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Abstract
Sharing a MapReduce cluster between users is attractive

because it enables statistical multiplexing (lowering costs)

and allows users to share a common large data set. How-

ever, we find that traditional scheduling algorithms can

perform very poorly in MapReduce due to two aspects of

the MapReduce setting: the need for data locality (run-

ning computation where the data is) and the dependence

between map and reduce tasks. We illustrate these prob-

lems through our experience designing a fair scheduler for

MapReduce at Facebook, which runs a 600-node multi-

user data warehouse on Hadoop. We developed two simple

techniques, delay scheduling and copy-compute splitting,

which improve throughput and response times by factors

of 2 to 10. Although we focus on multi-user workloads,

our techniques can also raise throughput in a single-user,

FIFO workload by a factor of 2.

1 Introduction
MapReduce and its open-source implementation Hadoop

[2] were originally optimized for large batch jobs such as

web index construction. However, another use case has

recently emerged: sharing a MapReduce cluster between

multiple users, which run a mix of long batch jobs and

short interactive queries over a common data set. Sharing

enables statistical multiplexing, leading to lower costs over

building private clusters for each group. Sharing a cluster

also leads to data consolidation (colocation of disparate

data sets). This avoids costly replication of data across

private clusters, and lets an organization run unanticipated

queries across disjoint datasets efficiently.

Our work was originally motivated by the MapReduce

workload at Facebook, a major web destination that runs a

data warehouse on Hadoop. Event logs from Facebook’s

website are imported into a Hadoop cluster every hour,

where they are used for a variety of applications, including

analyzing usage patterns to improve site design, detecting

spam, data mining and ad optimization. The warehouse

runs on 600 machines and stores 500 TB of compressed

data, which is growing at a rate 2 TB per day. In addition

to “production” jobs that must run periodically, there are

many experimental jobs, ranging from multi-hour machine

learning computations to 1-2 minute ad-hoc queries sub-

mitted through a SQL interface to Hadoop called Hive [3].

The system runs 3200 MapReduce jobs per day and has

been used by over 50 Facebook engineers.

As Facebook began building its data warehouse, it found

the data consolidation provided by a shared cluster highly

beneficial. For example, an engineer working on spam de-

tection could look for patterns in arbitrary data sources,

like friend lists and ad clicks, to identify spammers. How-

ever, when enough groups began using Hadoop, job re-

sponse times started to suffer due to Hadoop’s FIFO sched-

uler. This was unacceptable for production jobs and made

interactive queries impossible, greatly reducing the utility

of the system. Some groups within Facebook considered

building private clusters for their workloads, but this was

too expensive to be justified for many applications.

To address this problem, we have designed and imple-

mented a fair scheduler for Hadoop. Our scheduler gives

each user the illusion of owning a private Hadoop cluster,

letting users start jobs within seconds and run interactive

queries, while utilizing an underlying shared cluster effi-

ciently. During the development process, we have uncov-

ered several scheduling challenges in the MapReduce set-

ting that we address in this paper. We found that existing

scheduling algorithms can behave very poorly in MapRe-

duce, degrading throughput and response time by factors

of 2-10, due to two aspects of the setting: data locality (the

need to run computations near the data) and interdepen-

dence between map and reduce tasks. We developed two

simple, robust algorithms to overcome these problems: de-

lay scheduling and copy-compute splitting. Our techniques

provide 2-10x gains in throughput and response time in a

multi-user workload, but can also increase throughput in

a single-user, FIFO workload by a factor of 2. While we

present our results in the MapReduce setting, they gener-

alize to any data flow based cluster computing system, like

Dryad [20]. The locality and interdependence issues we

address are inherent in large-scale data-parallel computing.

There are two aspects that differentiate scheduling in

MapReduce from traditional cluster scheduling [12]. The

first aspect is the need for data locality, i.e., placing tasks

on nodes that contain their input data. Locality is crucial

for performance because the network bisection bandwidth

in a large cluster is much lower than the aggregate band-

width of the disks in the machines [16]. Traditional clus-

ter schedulers that give each user a fixed set of machines,
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like Torque [12], significantly degrade performance, be-

cause files in Hadoop are distributed across all nodes as

in GFS [19]. Grid schedulers like Condor [22] support lo-

cality constraints, but only at the level of geographic sites,

not of machines, because they run CPU-intensive appli-

cations rather than data-intensive workloads like MapRe-

duce. Even with a granular fair scheduler, we found that lo-

cality suffered in two situations: concurrent jobs and small

jobs. We address this problem through a technique called

delay scheduling that can double throughput.

