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Abstract
We consider the problem of fair resource allocation

in a system containing different resource types, where

each user may have different demands for each resource.

To address this problem, we propose Dominant Resource
Fairness (DRF), a generalization of max-min fairness

to multiple resource types. We show that DRF, unlike

other possible policies, satisfies several highly desirable

properties. First, DRF incentivizes users to share re-

sources, by ensuring that no user is better off if resources

are equally partitioned among them. Second, DRF is

strategy-proof, as a user cannot increase her allocation

by lying about her requirements. Third, DRF is envy-

free, as no user would want to trade her allocation with

that of another user. Finally, DRF allocations are Pareto

efficient, as it is not possible to improve the allocation of

a user without decreasing the allocation of another user.

We have implemented DRF in the Mesos cluster resource

manager, and show that it leads to better throughput and

fairness than the slot-based fair sharing schemes in cur-

rent cluster schedulers.

1 Introduction

Resource allocation is a key building block of any shared

computer system. One of the most popular allocation

policies proposed so far has been max-min fairness,

which maximizes the minimum allocation received by a

user in the system. Assuming each user has enough de-

mand, this policy gives each user an equal share of the

resources. Max-min fairness has been generalized to in-

clude the concept of weight, where each user receives a

share of the resources proportional to its weight.

The attractiveness of weighted max-min fairness

stems from its generality and its ability to provide perfor-

mance isolation. The weighted max-min fairness model

can support a variety of other resource allocation poli-

cies, including priority, reservation, and deadline based

allocation [30]. In addition, weighted max-min fairness

ensures isolation, in that a user is guaranteed to receive

her share irrespective of the demand of the other users.

Given these features, it should come as no surprise

that a large number of algorithms have been proposed

to implement (weighted) max-min fairness with various

degrees of accuracy, such as round-robin, proportional

resource sharing [31], and weighted fair queueing [12].

These algorithms have been applied to a variety of re-

sources, including link bandwidth [8, 12, 14, 23, 26, 28],

CPU [11, 27, 30], memory [4, 30], and storage [5].

Despite the vast amount of work on fair allocation, the

focus has so far been primarily on a single resource type.

Even in multi-resource environments, where users have

heterogeneous resource demands, allocation is typically

done using a single resource abstraction. For example,

fair schedulers for Hadoop and Dryad [1, 17, 33], two

widely used cluster computing frameworks, allocate re-

sources at the level of fixed-size partitions of the nodes,

called slots. This is despite the fact that different jobs

in these clusters can have widely different demands for

CPU, memory, and I/O resources.

In this paper, we address the problem of fair alloca-

tion of multiple types of resources to users with heteroge-

neous demands. In particular, we propose Dominant Re-

source Fairness (DRF), a generalization of max-min fair-

ness for multiple resources. The intuition behind DRF is

that in a multi-resource environment, the allocation of a

user should be determined by the user’s dominant share,

which is the maximum share that the user has been allo-

cated of any resource. In a nutshell, DRF seeks to max-

imize the minimum dominant share across all users. For

example, if user A runs CPU-heavy tasks and user B runs

memory-heavy tasks, DRF attempts to equalize user A’s

share of CPUs with user B’s share of memory. In the

single resource case, DRF reduces to max-min fairness

for that resource.

The strength of DRF lies in the properties it satis-

fies. These properties are trivially satisfied by max-min
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fairness for a single resource, but are non-trivial in the

case of multiple resources. Four such properties are

sharing incentive, strategy-proofness, Pareto efficiency,

and envy-freeness. DRF provides incentives for users to

share resources by guaranteeing that no user is better off

in a system in which resources are statically and equally

partitioned among users. Furthermore, DRF is strategy-

proof, as a user cannot get a better allocation by lying

about her resource demands. DRF is Pareto-efficient as

it allocates all available resources subject to satisfying

the other properties, and without preempting existing al-

locations. Finally, DRF is envy-free, as no user prefers

the allocation of another user. Other solutions violate at

least one of the above properties. For example, the pre-

ferred [3, 21, 32] fair division mechanism in microeco-

nomic theory, Competitive Equilibrium from Equal In-

comes [29], is not strategy-proof.

We have implemented and evaluated DRF in

Mesos [15], a resource manager over which multiple

cluster computing frameworks, such as Hadoop and MPI,

can run. We compare DRF with the slot-based fair shar-

ing scheme used in Hadoop and Dryad and show that

slot-based fair sharing can lead to to poorer performance,

unfairly punishing certain workloads, while providing

weaker isolation guarantees.

While this paper focuses on resource allocation in dat-

acenters, we believe that DRF is generally applicable to

other multi-resource environments where users have het-

erogeneous demands, such as in multi-core machines.

The rest of this paper is organized as follows. Sec-

tion 2 motivates the problem of multi-resource fairness.

Section 3 lists fairness properties that we will consider in

this paper. Section 4 introduces DRF. Section 5 presents

alternative notions of fairness, while Section 6 analyzes

the properties of DRF and other policies. Section 7 pro-

vides experimental results based on traces from a Face-

book Hadoop cluster. We survey related work in Sec-

tion 8 and conclude in Section 9.

2 Motivation

While previous work on weighted max-min fairness

scheduling has focused on single resources, the advent of

cloud computing and multi-core processors has increased

the need for allocation policies for environments with

multiple resources and heterogeneous user demands. By

multiple resources we mean resources of different types,

instead of multiple instances of the same interchangeable

resource.

To motivate the need for multi-resource allocation, we

plot the resource usage profiles of tasks in a 2000-node

Hadoop cluster at Facebook over one month (October

2010) in Figure 1. The placement of a circle in Figure 1

indicates the memory and CPU resources consumed by

Figure 1: CPU and memory demands of tasks in a 2000-

node Hadoop cluster at Facebook over one month (Octo-

ber 2010). Each bubble’s size is logarithmic in the num-

ber of tasks in its region.

tasks. The size of a circle is logarithmic to the number of

tasks in the region of the circle. Though the majority of

tasks are CPU-heavy, there exist tasks that are memory-

heavy as well, especially for reduce operations.

Existing fair schedulers for clusters, such as Quincy

[17] and the Hadoop Fair Scheduler [2, 33], ignore the

heterogeneity of user demands, and allocate resources at

the granularity of slots, where a slot is a fixed fraction

of a node. This leads to inefficient allocation as a slot is

more often than not a poor match for the task demands.

Figure 2 quantifies the level of fairness and isola-

tion provided by the Hadoop MapReduce fair sched-

uler [2, 33]. The figure shows the CDFs of the ratio

between the task CPU demand and the slot CPU share,

and of the ratio between the task memory demand and

the slot memory share. We compute the slot memory

and CPU shares by simply dividing the total amount of

memory and CPUs by the number of slots. A ratio of

1 corresponds to a perfect match between the task de-

mands and slot resources, a ratio below 1 corresponds to

tasks underutilizing their slot resources, and a ratio above

1 corresponds to tasks over-utilizing their slot resources,

which may lead to thrashing. Figure 2 shows that most of

tasks either underutilize or overutilize some of their slot

resources. Modifying the number of slots per machine

will not solve the problem as this may result either in a

lower overall utilization or more tasks experiencing poor

performance due to over-utilization (see Section 7).
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Figure 2: CDF of demand to slot ratio in a 2000-node

cluster at Facebook over a one month period (October

2010). A demand to slot ratio of 2.0 represents a task

that requires twice as much CPU (or memory) than the

slot CPU (or memory) size.

