scheme resilient to disconnection through two mech-

anisms:

1. If a connection to the server cannot be made, or is

broken, the scheme will retry connecting later. Any

get calls made by the application during this time will

block. We consider putting a timeout on the get calls

or an optional parameter to prevent blocking.

2. On reconnection to the server after a disconnection, the

scheme handler uses the HTTP Range parameter, sup-

ported by most web server implementations, to request

only the range of bytes starting from the last received

position to the end of the file (similar to web browsers

like Mozilla Firefox).

With these changes, our sample applications automati-

cally became tolerant to disconnections due to exiting a cov-

erage area or moving between two hotspots. No changes

to the applications were required, because the web semantic

defines all get calls as blocking.

We tested this functionality by starting a download in the

Downloader application over EDGE and placing the phone

inside a Faraday cage that stopped the cellular wavelengths

to simulate a disconnection. We waited until the phone indi-

cated “No Service” and then took the phone out of the con-

tainer to check that the download resumes where it left off.

Constraining Downloader to Wi-Fi To further illustrate

the flexibility of PANTS, we extended the web scheme with a

feature that is missing in other downloader implementations

we are aware of: the ability to constrain downloads to only

occur over Wi-Fi to optimize for battery life. This required

9

a very simple code change to the scheme handler – when the

handler requests a network interface to open a connection

on, it only uses a connection of type Wi-Fi if the power sav-

ing policy is enabled. Because of the download-resumption

functionality from the previous section, the semantics seen

by the application are unchanged – it receives the next chunk

of data every time it calls get, and the get call is blocking.

This let the Downloader application opportunistically down-

load a file over Wi-Fi only, with no code modifications.

Adding Content Cognizance to News Reader We also demon-

strate PANTS’s ability to transform the content received by

the application. When a power-saving policy is selected by

the user, we alter the page content received by the applica-

tion to remove the HTML image tags, disabling images and

thus conserving download bandwidth. This is a basic exam-

ple meant simply to convey the point that PANTS can control

content quality to enforce policies.

We have also extended the News Reader to be one-level

recursive in not only fetching the RSS feed but also the web-

pages and enclosures in the RSS items and storing it in the

local cache. Such a feature is particularly useful when the

mobile device has intermittent network connectivity as it

insulates the user’s experience from real-time connectivity

characteristics. To enforce the“best battery life” policy, our

news reader downloads the html content over the cellular

interface but fetches the media (like images, podcasts) files

only when it has Wi-Fi coverage.

Nonetheless, modifying HTML pages in-flight is not unheard-

of: for example, ad-blocking proxies such as Privoxy [19]

filter ads out of web pages to make the browsing experience

faster and more pleasant. In future work, we plan to extend

this content-modification ability to a multimedia application,

and to explore other ways to apply it to web browsing, such

as downloading lower-quality versions of pages by switch-

ing the browser agent to a mobile browser, or prioritizing

content to download text before images. There is also an

opportunity for caching content inside PANTS.

HTTP Proxy The PANTS software ships with a limited

HTTP proxy that receives HTTP communications and for-

wards them through the web scheme. This is as simple as

it seems, with the only difficulty being the lack of commu-

nications between the application and PANTS. Because of

this, we assume all HTTP proxy communications to have the

same needs, those being high bandwidth, disruption tolerant

links. However, all HTTP traffic that uses the proxy gains the

benefits of the web scheme, with disruption tolerance, con-

tent caching, and bandwidth-informed content contraints.

6.1.2 VoIP Scheme

To test the applicability of PANTS and NetAPI to multime-

dia tasks, we implemented a voice-over-IP (VoIP) applica-

tion. The application itself is very simple, sending a URL

that defines the server to connect to, with username and pass-

word.

The application makes use of the voip scheme. This scheme

utilizes Twisted Python’s own sip protocol libraries to reg-

ister and communicate with an IP private branch exchange

(PBX) system. When the PBX receives a call destined for

our application, PANTS and the PBX negotiate an RTP con-

nection using the Session Description Protocol (SDP). With

this scheme, we aim to demonstrate the protocol selection

and security benefits of PANTS.

Adding Encoding Selection When receving a new call, both

the PBX and PANTS signal the encodings available for use

in this communication. We decided to try to limit the band-

width used when on a GPRS connection, while using a high

bit-rate encoding on Wi-Fi networks.

This is simple in PANTS, we add a check in the call re-

ception handling code. Because SDP is used to negotiate the

encoding, we filter the high-bandwith encodings from that

communication when on a low-bandwidth link. This forces

the PBX to use only low-bandwidth encodings. Likewise,

when on Wi-Fi, we do no such filtering.

With this, the application is able to dynamically reduce

its network load based on network properties. In this spe-

cific case, the application will still need to know about the

wire protocols, limiting the effectiveness. However, the en-

codings themselves can be moved into PANTS, providing

the application with one concrete encoding regardless of the

one chosen by the SDP negotiation. Then the application

can utilize new, lower-bandwidth links or encodings with no

modification.

Adding Security During the SIP registration, the PBX server

offers available authentication techniques. Again, PANTS

can make intelligent decisions for this choice, without the

application’s involvment. For secure VoIP communications,

PANTS may disallow communications over unknown or un-

secured wireless communications. It may select higher se-

curity authentication, such as encrypting the entire commu-

nication, when on unsecured or untrusted mediums. These

policy decisions can be enforced by companies or govern-

ments, forcing security onto their employees.

6.1.3 Socket Scheme

We implemented the socket scheme, which allows for a tra-

ditional socket interface to PANTS, and facilitates any legacy

application using sockets to be easily ported to use the PANTS

architecture. This scheme performs no optimizations as we

do not expect applications to specify their needs or seman-

tics. This scheme is essentially for porting legacy applica-

tions enabling easy adoption of PANTS.

6.2 Implementation Complexity

As shown at the start of Section 6.1, the amount of code

required in our PANTS client applications that used the web
scheme was minimal – about 10 lines in each. The basic web
scheme implementation took about 100 lines of code, mostly

by reusing Twisted Python’s HTTP library. The final web
scheme, with the features of disconnection tolerance, down-

loads only over Wi-Fi networks and content cognizance, was

10

Feature Lines
PANTS code in sample apps 10

Initial web scheme 100

Disconnection tolerance / resuming downloads 100

Wi-Fi-only downloads 5

Remove images in news reader if GPRS 10

Final web scheme 170

Initial voip scheme 310

Encoding selection 15

Final voip scheme 325

socket scheme 160

Socket client 110

iPhone interface drivers 160

Table 2: Implementation complexity of various PANTS
features, in lines of Python code.

170 lines. Table 2 summarizes these results.

Although our implementations of the web scheme, sam-

ple applications, interface drivers, and PANTS in general

are prototypes and may miss certain corner cases, the results

show that PANTS is a promising architecture for supporting

multiple schemes and new policies for these schemes.

6.3 Performance

Our primary goal with PANTS was to explore the flexibility

of NetAPI, not to achieve high performance. As such, we

used a rapid prototyping language (Python), whose perfor-

mance is worse on a mobile phone. We were also unable to

use optimized Python interpreters such as Psyco [3] which

do not have an iPhone port. Nonetheless, we evaluated the

performance of PANTS to show that overheads are nonexis-

tent in some situations and tolerable for most applications.

We evaluated the performance of PANTS by measuring

the time it takes to download a file through PANTS com-

pared to downloading it through wget (and sending the out-

put to /dev/null). Table 3 shows the results for four differ-

ent scenarios – a laptop connecting over Wi-Fi downloading

a small file, the same laptop downloading a large file, and an

iPhone connecting over Wi-Fi and over EDGE. We see no

statistically significant difference between PANTS and wget
in all scenarios except for the Wi-Fi running on the iPhone.