3 Allocation Properties

We now turn our attention to designing a max-min fair al-

location policy for multiple resources and heterogeneous

requests. To illustrate the problem, consider a system

consisting of 9 CPUs and 18 GB RAM, and two users:

user A runs tasks that require 〈1 CPUs, 4 GB〉 each, and

user B runs tasks that require 〈3 CPUs, 1 GB〉 each.

What constitutes a fair allocation policy for this case?

One possibility would be to allocate each user half of

every resource. Another possibility would be to equal-

ize the aggregate (i.e., CPU plus memory) allocations of

each user. While it is relatively easy to come up with a

variety of possible “fair” allocations, it is unclear how to

evaluate and compare these allocations.

To address this challenge, we start with a set of de-

sirable properties that we believe any resource alloca-

tion policy for multiple resources and heterogeneous de-

mands should satisfy. We then let these properties guide

the development of a fair allocation policy. We have

found the following four properties to be important:

1. Sharing incentive: Each user should be better off

sharing the cluster, than exclusively using her own

partition of the cluster. Consider a cluster with iden-

tical nodes and n users. Then a user should not be

able to allocate more tasks in a cluster partition con-

sisting of 1
n of all resources.

2. Strategy-proofness: Users should not be able to

benefit by lying about their resource demands. This

provides incentive compatibility, as a user cannot

improve her allocation by lying.

3. Envy-freeness: A user should not prefer the allo-

cation of another user. This property embodies the

notion of fairness [13, 29].

4. Pareto efficiency: It should not be possible to in-

crease the allocation of a user without decreasing

the allocation of at least another user. This prop-

erty is important as it leads to maximizing system

utilization subject to satisfying the other properties.

We briefly comment on the strategy-proofness and

sharing incentive properties, which we believe are of

special importance in datacenter environments. Anec-

dotal evidence from cloud operators that we have talked

with indicates that strategy-proofness is important, as it

is common for users to attempt to manipulate schedulers.

For example, one of Yahoo!’s Hadoop MapReduce dat-

acenters has different numbers of slots for map and re-

duce tasks. A user discovered that the map slots were

contended, and therefore launched all his jobs as long

reduce phases, which would manually do the work that

MapReduce does in its map phase. Another big search

company provided dedicated machines for jobs only if

the users could guarantee high utilization. The company

soon found that users would sprinkle their code with in-

finite loops to artificially inflate utilization levels.

Furthermore, any policy that satisfies the sharing in-

centive property also provides performance isolation, as

it guarantees a minimum allocation to each user (i.e., a

user cannot do worse than owning 1
n of the cluster) irre-

spective of the demands of the other users.

It can be easily shown that in the case of a single re-

source, max-min fairness satisfies all the above proper-

ties. However, achieving these properties in the case

of multiple resources and heterogeneous user demands

is not trivial. For example, the preferred fair division

mechanism in microeconomic theory, Competitive Equi-

librium from Equal Incomes [21, 29, 32], is not strategy-

proof (see Section 6.4).

In addition to the above properties, we consider four

other nice-to-have properties:

• Single resource fairness: For a single resource, the

solution should reduce to max-min fairness.

• Bottleneck fairness: If there is one resource that is

percent-wise demanded most of by every user, then

the solution should reduce to max-min fairness for

that resource.

• Population monotonicity: When a user leaves the

system and relinquishes her resources, none of the

allocations of the remaining users should decrease.

• Resource monotonicity: If more resources are added

to the system, none of the allocations of the existing

users should decrease.
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User A User B 

CPUs 
(9 total) 

Memory 
(18GB total) 

100% 

50% 

0% 

3 CPUs 12 GB 

6 CPUs 2 GB 

Figure 3: DRF allocation for the example in Section 4.1.

4 Dominant Resource Fairness (DRF)

We propose Dominant Resource Fairness (DRF), a new

allocation policy for multiple resources that meets all

four of the required properties in the previous section.

For every user, DRF computes the share of each resource

allocated to that user. The maximum among all shares

of a user is called that user’s dominant share, and the

resource corresponding to the dominant share is called

the dominant resource. Different users may have dif-

ferent dominant resources. For example, the dominant

resource of a user running a computation-bound job is

CPU, while the dominant resource of a user running an

I/O-bound job is bandwidth.1 DRF simply applies max-

min fairness across users’ dominant shares. That is, DRF

seeks to maximize the smallest dominant share in the

system, then the second-smallest, and so on.

We start by illustrating DRF with an example (§4.1),

then present an algorithm for DRF (§4.2) and a defini-

tion of weighted DRF (§4.3). In Section 5, we present

two other allocation policies: asset fairness, a straightfor-

ward policy that aims to equalize the aggregate resources

allocated to each user, and competitive equilibrium from

equal incomes (CEEI), a popular fair allocation policy

preferred in the micro-economic domain [21, 29, 32].

In this section, we consider a computation model with

n users and m resources. Each user runs individual tasks,

and each task is characterized by a demand vector, which

specifies the amount of resources required by the task,

e.g., 〈1 CPU, 4 GB〉. In general, tasks (even the ones

belonging to the same user) may have different demands.

4.1 An Example

Consider a system with of 9 CPUs, 18 GB RAM, and two

users, where user A runs tasks with demand vector 〈1
1A user may have the same share on multiple resources, and might

therefore have multiple dominant resources.

CPU, 4 GB〉, and user B runs tasks with demand vector

〈3 CPUs, 1 GB〉 each.

In the above scenario, each task from user A consumes

1/9 of the total CPUs and 2/9 of the total memory, so

user A’s dominant resource is memory. Each task from

user B consumes 1/3 of the total CPUs and 1/18 of the

total memory, so user B’s dominant resource is CPU.

DRF will equalize users’ dominant shares, giving the al-

location in Figure 3: three tasks for user A, with a total

of 〈3 CPUs, 12 GB〉, and two tasks for user B, with a

total of 〈6 CPUs, 2 GB〉. With this allocation, each user

ends up with the same dominant share, i.e., user A gets

2/3 of RAM, while user B gets 2/3 of the CPUs.

This allocation can be computed mathematically as

follows. Let x and y be the number of tasks allocated

by DRF to users A and B, respectively. Then user A
receives 〈x CPU, 4x GB〉, while user B gets 〈3y CPU,

y GB〉. The total amount of resources allocated to both

users is (x+3y) CPUs and (4x+ y) GB. Also, the dom-

inant shares of users A and B are 4x/18 = 2x/9 and

3y/9 = y/3, respectively (their corresponding shares of

memory and CPU). The DRF allocation is then given by

the solution to the following optimization problem:

max (x, y) (Maximize allocations)

subject to

x + 3y ≤ 9 (CPU constraint)

4x + y ≤ 18 (Memory constraint)

2x

9
=

y

3
(Equalize dominant shares)

Solving this problem yields2 x = 3 and y = 2. Thus,

user A gets 〈3 CPU, 12 GB〉 and B gets 〈6 CPU, 2 GB〉.
Note that DRF need not always equalize users’ domi-

nant shares. When a user’s total demand is met, that user

will not need more tasks, so the excess resources will

be split among the other users, much like in max-min

fairness. In addition, if a resource gets exhausted, users

that do not need that resource can still continue receiv-

ing higher shares of the other resources. We present an

algorithm for DRF allocation in the next section.

4.2 DRF Scheduling Algorithm
Algorithm 1 shows pseudo-code for DRF scheduling.

The algorithm tracks the total resources allocated to each

user as well as the user’s dominant share, si. At each

step, DRF picks the user with the lowest dominant share

among those with tasks ready to run. If that user’s task

demand can be satisfied, i.e., there are enough resources

available in the system, one of her tasks is launched. We

consider the general case in which a user can have tasks

2Note that given last constraint (i.e., 2x/9 = y/3) allocations x
and y are simultaneously maximized.
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Schedule
User A User B CPU RAM

res. shares dom. share res. shares dom. share total alloc. total alloc.

User B 〈0, 0〉 0 〈3/9, 1/18〉 1/3 3/9 1/18

User A 〈1/9, 4/18〉 2/9 〈3/9, 1/18〉 1/3 4/9 5/18

User A 〈2/9, 8/18〉 4/9 〈3/9, 1/18〉 1/3 5/9 9/18

User B 〈2/9, 8/18〉 4/9 〈6/9, 2/18〉 2/3 8/9 10/18

User A 〈3/9, 12/18〉 2/3 〈6/9, 2/18〉 2/3 1 14/18

Table 1: Example of DRF allocating resources in a system with 9 CPUs and 18 GB RAM to two users running tasks

that require 〈1 CPU, 4 GB〉 and 〈3 CPUs, 1 GB〉, respectively. Each row corresponds to DRF making a scheduling

decision. A row shows the shares of each user for each resource, the user’s dominant share, and the fraction of each

resource allocated so far. DRF repeatedly selects the user with the lowest dominant share (indicated in bold) to launch

a task, until no more tasks can be allocated.

Algorithm 1 DRF pseudo-code

R = 〈r1, · · · , rm〉 � total resource capacities

C = 〈c1, · · · , cm〉 � consumed resources, initially 0
si (i = 1..n) � user i’s dominant shares, initially 0
Ui = 〈ui,1, · · · , ui,m〉 (i = 1..n) � resources given to

user i, initially 0

pick user i with lowest dominant share si

Di ← demand of user i’s next task

if C + Di ≤ R then
C = C + Di � update consumed vector

Ui = Ui + Di � update i’s allocation vector

si = maxm
j=1{ui,j/rj}

else
return � the cluster is full

end if

with different demand vectors, and we use variable Di to

denote the demand vector of the next task user i wants

to launch. For simplicity, the pseudo-code does not cap-

ture the event of a task finishing. In this case, the user

releases the task’s resources and DRF again selects the

user with the smallest dominant share to run her task.

Consider the two-user example in Section 4.1. Table 1

illustrates the DRF allocation process for this example.

DRF first picks B to run a task. As a result, the shares

of B become 〈3/9, 1/18〉, and the dominant share be-

comes max(3/9, 1/18) = 1/3. Next, DRF picks A, as

her dominant share is 0. The process continues until it

is no longer possible to run new tasks. In this case, this

happens as soon as CPU has been saturated.

At the end of the above allocation, user A gets 〈3 CPU,

12 GB〉, while user B gets 〈6 CPU, 2 GB〉, i.e., each user

gets 2/3 of its dominant resource.

Note that in this example the allocation stops as soon

as any resource is saturated. However, in the general

case, it may be possible to continue to allocate tasks even

after some resource has been saturated, as some tasks

might not have any demand on the saturated resource.

The above algorithm can be implemented using a bi-

nary heap that stores each user’s dominant share. Each

scheduling decision then takes O(log n) time for n users.

4.3 Weighted DRF

In practice, there are many cases in which allocating re-

sources equally across users is not the desirable policy.

Instead, we may want to allocate more resources to users

running more important jobs, or to users that have con-

tributed more resources to the cluster. To achieve this

goal, we propose Weighted DRF, a generalization of both

DRF and weighted max-min fairness.

With Weighted DRF, each user i is associated a weight

vector Wi = 〈wi,1, . . . , wi,m〉, where wi,j represents the

weight of user i for resource j. The definition of a dom-

inant share for user i changes to si = maxj{ui,j/wi,j},

where ui,j is user i’s share of resource j. A particular

case of interest is when all the weights of user i are equal,

i.e., wi,j = wi, (1 ≤ j ≤ m). In this case, the ratio be-

tween the dominant shares of users i and j will be simply

wi/wj . If the weights of all users are set to 1, Weighted

DRF reduces trivially to DRF.

5 Alternative Fair Allocation Policies

Defining a fair allocation in a multi-resource system is

not an easy question, as the notion of “fairness” is itself

open to discussion. In our efforts, we considered numer-

ous allocation policies before settling on DRF as the only

one that satisfies all four of the required properties in

Section 3: sharing incentive, strategy-proofness, Pareto

efficiency, and envy-freeness. In this section, we con-

sider two of the alternatives we have investigated: Asset

Fairness, a simple and intuitive policy that aims to equal-

ize the aggregate resources allocated to each user, and

Competitive Equilibrium from Equal Incomes (CEEI),

the policy of choice for fairly allocating resources in the

5



microeconomic domain [21, 29, 32]. We compare these

policies with DRF in Section 5.3.

5.1 Asset Fairness
The idea behind Asset Fairness is that equal shares of

different resources are worth the same, i.e., that 1% of

all CPUs worth is the same as 1% of memory and 1%

of I/O bandwidth. Asset Fairness then tries to equalize

the aggregate resource value allocated to each user. In

particular, Asset Fairness computes for each user i the

aggregate share xi =
∑

j si,j , where si,j is the share of

resource j given to user i. It then applies max-min across

users’ aggregate shares, i.e., it repeatedly launches tasks

for the user with the minimum aggregate share.

Consider the example in Section 4.1. Since there are

twice as many GB of RAM as CPUs (i.e., 9 CPUs and

18 GB RAM), one CPU is worth twice as much as one

GB of RAM. Supposing that one GB is worth $1 and

one CPU is worth $2, it follows that user A spends $6

for each task, while user B spends $7. Let x and y be

the number of tasks allocated by Asset Fairness to users

A and B, respectively. Then the asset-fair allocation is

given by the solution to the following optimization prob-

lem:

max (x, y) (Maximize allocations)

subject to

x + 3y ≤ 9 (CPU constraint)

4x + y ≤ 18 (Memory constraint)

6x = 7y (Every user spends the same)

Solving the above problem yields x = 2.52 and y =
2.16. Thus, user A gets 〈2.5 CPUs, 10.1 GB〉, while user

B gets 〈6.5 CPUs, 2.2 GB〉, respectively.

While this allocation policy seems compelling in its

simplicity, it has a significant drawback: it violates the

sharing incentive property. As we show in Section 6.3,

asset fairness can result in one user getting less than 1/n
of all resources, where n is the total number of users.

5.2 Competitive Equilibrium from Equal
Incomes

In microeconomic theory, the preferred method to fairly

divide resources is Competitive Equilibrium from Equal

Incomes (CEEI) [21, 29, 32]. With CEEI, each user re-

ceives initially 1
n of every resource, and subsequently,

each user trades her resources with other users in a per-

fectly competitive market.3 The outcome of CEEI is both

envy-free and Pareto efficient [29].