The slowdown here is due to PANTS becoming CPU-bound

and not being able to process the data as fast as it arrives.

However, the results on the laptop and over EDGE show that

there is no fundamental performance limitation in PANTS.

We expect a native implementation (unlike the unoptimized

interpreted Python environment) to be able to download data

over Wi-Fi as fast as wget.

We are also building a Windows Mobile implementation

of PANTS using C#. It currently supports fewer features

than the Python version but can perform file transfers. Ta-

ble 4 shows the results of downloading a small and large

file through the Windows Mobile version of PANTS on an

iMate cell phone. We see significantly smaller overheads (at

Scenario File PANTS Mbps Direct Mbps
Laptop Wi-Fi 440 KB 2.02 (.24) 1.8 (.12)

Laptop Wi-Fi 6.7 MB 4.13 (.56) 3.83 (1.48)

iPhone Wi-Fi 440 KB 1.01 (.13) 1.49 (.13)

iPhone EDGE 440 KB 0.04 (.01) 0.03 (.01)

Table 3: PANTS download throughput performance
compared to wget, for different file sizes over different
network interfaces. Standard deviations shown in paren-
theses.

Scenario File PANTS Mbps Direct Mbps
Cellular 300 KB 0.04 0.04

Cellular 4.2 MB 0.05 0.05

Wi-Fi 300 KB 2.66 3

Wi-Fi 4.2 MB 3.32 3.32

Table 4: PANTS download throughput performance
compared to direct downloads, for different file sizes over
different network interfaces for our Windows Mobile im-
plementation using C#.NET.

most 10%) because of C#’s highly optimized runtime envi-

ronment.

7 Discussion
In this section, we discuss the implications of NetAPI adop-

tion in terms of the design and deployment of applications.

7.1 Capturing Application Intent

The core benefit of NetAPI – the decoupling of applications

from network protocols – presents its main challenge: how

to best capture application intent, while still providing suffi-

cient flexibility for scheme implementations to use network

protocols efficiently. The NetAPI interface exposes three

primary mechanisms for applications to communicate their

intent: i) the content structure (connections, messages, and

their properties), ii) primitives (actions), and iii) the scheme

(and its specification).

Scheme-related design decisions involve clear tradeoffs,

to which we do not claim to have a universal recipe. Indeed,

for any major application we believe these decisions will be

made in forums such as IETF working groups, probably en-

gendering significant debate. We would view this as a pos-

itive outcome, as it testifies as to the generality of NetAPI:

while the contracts between applications and the network are

subject to non-trivial specification work, the foundations of

the API should sustain future applications and future net-

working technologies.

7.2 Implications of Adoption

NetAPI decouples applications from protocol implementa-

tions, and hence, presents a new deployment model for ap-

plications that could have ramifications in its adoption. Pro-

tocol designers may be required to write two specifications:

a scheme specification to define the semantics of the NetAPI

11

primitives and the application model, and a protocol spec-

ification to define a particular network protocol that imple-

ments the scheme. Although clearly there is an increased

specification burden, specifying the abstract communication

needs separately from the actual network protocol is exactly

what is required to enable the innovation and evolution of

the network. In most cases, we expect developers to utilize

existing schemes. The number of existing schemes in the op-

erating system would increase with NetAPI adoption. Once

this has reached critical mass, creating applications will be-

come easier, as many desired features (such as delay toler-

ance) will be implemented by the schemes.

Today the task of deploying a radically new network tech-

nology that affects multiple layers is next to impossible. Al-

though certainly not the only challenge, the need to support

the already-deployed and in-use applications is clearly one

of the key barriers to adoption of disruptive network tech-

nologies. With NetAPI this task would be much easier, as

applications would not be responsible for supporting the new

network technology, rather the network manager would be.

Hence, as a part of experimenting with or deployment of a

new network technology, critical popular scheme implemen-

tations would be updated to take advantage of it.