3A perfect market satisfies the price-taking (i.e., no single user af-

fects prices) and market-clearance (i.e., matching supply and demand

via price adjustment) assumptions.

User A User B 

a) DRF b) Asset Fairness 

CPU Mem CPU Mem CPU Mem 

100% 

50% 

0% 

100% 

50% 

0% 

100% 

50% 

0% 

c) CEEI 

Figure 4: Allocations given by DRF, Asset Fairness and

CEEI in the example scenario in Section 4.1.

More precisely, the CEEI allocation is given by the

Nash bargaining solution4 [21, 22]. The Nash bargain-

ing solution picks the feasible allocation that maximizes∏
i ui(ai), where ui(ai) is the utility that user i gets from

her allocation ai. To simplify the comparison, we assume

that the utility that a user gets from her allocation is sim-

ply her dominant share, si.

Consider again the two-user example in Section 4.1.

Recall that the dominant share of user A is 4x/18 =
2x/9 while the dominant share of user B is 3y/9 = y/3,

where x is the number of tasks given to A and y is the

number of tasks given to B. Maximizing the product

of the dominant shares is equivalent to maximizing the

product x · y. Thus, CEEI aims to solve the following

optimization problem:

max (x · y) (maximize Nash product)

subject to

x + 3y ≤ 9 (CPU constraint)

4x + y ≤ 18 (Memory constraint)

Solving the above problem yields x = 45/11 and y =
18/11. Thus, user A gets 〈4.1 CPUs, 16.4 GB〉, while

user B gets 〈4.9 CPUs, 1.6 GB〉.
Unfortunately, while CEEI is envy-free and Pareto ef-

ficient, it turns out that it is not strategy-proof, as we will

show in Section 6.4. Thus, users can increase their allo-

cations by lying about their resource demands.

5.3 Comparison with DRF
To give the reader an intuitive understanding of Asset

Fairness and CEEI, we compare their allocations for the

example in Section 4.1 to that of DRF in Figure 4.

4For this to hold, utilities have to be homogeneous, i.e., u(α x) =
α u(x) for α > 0, which is true in our case.
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Allocation Policy
Property Asset CEEI DRF

Sharing Incentive � �
Strategy-proofness � �
Envy-freeness � � �
Pareto efficiency � � �
Single Resource Fairness � � �
Bottleneck Fairness � �
Population Monotonicity � �
Resource Monotonicity

Table 2: Properties of Asset Fairness, CEEI and DRF.

We see that DRF equalizes the dominant shares of the

users, i.e., user A’s memory share and user B’s CPU

share. In contrast, Asset Fairness equalizes the total frac-
tion of resources allocated to each user, i.e., the areas of

the rectangles for each user in the figure. Finally, be-

cause CEEI assumes a perfectly competitive market, it

finds a solution satisfying market clearance, where ev-

ery resource has been allocated. Unfortunately, this ex-

act property makes it possible to cheat CEEI: a user can

claim she needs more of some underutilized resource

even when she does not, leading CEEI to give more tasks

overall to this user to achieve market clearance.

6 Analysis

In this section, we discuss which of the properties pre-

sented in Section 3 are satisfied by DRF, Asset Fairness,

and CEEI. We also evaluate the accuracy of DRF when

task sizes do not match the available resources exactly.

Table 2 summarizes the fairness properties satisfied by

DRF, Asset Fairness, and CEEI.

The rest of the section assumes that all users have an

unbounded number of tasks. In addition, we assume that

all tasks of a user have the same demand vector, and we

will refer to this vector as the user’s demand vector.

Next, we present progressive filling [9], a simple tech-

nique to achieve DRF allocation when all resources are

arbitrary divisible.

6.1 Progressive Filling for DRF
Progressive filling is an idealized algorithm to achieve

max-min fairness in a system in which resources can

be allocated in arbitrary small amounts [9, pg 450]. It

was originally used in a networking context, but we now

adapt it to our problem domain. In the case of DRF, pro-

gressive filling increases all users’ dominant shares at the

same rate, while increasing their other resource alloca-

tions proportionally to their task demand vectors, until at

least one resource is saturated. At this point, the alloca-

tions of all users using the saturated resource are frozen,

and progressive filling continues recursively after elim-

inating these users. In this case, progressive filling ter-

minates when there are no longer users whose dominant

shares can be increased.

Progressive filling for DRF is equivalent to the

scheduling algorithm presented in Figure 1 after appro-

priately scaling the users’ demand vectors. In particular,

each user’s demand vector is scaled such that allocating

resources to a user according to her scaled demand vec-

tor will increase her dominant share by a fixed ε, which

is the same for all users. Let Di = 〈di,1, di,2, . . . , di,m〉
be the demand vector of user i, let rk be her domi-

nant share5, and let si = di,k

rk
be her dominant share.

We then scale the demand vector of user i by ε
si

, i.e.,
D′

i = ε
si

Di = ε
si
〈di,1, di,2, . . . , di,m〉. Thus, every time

a task of user i is selected, she is allocated an amount
ε
si

di,k = ε ·rk of the dominant resource. This means that

the share of the dominant resource of user i increases by

(ε · rk)/rk = ε, as expected.

The following basic result about max-min fairness car-

ries over to our setting. Assuming divisible resources, we

say that a user j has a bottleneck resource k in an allo-

cation if resource k is fully utilized, and for each user i
using resource k, sj ≥ si.

Theorem 1 (max-min theorem) A DRF allocation is
equivalent to an allocation in which each user has a bot-
tleneck resource.

Proof We first prove that if every user has a bottleneck

resource, then the allocation must be max-min fair. In-

creasing any user i’s dominant share must increase that

user’s share on its bottleneck resource, which must be at

the cost of some user that has a smaller or equal dominant

share as user i. This implies that the allocation is max-

min fair. Conversely, if the allocation is max-min fair,

then every user must have a bottleneck resource. If that

was not the case, then some user would not have a bottle-

neck resource, and that user could increase her dominant

share at the expense of other users with higher dominant

shares, contradicting max-min fairness. Thus max-min

fairness is logically equivalent to every user having a bot-

tleneck resource. �

To get an intuition for the theorem, consider the re-

source vector 〈20, 20, 20〉 and two users with demand

vectors 〈4, 4, 2〉, 〈1, 2, 3〉. DRF gives 3 and 4 tasks to

the respective users. The second resource will be fully

utilized, whereas the other two are underutilized. Both

users hence have R2 as their bottleneck resource, with a

5Recall that in this section we assume that all tasks of a user have

the same demand vector.

7



dominant share of s1 = s2 = 0.6. As a side note, none of

the dominant resources are fully utilized in this example.

6.2 Properties of DRF
We start with a preliminary result.

Lemma 2 Every user in a DRF allocation has at least
one saturated resource.