Interestingly, NetAPI itself is incrementally deployable,

because it can wrap existing protocols. Our PANTS proto-

type interacts with legacy servers and provides a proxy that

can be used by existing HTTP applications (Section 6.1.1)

as well as a socket:// scheme that lets NetAPI applications

use TCP and UDP (Section 6.1.3). Our API could there-

fore be used as the networking API of a mobile operating

system. In the mobile phone space in particular, we believe

that NetAPI-like concepts have a potential to be adopted be-

cause application developers are used to working against re-

stricted APIs and platform developers need control over ap-

plication behavior to ensure smooth functioning of the de-

vice (e.g. ability to take calls at any time). One commercial

API with high-level networking abstractions is the WebOS

platform developed by Palm [49], which will launch in 2009.

WebOS requires applications to be written in JavaScript and

HTML like web pages, but gives them disconnection toler-

ance through the HTML 5 client-side storage API [56].

8 Related Work
Research proposals. A number of systems have been pro-

posed in the research literature that both inspired certain as-

pects of the design of the API and also serve as examples of

the types of systems that would be enabled by widespread

adoption of our API.

DONA [31] is a clean-slate networking design built around

a name-based anycast abstraction to access data objects with-

out knowledge of their location in the network. The DOT

proposal [27] provides a framework by which largely un-

modified applications can leverage a dynamic mapping to a

particular transport method when transferring large data ob-

jects. Their work supports our belief that many applications

are agnostic of the particulars of transfer methods, and that

a dynamic binding of such methods is beneficial for optimal

behavior in a range of environments.

To operate effectively in environments with long round

trip times, DTN systems use larger “bundles” of data that

they can transmit as entire units, thus requiring that the sys-

tem have a better notion of the application’s intent when in-

teracting with the network. Haggle [25] shares several char-

acteristics with DTN. It argues that mobile ad-hoc networks

require a new way of thinking about data and networking,

relying on the communications stack to opportunistically se-

lect one of a variety of transport methods to convey an object

from point to point. KioskNet [12] provides multiple trans-

port methods in the setting of rural Internet kiosks.

A handful of other proposals have demonstrated the ben-

efits of expressing application communication semantics to

the network stack, including Scalable Data Naming [50] and

Structured Streams [36]. Declarative networking [21] shares

our goals of expressing the intent instead of a precise mech-

anism for the network, but focuses more on the implemen-

tation of network protocols rather than the expression of a

wide range of application-relevant semantics.

Middleware systems. Many middleware systems have been

developed that offer applications a higher-level API than Sock-

ets, and several adopt the publish/subscribe paradigm (e.g.,
Tibco [53], IBM WebSphere MQ [41], DCOM, CORBA,

and J2EE [52]).

Our proposal does not aim to compete with these or any

other middleware systems; we advocate a new programming

interface, not a proposal or mandate for a specific imple-

mentation of that interface. NetAPI is a closer match to the

language-specific messaging interfaces of modern program-

ming languages (e.g., Java Message Service [51]).

Tuple space systems such as Linda [38], JavaSpaces [22]

and T Spaces [57] all provide a generic and powerful inter-

face, to the extent that they have been proposed as a generic

communication interface [38]. However, they require an

agreed upon address or naming format and have scalability

limitations due to their semantics.

One final commercial platform of particular interest is the

Palm WebOS [49] for mobile phones. In WebOS, the high-

level API offered to developers of mobile applications is

HTML5, CSS, and Javascript; developers write applications

as if they are web pages. However, applications also gain

disconnection tolerance through the HTML 5 client-side stor-

age API [56] (which is similar to Google Gears [2]). Al-

though applications must manually control which data they

place in the client-side database provided by the storage API

and when they synchronize the database with the Internet,

this example illustrates the need for disconnection tolerance

in mobile applications and the willingness of commercial de-

velopers to forsake the Sockets API for a higher-level API.