Proof Assume this is not the case, i.e., none of the re-

sources used by user i is saturated. However, this con-

tradicts the assumption that progressive filling has com-

pleted the computation of the DRF allocation. Indeed,

as long as none of the resources of user i are saturated,

progressive filling will continue to increase the alloca-

tions of user i (and of all the other users sharing only

non-saturated resources). �

Recall that progressive filling always allocates the re-

sources to a user proportionally to the user’s demand

vector. More precisely, let Di = 〈di,1, di,2, . . . , di,m〉
be the demand vector of user i. Then, at any time t dur-

ing the progressive filling process, the allocation of user

i is proportional to the demand vector,

Ai(t) = αi(t) · Di = αi(t) · 〈di,1, di,2, . . . , di,m〉 (1)

where αi(t) is a positive scalar.

Now, we are in position to prove the DRF properties.

Theorem 3 DRF is Pareto efficient.

Proof Assume user i can increase her dominant share,

si, without decreasing the dominant share of any other

user j. According to Lemma 2, user i has at least one

saturated resource. If no other user is using the saturated

resource, then we are done as it would be impossible to

increase i’s share of the saturated resource. If other users

are using the saturated resource, then increasing the allo-

cation of i would result in decreasing the allocation of at

least another user j sharing the same saturated resource.

Since under progressive filling, the resources allocated

by any user are proportional to her demand vector (see

Eq. 1), decreasing the allocation of any resource used by

user i will also decrease i’s dominant share. This con-

tradicts our hypothesis, and therefore proves the result.

�

Theorem 4 DRF satisfies the sharing incentive and bot-
tleneck fairness properties.

Proof Consider a system consisting of n users. Assume

resource k is the first one being saturated by using pro-

gressive filling. Let i be the user allocating the largest

share on resource k, and let ti,k denote her share of k.

Since resource k is saturated, we have trivially ti,k ≥ 1
n .

Furthermore, by the definition of the dominant share, we

have si ≥ ti,k ≥ 1
n . Since progressive filling increases

the allocation of each user’s dominant resource at the

same rate, it follows that each user gets at least 1
n of her

dominant resource. Thus, DRF satisfies the sharing in-

centive property. If all users have the same dominant

resource, each user gets exactly 1
n of that resource. As a

result, DRF satisfies the bottleneck fairness property as

well. �

Theorem 5 Every DRF allocation is envy-free.

Proof For a user i to envy another user j, j must have a

strictly higher share of every resource that i wants; other-

wise i cannot run more tasks under j’s allocation. From

the max-min theorem it follows that i must have a bottle-

neck resource Rk and none of the users using Rk have a

higher dominant share than i. However, this is impossi-

ble as j has a higher share of Rk than i and must there-

fore have a higher dominant share than i. Thus, i cannot

envy any other user. �

Theorem 6 (Strategy-proofness) A user cannot in-
crease her dominant share in DRF by altering her true
demand vector.

Proof Assume user i can increase her dominant share by

using a demand vector d̂i �= di. Let ai,j and âi,j denote

the amount of resource j user i is allocated using pro-

gressive filling when the user uses the vector di and d̂i,

respectively. For user i to be better off using d̂i, we need

that âi,k > ai,k for every resource k where di,k > 0.

Let r denote the first resource that becomes saturated for

user i when she uses the demand vector di. If no other

user is allocated resource r (aj,r = 0 for all j �= i),
this contradicts the hypothesis as user i is already allo-

cated the entire resource r, and thus cannot increase her

allocation of r using another demand vector d̂i. Thus,

assume there are other users that have been allocated r
(aj,r > 0 for some j �= i). In this case, progressive fill-

ing will eventually saturate r at time t when using di, and

at time t′ when using demand d̂i. Recall that the domi-

nant share is the maximum of a user’s shares, thus i must

have a higher dominant share in the allocation â than in

a. Thus, t′ > t, as progressive filling increases the dom-

inant share at a constant rate. This implies that i—when

using d̂—does not saturate any resource before time t′,
and hence does not affect other user’s allocation before

time t′. Thus, when i uses d̂, any user m using resource

r has allocation am,r at time t. Therefore, at time t, there

is only ai,r amount of r left for user i, which contradicts

the assumption that âi,r > ai,r. �

The strategy-proofness of DRF shows that a user will

not be better off by demanding resources that she does
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not need. The following example shows that excess de-

mand can in fact hurt user’s allocation, leading to a lower

dominant share. Consider a cluster with two resources,

and 10 users, the first with demand vector 〈1, 0〉 and the

rest with demand vectors 〈0, 1〉. The first user gets the

entire first resource, while the rest of the users each get
1
9 of the second resource. If user 1 instead changes her

demand vector to 〈1, 1〉, she can only be allocated 1
10 of

each resource and the rest of the users get 1
10 of the sec-

ond resource.

In practice, the situation can be exacerbated as re-

sources in datacenters are typically partitioned across

different physical machines, leading to fragmentation.

Increasing one’s demand artificially might lead to a situ-

ation in which, while there are enough resources on the

whole, there are not enough on any single machine to

satisfy the new demand. See Section 6.6 for more infor-

mation.

Next, for simplicity we assume strictly positive de-
mand vectors, i.e., the demand of every user for every

resource is non-zero.

Theorem 7 Given strictly positive demand vectors,
DRF guarantees that every user gets the same dominant
share, i.e., every DRF allocation ensures si = sj , for all
users i and j.

Proof Progressive filling will start increasing every

users’ dominant resource allocation at the same rate until

one of the resources becomes saturated. At this point, no

more resources can be allocated to any user as every user

demands a positive amount of the saturated resource. �

Theorem 8 Given strictly positive demands, DRF satis-
fies population monotonicity.

Proof Consider any DRF allocation. Non-zero demands

imply that all users have the same saturated resource(s).

Consider removing a user and relinquishing her currently

allocated resources, which is some amount of every re-

source. Since all users have the same dominant share α,

any new allocation which decreases any user i’s domi-

nant share below α would, due to Pareto efficiency, have

to allocate another user j a dominant share of more than

α. The resulting allocation would violate max-min fair-

ness, as it would be possible to increase i’s dominant

share by decreasing the allocation of j, who already has

a higher dominant share than i. �

However, we note that in the absence of strictly posi-

tive demand vectors, DRF no longer satisfies the popula-

tion monotonicity property.

Theorem 9 In the presence zero demand vectors, DRF
does not guarantee population monotonicity,

Proof Consider the resource vector 〈24, 24〉 and three

users with demand vectors D1 = 〈2, 0〉, D2 = 〈1, 2〉,
and D3 = 〈0, 2〉. DRF will give the allocation 〈9, 6, 6〉.
Removing user 3 will give the DRF allocation 〈8, 8〉, de-

creasing user 1’s resources. This is because, before re-

moving user 3, progressive filling will saturate R2 first,

giving all three users 6 tasks each. There is now avail-

able R1 resources, which only user 1 can use, hence her

allocation can be increased to 9 tasks. By removing user

3, R2 does not become saturated, and hence both user 1
and 2 demand it until it becomes saturated. �

6.3 Properties of Asset Fairness
While being the simplest policy, Asset Fairness violates

several important properties: sharing incentive, bottle-

neck fairness, and resource monotonicity. Next, we use

examples to show the violation of these properties.

Theorem 10 Asset Fairness violates the sharing incen-
tive property.

Proof Consider the following example, illustrated in

Figure 5: two users in a system with 〈30, 30〉 total re-

sources have demand vectors D1 = 〈1, 3〉, and D2 =
〈1, 1〉. Asset fairness will allocate the first user 6 tasks

and the second user 12 tasks. The first user will receive

〈6, 18〉 resources, while the second will use 〈12, 12〉.
While each user gets an equal aggregate share of 24

60 , the

second user gets less than half (15) of both resources.