Network selection systems. Network selection was an early

research problem, tackled in large part by the Berkeley BAR-

12

WAN project [28]. In this project, techniques directly re-

lated to our work, such as handoff between wireless net-

works [16], were developed. With increasing proliferation of

Wi-Fi networks, detecting the available access points and se-

lection of the best among them has become crucial. Wardriv-

ing databases [5,6,9,15] provide a simple mapping between

Wi-Fi beacons and GPS coordinates. Virgil [8] and Context-

for-Wireless [11] scan and learn various characteristics of

the access points like throughput and latency for future pre-

diction, as well as scheduling network activities, e.g., Bread-

crumbs [7] and MobiSteer [55].While we expect that our

network manager and schemes will highly utilize many of

the above-mentioned techniques, our goal is to design the

system along with the API to make this possible.

Most mobile operating systems have daemons that control

the network, allowing for transitions between Wi-Fi and cel-

lular connections, e.g., Nokia’s ICD [47] and Gnome’s Net-

work Manager [40]. Some applications, like web browsers,

use these to implement disruption-tolerance by switching to

local operations until informed of a new network connec-

tion. Our system is more general, allowing applications to

influence network selection based on their requirements.

Mobility Aware Applications. Dealing with changing net-

work characteristics in mobile settings, and informing ap-

plications to adapt accordingly has been proposed in prior

work. The framework in [10] detects the available network

interfaces and its changing characteristics and presents them

to applications. Odyssey [13], Mobiware Toolkit [48] and

the frameworks in [42] and [18] focus on the complemen-

tary aspect of defining mechanisms for applications adapta-

tion. Odyssey [13] models the adjustment of applications to

general changes in resources around the high-level concepts

of agility and fidelity. In addition to involving network ele-

ments (e.g., routers) in detecting mobility, Mobiware [48]

defines a utility function relating the application’s quality

and bandwidth changes. Likewise, the framework in [42]

provides applications with a feedback loop that helps map

from network-centric quality to application-centric quality.

While application adaptability is a key concept proposed in

these papers, they concentrate primarily on network band-

width as a resource, and adaptation consequently is in terms

of consuming lower-quality objects (e.g., lower quality video

stream, or compressed images). In contrast, NetAPI is generic

and concrete with larger goals: (1) it allows varied kinds of

adaptation like postponement (e.g., DTN) and enables appli-

cations to present their own requirements and semantics sys-

tematically through schemes, and (2) it manages resources

for a larger set of metrics, including bandwidth, power-efficiency,

latency, jitter and disruption.

9 Conclusions
NetAPI is an interface that decouples applications from net-

work mechanisms to foster innovation below the API. Un-

like the Sockets API, NetAPI hides implementation mecha-
nisms from the application and captures application intent to

let the network stack understand application requirements.

Apart from facilitating deployment of new network tech-

nologies, NetAPI is attractive because it lets the network

stack adapt to environmental conditions and it enables cen-
tralized policies over how the network is used.

We demonstrated the utility of NetAPI through a proto-

type for mobile phones called PANTS. PANTS selects the

network interface appropriate for each application based on

the communication scheme it uses, and can provide features

such as disconnection tolerance, content shaping and power-

saving policies without application modifications. It also

simplifies user management of mobile networking by pro-

viding a global “best performance” versus “best battery life”

setting. Furthermore, although NetAPI is an architectural

idea, it can be deployed incrementally. Our prototype inter-

acts with legacy servers over existing protocols.

Although NetAPI is a first step towards a more flexible

communication API, we believe that it captures key features

that enable an API to support innovation: communication

schemes, extensible names (URIs), and messages.

10 References

[1] Gmail filesystem.
http://richard.jones.name/google-hacks/
gmail-filesystem/gmail-filesystem.html.

[2] Google gears api.
http://code.google.com/apis/gears/.

[3] Psyco.
http://psyco.sourceforge.net/.

[4] Ssh filesystem.
http://fuse.sourceforge.net/sshfs.html.

[5] Wi-Fi Hotspot Locator. In http://jiwire.com.
[6] WIGLE: Wireless Geographic Logging Engine. In

http://wigle.net.
[7] A. J. Nicholson and B. D. Noble. BreadCrumbs: Forecasting

mobile connectivity. In Mobicom, 2008.
[8] A. J. Nicholson et al. Improved access point selection. In

ACM/USENIX MobiSys, June 2006.
[9] A. LaMarca et al. Place lab: Device positioning using radio

beacons in the wild. In Proc. Pervasive 2005, 2005.
[10] A. Peddemors et al. A Mechanism for Host Mobility

Management supporting Application Awareness. In MobiSys,
2004.

[11] A. Rahmati and L. Zhong. Context-for-Wireless:
Context-Sensitive Energy-Efficient Wireless Data Transfer.
In Proceedings of ACM/USENIX MobiSys, June 2007.

[12] A. Seth, D. Kroeker, M. Zaharia, S. Guo, S. Keshav.
Low-cost Communication for Rural Internet Kiosks Using
Mechanical Backhaul. In Proc. MOBICOM 2006, September
2006.

[13] B. D. Noble. System Support for Mobile Adaptive
Applications. In IEEE Personal Communications, 2000.

[14] BitTorrent, January 2008.
http://www.bittorrent.com.

[15] Bychkovsky, V. et al. A measurement study of vehicular
internet access using in situ wi-fi networks. In Proc. 12th
Ann. Int. Conf. Mobile Computing and Networking
(MobiCom), 2006.

[16] Ramón Cáceres and Venkata N. Padmanabhan. Fast and
scalable handoffs for wireless internetworks. In MobiCom
’96: Proceedings of the 2nd annual international conference

13

on Mobile computing and networking, pages 56–66, New
York, NY, USA, 1996. ACM.

[17] D. Clark and D. Tennenhouse. Architectural Consideration
for a New Generation of Protocols. In Proc. of ACM
SIGCOMM ’90, pages 200–208, Philadelphia, USA, 1990.

[18] D. Andersen et al. System Support for Bandwidth
Management and Content Adaptation in Internet
Applications. In Fourth Symposium on Operating Systems
Design and Implementation (OSDI), 2000.

[19] Privoxy Developers. Privoxy.
http://www.privoxy.org/.

[20] B. Ford et al. Persistent Personal Names for Globally
Connected Mobile Devices. In Proc. of OSDI 2006, Seattle,
WA, USA, November 2006.

[21] B. T. Loo et al. Declarative routing: extensible routing with
declarative queries. In Proc. of ACM SIGCOMM ’05, pages
289–300, Philadelphia, PA, USA, 2005.

[22] E. Freeman et al. JavaSpaces Principles, Patterns, and
Practice. Addison-Wesley Professional, July 1999.

[23] H. Balakrishnan et al. A Layered Naming Architecture for
the Internet. In Proc. of ACM SIGCOMM ’04, pages
343–352, Portland, OR, USA, August 2004.

[24] I. Stoica et al. Internet indirection infrastructure. In Proc. of
ACM SIGCOMM ’02, August 2002.

[25] J. Su et al. Haggle: Clean-slate Networking for Mobile
Devices. Technical Report UCAM-CL-TR-680, University
of Cambridge, Computer Laboratory, January 2007.

[26] M. Walfish et al. Untangling the Web from DNS. In Proc. of
NSDI ’04, pages 225–238, San Francisco, CA, USA, March
2004.

[27] N. Tolia et al. An Architecture for Internet Data Transfer. In
Proc. of NSDI ’06, pages 253–266, San Jose, CA, USA, May
2006.

[28] R. H. Katz et al. The bay area research wireless access
network (barwan. In In Proceedings Spring COMPCON
Conference, pages 15–20, 1996.

[29] S. Leffler et al. An Advanced 4.4BSD Interprocess
Communication Tutorial.