This violates the sharing incentive property, as the sec-

ond user would be better off to statically partition the

cluster and get half of it. �
Theorem 11 Asset Fairness violates the bottleneck fair-
ness property.

Proof Consider a scenario with a total resource vector of

〈21, 21〉 and two users with demand vectors D1 = 〈3, 2〉
and D2 = 〈4, 1〉, making resource 1 the bottleneck re-

source. Asset fairness will give each user 3 tasks, equal-

izing their aggregate usage to 15. However, this only

gives the first user 3
7 of resource 1 (the contended bottle-

neck resource), violating bottleneck fairness. �

Theorem 12 Asset fairness does not satisfy resource
monotonicity.

Proof Consider two users A and B with demands 〈4, 2〉
and 〈1, 1〉 and 77 units of two resources. Asset fairness

allocates A a total of 〈44, 22〉 and B 〈33, 33〉 equalizing

their sum of shares to 66
77 . If resource two is doubled, both

users’ share of the second resource is halved, while the

first resource is saturated. Asset fairness now decreases

A’s allocation to 〈42, 21〉 and increases B’s to 〈35, 35〉,
equalizing their shares to 42

77 + 21
154 = 35

77 + 35
154 = 105

154 .

Thus resource monotonicity is violated. �
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  Resource 1    Resource 2 

User 1 User 2 
100% 

50% 

0% 

Figure 5: Example showing that Asset Fairness can fail

to meet the sharing incentive property. Asset Fairness

gives user 2 less than half of both resources.

User 1 User 2 

a) With truthful 
demands 

b) With user 1 
lying 

Res. 1 

100% 

50% 

0% 

100% 

50% 

0% 
Res. 2 Res. 1 Res. 2 

Figure 6: Example showing how CEEI violates strategy

proofness. User 1 can increase her share by claiming that

she needs more of resource 2 than she actually does.

6.4 Properties of CEEI

Theorem 13 CEEI satisfies the sharing incentive.

Proof This result is obvious since every user starts with
1
n of every resource before starting to trade. Since it

satisfies the sharing incentive, it also satisfies bottleneck

fairness. �

While CEEI is also envy-free and Pareto efficient, it

turns out that it is not strategy proof. Intuitively, this

is because CEEI assumes a perfectly competitive market

that achieves market clearance, i.e., matching of supply

and demand and allocation of all the available resources.

This can lead to CEEI giving much higher shares to users

that use more of a less-contended resource in order to

fully utilize that resource. Thus, a user can claim that she

needs more of some underutilized resource to increase

her overall share of resources. We illustrate this below.

Theorem 14 CEEI is not strategy-proof.

User 1 User 2 User 3 

a) With 3 users b) After user 3 
leaves 

Res. 1 

100% 

50% 

0% 

100% 

50% 

0% 
Res. 2 Res. 1 Res. 2 

Figure 7: Example showing that CEEI violates popula-

tion monotonicity. When user 3 leaves, CEEI changes

the allocation from a) to b), lowering the share of user 2.

Proof Consider the following example, illustrated in

Figure 6. Assume a total resource vector of 〈100, 100〉,
and two users with demands 〈16, 1〉 and 〈1, 2〉. In this

case, CEEI allocates 100
31 and 1500

31 tasks to each user re-

spectively (approximately 3.2 and 48.8 tasks). If user 1
changes her demand vector to 〈16, 8〉, asking for more

of resource 2 than she actually needs, CEEI gives the the

users 25
6 and 100

3 tasks respectively (approximately 4.2
and 33.3 tasks). Thus, user 1 improves her number of

tasks from 3.2 to 4.2 by lying about her demand vector.

User 2 suffers because of this, as her task allocation de-

creases. �

In addition, for the same intuitive reason (market

clearance), we have the following result:

Theorem 15 CEEI violates population monotonicity.

Proof Consider the total resource vector 〈100, 100〉 and

three users with the following demand vectors D1 =
〈4, 1〉, D2 = 〈1, 16〉, and D3 = 〈16, 1〉 (see Figure 7).

CEEI will yield the allocation A1 = 〈11.3, 5.4, 3.1〉,
where the numbers in parenthesis represent the number

of tasks allocated to each user. If user 3 leaves the system

and relinquishes her resource, CEEI gives the new allo-

cation A2 = 〈23.8, 4.8〉, which has made user 2 worse

off than in A1. �

The following more extreme example demonstrates

some of the differences between DRF and CEEI. Con-

sider n users, and m = n − 1 resources of size 1.0
each. Further, assume that user 1 has demand vec-

tor 〈1, 1, · · · , 1〉, while the other n − 1 users have

demand vectors 〈1, 0, 0, · · · , 0〉, 〈0, 1, 0, 0, · · · , 0〉, · · ·,
〈0, 0, · · · , 1〉. CEEI will allocate the first user 1

n while

every other user j �= 1 will get aj = n−1
n . As n→∞,

user 1 starves. DRF would instead give the allocations,

〈 1
2 , 1

2 , · · · , 1
2 〉.
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6.5 Resource Monotonicity vs. Sharing In-
centives and Pareto efficiency

As shown in Table 2, DRF achieves all the properties ex-

cept resource monotonicity. Rather than being a limita-

tion of DRF, this is a consequence of the fact that sharing

incentive, Pareto efficiency, and resource monotonicity

cannot be achieved simultaneously. Since we consider

the first two of these properties to be more important (see

Section 3) and since adding new resources to a system is

a relatively rare event, we chose to satisfy sharing incen-

tive and Pareto efficiency, and give up resource mono-

tonicity. In particular, we have the following result.

Theorem 16 No allocation policy that satisfies the shar-
ing incentive and Pareto efficiency properties can also
satisfy resource monotonicity.

Proof We use a simple example to prove this prop-

erty. Consider two users A and B with symmetric de-

mands 〈2, 1〉, and 〈1, 2〉, respectively, and assume equal

amounts of both resources. Sharing incentive requires

that user A gets at least half of resource 1 and user B
gets half of resource 2. By Pareto efficiency, we know

that at least one of the two users must be allocated more

resources. Without loss of generality, assume that user A
is given more than half of resource 1 (a symmetric argu-

ment holds if user B is given more than half of resource

2). If the total amount of resource 2 is now increased by

a factor of 4, user B is no longer getting its guaranteed

share of half of resource 2. To ensure the sharing incen-

tive, the only feasible allocation is to give both users half

of resource 1, which would require decreasing user 1’s

share of resource 1, thus violating resource monotonic-

ity. �

This theorem explains why both DRF and CEEI vio-

late resource monotonicity.

6.6 Discrete Resource Allocation
So far, we have implicitly assumed one big resource pool

whose resources are allocated in arbitrary small amounts.

Of course, this is often not the case in practice. For ex-

ample, clusters consist of many small machines, where

resources are allocated to tasks in discrete amounts. In

the reminder of this section, we refer to these two sce-

narios as the continuous, and the discrete scenario, re-

spectively. We now turn our attention to how fairness is

affected in the discrete scenario.

Assume a cluster consisting of K machines.