[30] T. Berners-Lee et al. RFC 3986: Uniform Resource Identifier
(URI): Generic syntax. RFC 3986, IETF, January 2005.

[31] T. Koponen et al. A Data-Oriented (and Beyond) Network
Architecture. In Proc. of ACM SIGCOMM ’07, Kyoto, Japan,
August 2007.

[32] V. Ramasubramanian et al. Corona: A High Performance
Publish-Subscribe System for the World Wide Web. In Proc.
of NSDI ’06, San Jose, CA, USA, May 2006.

[33] W. Adjie-Winoto et al. The Design and Implementation of an
Intentional Naming System. In Proc. of SOSP ’99,
Charleston, SC, USA, December 1999.

[34] K. Fall. A Delay-Tolerant Network Architecture for
Challenged Internets. In Proc. of ACM SIGCOMM ’03,
Karlsruhe, Germany, August 2003.

[35] K. Fall and S. Farrell. Dtn: An architectural retrospective.
IEEE Journal on Selected Areas in Communications, 26(6),
June 2008.

[36] B. Ford. Structured Streams: a New Transport Abstraction.
In Proc. of ACM SIGCOMM ’07, Kyoto, Japan, August 2007.

[37] Filesystem in Userspace (FUSE), January 2008.
http://fuse.sourceforge.net.

[38] D. Gelernter and N. Carriero. Coordination languages and
their significance. Communications of ACM, 35(2):97–107,
1992.

[39] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung.
The google file system. In SOSP ’03: Proceedings of the
nineteenth ACM symposium on Operating systems
principles, pages 29–43, New York, NY, USA, 2003. ACM.

[40] Gnome. Network Manager.
http://projects.gnome.org/NetworkManager/.

[41] IBM. WebSphere MQ, January 2008.
http://www.ibm.com/software/integration/wmq/.

[42] J. Bolliger and T. Gross. A Framework-based Approach to
the Development of Network-Aware Applications. In IEEE
Transactions on Software Engineering, 1998.

[43] Dina Katabi, Mark Handley, and Charlie Rohrs. Congestion
control for high bandwidth-delay product networks.
SIGCOMM Comput. Commun. Rev., 32(4):89–102, 2002.

[44] S. Kent and R. Atkinson. Security Architecture for the
Internet Protocol. RFC 2401, IETF, November 1998.

[45] Liberty Alliance Project, January 2008.
http://www.projectliberty.org.

[46] Maemo Community. Maemo mobile linux.
http://maemo.org.

[47] Nokia. Internet connection daemon. Unpublished.
[48] O. Angin et al. The Mobiware Toolkit: Programmable

Support for Adaptive Mobile Networking. In IEEE Personal
Communications, 1998.

[49] Palm. webos.
http://developer.palm.com/.

[50] S. Raman and S. McCanne. Scalable Data Naming for
Application Level Framing in Reliable Multicast. In Proc. of
the Sixth ACM International Conference on Multimedia,
pages 391–400, Bristol, England, September 1998.

[51] Sun Microsystems. Java Message Service (JMS), January
2008.
http://java.sun.com/products/jms/.

[52] Sun Microsystems. Java Platform Enterprise Edition (EE),
January 2008.
http://java.sun.com/javaee/.

[53] Tibco. Tibco Enterprise Messaging Service, January 2008.
http://www.tibco.com/software/messaging/.

[54] Twisted Matrix Labs. Twisted event-driven network engine.
http://twistedmatrix.com/trac/.

[55] V. Navda et al. MobiSteer: using steerable beam directional
antenna for vehicular network access. In ACM/USENIX
MobiSys, June 2007.

[56] WHATWG. Html 5 draft recommendation - structured
client-side storage.
http:
//www.whatwg.org/specs/web-apps/current-work/
multipage/structured-client-side-storage.html.

[57] P. Wyckoff. T Spaces. IBM Systems Journal, 37(3):454–474,
1998.

14