Let max-task denote the maximum demand vec-

tor across all demand vectors, i.e., max-task =
〈maxi{di,1}, maxi{di,2}, · · · , maxi{di,m}〉. Assume

further that any task can be scheduled on every machine,

i.e., the total amount of resources on each machine

is at least max-task. We only consider the case when

each user has strictly positive demands. Given these

assumptions, we have the following result.

Theorem 17 In the discrete scenario, it is possible to
allocate resources such that the difference between the
allocations of any two users is bounded by one max-task
compared to the continuous allocation scenario.

Proof Assume we start allocating resources on one ma-

chine at a time, and that we always allocate a task to the

user with the lowest dominant share. As long as there

is at least a max-task available on the first machine, we

continue to allocate a task to the next user with least dom-

inant share. Once the available resources on the first ma-

chine become less than a max-task size, we move to the

next machine and repeat the process. When the alloca-

tion completes, the difference between two user’s alloca-

tions of their dominant resources compared to the con-

tinuous scenario is at most max-task. If this were not the

case, then some user A would have more than max-task
discrepancy w.r.t. to another user B. However, this can-

not be the case, because the last time A was allocated a

task, B should have been allocated a task instead. �

Recall that the dominant share of a user is defined as

the ratio her dominant resource allocation to the total

amount of that resource. One max-task therefore quickly

becomes negligible in most clusters. We, thus, have the

following simple corollary.

Corollary 18 The discrepancy between any two users’
dominant shares in the continuous and discrete scenario
converges to zero as the number of machines k goes to
infinity.

7 Experimental Results

This section evaluates DRF through micro- and macro-

benchmarks. The former is done through experiments

running an implementation of DRF in the Mesos cluster

resource manager [15]. The latter is done using trace-

driven simulations.

We start by showing how DRF dynamically adjusts the

shares of jobs with different resource demands in Section

7.1. In Section 7.2, we compare DRF against slot-level

fair sharing (as implemented by Hadoop Fair Scheduler

[33] and Quincy [17]), and CPU-only fair sharing. Fi-

nally, in Section 7.3, we use Facebook traces to compare

DRF and the Hadoop’s Fair Scheduler in terms of utiliza-

tion and job completion time.
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Figure 8: CPU, memory and dominant share for two

jobs.

7.1 Dynamic Resource Sharing

In our first experiment, we show how DRF dynamically

shares resources between jobs with different demands.

We ran two jobs on a 48-node Mesos cluster on Amazon

EC2, using “extra large” instances with 4 CPU cores and

15 GB of RAM. We configured Mesos to allocate up to

4 CPUs and 14 GB of RAM on each node, leaving 1 GB

for the OS. We submitted two jobs that launched tasks

with different resource demands at different times during

a 6-minute interval.

Figures 8 (a) and 8 (b) show the CPU and memory al-

locations given to each job as a function of time, while

Figure 8 (c) shows their dominant shares. In the first 2

minutes, job 1 uses 〈1 CPU, 10 GB RAM〉 per task and

job 2 uses 〈1 CPU, 1 GB RAM〉 per task. Job 1’s dom-

inant resource is RAM, while job 2’s dominant resource

is CPU. Note that DRF equalizes the jobs’ shares of their

dominant resources. In addition, because jobs have dif-

ferent dominant resources, their dominant shares exceed

50%, i.e., job 1 uses around 70% of the RAM while job

2 uses around 75% of the CPUs. Thus, the jobs benefit

from running in a shared cluster as opposed to taking half

the nodes each. This captures the essence of the sharing

incentive property.

After 2 minutes, the task sizes of both jobs change, to

〈2 CPUs, 4 GB〉 for job 1 and 〈1 CPU, 3 GB〉 for job

2. Now, both jobs’ dominant resource is CPU, so DRF

equalizes their CPU shares. Note that DRF switches allo-

cations dynamically by having Mesos offer resources to

the job with the smallest dominant share as tasks finish.

Finally, after 2 more minutes, the task sizes of both

jobs change again: 〈1 CPU, 7 GB〉 for job 1 and 〈1 CPU,

4 GB〉 for job 2. Both jobs’ dominant resource is now

memory, so DRF tries to equalize their memory shares.

The reason the shares are not exactly equal is due to re-

source fragmentation (see Section 6.6).

7.2 DRF vs. Alternative Allocation Policies

We next evaluate DRF with respect to two alternative

schemes: slot-based fair scheduling (a common policy in

current systems, such as the Hadoop Fair Scheduler [33]

and Quincy [17]) and (max-min) fair sharing applied

only to a single resource (CPU). For the experiment, we

ran a 48-node Mesos cluster on EC2 instances with 8

CPU cores and 7 GB RAM each. We configured Mesos

to allocate 8 CPUs and 6 GB RAM on each node, leav-

ing 1 GB free for the OS. We implemented these three

scheduling policies as Mesos allocation modules.

We ran a workload with two classes of users, repre-

senting two organizational entities with different work-

loads. One of the entities had four users submitting small

jobs with task demands 〈1 CPU, 0.5 GB〉. The other en-
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Figure 9: Number of large jobs completed for each al-

location scheme in our comparison of DRF against slot-

based fair sharing and CPU-only fair sharing.
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Figure 10: Number of small jobs completed for each al-

location scheme in our comparison of DRF against slot-

based fair sharing and CPU-only fair sharing.

tity had four users submitting large jobs with task de-

mands 〈2 CPUs, 2 GB〉. Each job consisted of 80 tasks.

As soon as a job finished, the user would launch another

job with similar demands. Each experiment ran for ten

minutes. At the end, we computed the number of com-

pleted jobs of each type, as well as their response times.

For the slot-based allocation scheme, we varied the

number of slots per machine from 3 to 6 to see how it

affected performance. Figures 9 through 12 show our re-

sults. In Figures 9 and 10, we compare the number of

jobs of each type completed for each scheduling scheme

in ten minutes. In Figures 11 and 12, we compare aver-

age response times.

Several trends are apparent from the data. First, with

slot-based scheduling, both the throughput and job re-

sponse times are worse than with DRF, regardless of the

number of slots. This is because with a low slot count,

the scheduler can undersubscribe nodes (e.g.,, launch

only 3 small tasks on a node), while with a large slot

count, it can oversubscribe them (e.g., launch 4 large

tasks on a node and cause swapping because each task

needs 2 GB and the node only has 6 GB). Second, with

fair sharing at the level of CPUs, the number of small

jobs executed is similar to DRF, but there are much fewer

large jobs executed, because memory is overcommitted

on some machines and leads to poor performance for all

the high-memory tasks running there. Overall, the DRF-

based scheduler that is aware of both resources has the

lowest response times and highest overall throughput.
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Figure 11: Average response time (in seconds) of large

jobs for each allocation scheme in our comparison of

DRF against slot-based fair sharing and CPU-only fair

sharing.
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Figure 12: Average response time (in seconds) of small

jobs for each allocation scheme in our comparison of

DRF against slot-based fair sharing and CPU-only fair

sharing.

7.3 Simulations using Facebook Traces

Next we use log traces from a 2000-node cluster at Face-

book, containing data for a one week period (October

2010). The data consists of Hadoop MapReduce jobs.

We assume task duration, CPU usage, and memory con-

sumption is identical as in the original trace. The traces

are simulated on a smaller cluster of 400 nodes to reach

higher utilization levels, such that fairness becomes rel-

evant. Each node in the cluster consists of 12 slots, 16

cores, and 32 GB memory. Figure 13 shows a short 300

second sub-sample to visualize how CPU and memory

utilization looks for the same workload when using DRF

compared to Hadoop’s fair scheduler (slot). As shown in

the figure, DRF provides higher utilization, as it is able

to better match the resource allocations with the task de-

mands.

Figure 14 shows the reduction of the average job com-

pletion times for DRF as compared to the Hadoop fair

scheduler. The workload is quite heavy on small jobs,

which experience no improvements (i.e., −3%). This is

because small jobs typically consist of a single execu-

tion phase, and the completion time is dominated by the

longest task. Thus completion time is hard to improve

for such small jobs. In contrast, the completion times of

the larger jobs reduce by as much as 66%. This is be-

cause these jobs consists of many phases, and thus they

can benefit from the higher utilization achieved by DRF.
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Figure 13: CPU and memory utilization for DRF and slot

fairness for a trace from a Facebook Hadoop cluster.
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Figure 14: Average reduction of the completion times for

different job sizes for a trace from a Facebook Hadoop

cluster.

8 Related Work

We briefly review related work in computer science and

economics.

While many papers in computer science focus on

multi-resource fairness, they are only considering multi-

ple instances of the same interchangeable resource, e.g.,
CPU [6, 7, 34], and bandwidth [10, 19, 20]. Unlike these

approaches, we focus on the allocation of resources of

different types.

Quincy [17] is a scheduler developed in the context

of the Dryad cluster computing framework [16]. Quincy

achieves fairness by modeling the fair scheduling prob-

lem as a min-cost flow problem. Quincy does not cur-

rently support multi-resource fairness. In fact, as men-

tioned in the discussion section of the paper [17, pg. 17],

it appears difficult to incorporate multi-resource require-

ments into the min-cost flow formulation.

Hadoop currently provides two fair sharing sched-

ulers [1, 2, 33]. Both these schedulers allocate resources

at the slot granularity, where a slot is a fixed fraction of

the resources on a machine. As a result, these sched-

ulers cannot always match the resource allocations with

the tasks’ demands, especially when these demands are

widely heterogeneous. As we have shown in Section 7,

this mismatch may lead to either low cluster utilization

or poor performance due to resource oversubscription.

In the microeconomic literature, the problem of equity

has been studied within and outside of the framework of

game theory. The books by Young [32] and Moulin [21]

are entirely dedicated to these topics and provide good

introductions. The preferred method of fair division in

microeconomics is CEEI [3, 32, 21], as introduced by

Varian [29]. We have therefore devoted considerable at-

tention to it in Section 5.2. CEEI’s main drawback com-

pared to DRF is that it is not strategy-proof. As a result,

users can manipulate the scheduler by lying about their

demands.

Many of the fair division policies proposed in the mi-

croeconomics literature are based on the notion of utility

and, hence, focus on the single metric of utility. In the

economics literature, max-min fairness is known as the

lexicographic ordering [25, 24] (leximin) of utilities.

The question is what the user utilities are in the multi-

resource setting, and how to compare such utilities. One

natural way is to define utility as the number of tasks al-

located to a user. But modeling utilities this way, together

with leximin, violates many of the fairness properties we

proposed. Viewed in this light, DRF makes two contri-

butions. First, it suggests using the dominant share as a

proxy for utility, which is equalized using the standard

leximin ordering. Second, we prove that this scheme is

strategy-proof for such utility functions. Note that the

leximin ordering is a lexicographic version of the Kalai-
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Smorodinsky (KS) solution [18]. Thus, our result shows

that KS is strategy-proof for such utilities.

9 Summary and Future Work

We have introduced Dominant Resource Fairness (DRF),

a fair sharing model that generalizes max-min fairness to

multiple resource types. DRF allows cluster schedulers

to take into account the heterogeneous demands of dat-

acenter applications, leading to both fairer allocation of

resources and higher utilization than existing solutions

that allocate identical resource slices (slots) to all tasks.

DRF satisfies a number of desirable properties. In par-

ticular, DRF is strategy-proof, so that users are incen-

tivized to report their demands accurately. DRF also in-

centivizes users to share resources by ensuring that users

perform at least as well in a shared cluster as they would

in smaller, separate clusters. Other schedulers that we in-

vestigated, as well as alternative notions of fairness from

the microeconomic literature, fail to satisfy all of these

properties.

We have evaluated DRF by implementing it in the

Mesos resource manager, and shown that it can lead to

better overall performance than the slot-based fair sched-

ulers that are commonly in use today.

There are several interesting directions for future re-

search. First, in cluster environments with discrete tasks,

one interesting problem is to minimize resource frag-

mentation without compromising fairness. This prob-

lem is similar to bin-packing, but where one must pack

as many items (tasks) as possible subject to meeting

DRF. A second direction involves defining fairness when

tasks have placement constraints, such as machine pref-

erences. A third direction is to extend DRF to handle

dependencies between tasks or jobs, i.e., task i of job

A and task j of job B should run on the same machine

(or on different machines). Given the current trend of

multi-core machines, another interesting research direc-

tion is to explore the use of DRF as an operating sys-

tem scheduler. Finally, from a microeconomic perspec-

tive, a natural direction is to investigate whether DRF is

the only possible strategy-proof policy for multi-resource

fairness, given other desirable properties such Pareto ef-

ficiency.
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for aggregated multiple links. SIGCOMM ’01,

31(4):189–197, 2001.

[11] B. Caprita, W. C. Chan, J. Nieh, C. Stein, and

H. Zheng. Group ratio round-robin: O(1) propor-

tional share scheduling for uniprocessor and mul-

tiprocessor systems. In USENIX Annual Technical
Conference, 2005.

[12] A. Demers, S. Keshav, and S. Shenker. Analysis

and simulation of a fair queueing algorithm. In

SIGCOMM ’89, pages 1–12, New York, NY, USA,

1989. ACM.

[13] D. Foley. Resource allocation and the public sector.

Yale Economic Essays, 7(1):73–76, 1967.

[14] P. Goyal, H. Vin, and H. Cheng. Start-time fair

queuing: A scheduling algorithm for integrated

services packet switching networks. IEEE/ACM
Transactions on Networking, 5(5):690–704, Oct.

1997.

6Any opinions, findings, conclusions, or recommendations ex-

pressed in this publication are those of the authors and do not nec-

essarily reflect the views of the NSF.

15



[15] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi,

A. D. Joseph, R. H. Katz, S. Shenker, and I. Stoica.

Mesos: A platform for fine-grained resource shar-

ing in the data center. In NSDI, 2011.

[16] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fet-

terly. Dryad: distributed data-parallel programs

from sequential building blocks. In EuroSys 07,

2007.

[17] M. Isard, V. Prabhakaran, J. Currey, U. Wieder,

K. Talwar, and A. Goldberg. Quincy: Fair schedul-

ing for distributed computing clusters. In SOSP ’09,

2009.

[18] E. Kalai and M. Smorodinsky. Other Solutions

to Nash’s Bargaining Problem. Econometrica,

43(3):513–518, 1975.

[19] J. M. Kleinberg, Y. Rabani, and É. Tardos. Fairness
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