The second aspect of MapReduce that causes problems

is the dependence between map and reduce tasks: Re-

duce tasks cannot finish until all the map tasks in their

job are done. This interdependence, not present in tradi-

tional cluster scheduling models, can lead to underutiliza-

tion and starvation: a long-running job that acquires reduce

slots on many machines will not release them until its map

phase finishes, starving other jobs while underutilizing the

reserved slots. We propose a simple technique called copy-
compute splitting to address this problem, leading in 2-10x

gains in throughput and response time. The reduce/map de-

pendence also creates other dynamics not present in other

settings: for example, even with well-behaved jobs, fair

sharing in MapReduce can take longer to finish a batch

of jobs than FIFO; this is not true environments, such as

packet scheduling, where fair sharing is work conserving.

Yet another issue is that intermediate results produced by

the map phase cannot be deleted until the job ends, con-

suming disk space. We explore these issues in Section 7.

Although we motivate our work with the Facebook case

study, the problems we address are by no means con-

strained to a data warehousing workload. Our contacts at

another major web company using Hadoop confirm that

the biggest complaint users have about the research clus-

ters there is long queueing delays. Our work is also rel-

evant to the several academic Hadoop clusters that have

been announced. One such cluster is already using our fair

scheduler on 2000 nodes. In general, effective scheduling

is more important in data-intensive cluster computing than

in other settings because the resource being shared (a clus-

ter) is very expensive and because data is hard to move (so

data consolidation provides significant value).

The rest of this paper is organized as follows. Section 2

provides background on Hadoop and problems with previ-

ous scheduling solutions for Hadoop, including a Torque-

based scheduler. Section 3 presents our fair scheduler.

Section 4 describes data locality problems and our delay

scheduling technique to address them. Section 5 describes

problems caused by reduce/map interdependence and our

copy-compute splitting technique to mitigate them. We

evaluate our algorithms in Section 6. Section 7 discusses

scheduling tradeoffs in MapReduce and general lessons for

job scheduling in cluster programming systems. We survey

related work in Section 8 and conclude in Section 9.

Figure 1: Data flow in MapReduce. Figure from [4].

2 Background
Hadoop’s implementation of MapReduce resembles that of

Google [16]. Hadoop runs on top of a distributed file sys-

tem, HDFS, which stores three replicas of each block like

GFS [19]. Users submit jobs consisting of a map function

and a reduce function. Hadoop breaks each job into mul-

tiple tasks. First, map tasks process each block of input

(typically 64 MB) and produce intermediate results, which

are key-value pairs. These are saved to disk. Next, re-
duce tasks fetch the list of intermediate results associated

with each key and run it through the user’s reduce func-

tion, which produces output. Each reducer is responsible

for a different portion of the key space. Figure 1 illustrates

a MapReduce computation.

Job scheduling in Hadoop is performed by a master
node, which distributes work to a number of slaves. Tasks

are assigned in response to heartbeats (status messages) re-

ceived from the slaves every few seconds. Each slave has a

fixed number of map slots and reduce slots for tasks. Typi-

cally, Hadoop tasks are single-threaded, so there is one slot

per core. Although the slot model can sometimes under-

utilize resources (e.g., when there are no reduces to run), it

makes managing memory and CPU on the slaves easy. For

example, reduces tend to use more memory than maps, so it

is useful to limit their number. Hadoop is moving towards

more dynamic load management for slaves, such as taking

into account tasks’ memory requirements [5]. In this pa-

per, we focus on scheduling problems above the slave level.

The issues we identify and the techniques we develop are

independent of slave load management mechanism.

2.1 Previous Scheduling Solutions for Hadoop

Hadoop’s built-in scheduler runs jobs in FIFO order, with

five priority levels. When a task slot becomes free, the

scheduler scans through jobs in order of priority and submit

time to find one with a task of the required type1. For maps,

the scheduler uses a locality optimization as in Google’s

1With memory-aware load management [5], there is also a check that

the slave has enough memory for the task.
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MapReduce [16]: after selecting a job, the scheduler picks

the map task in the job with data closest to the slave (on the

same node if possible, otherwise on the same rack, or fi-

nally on a remote rack). Finally, Hadoop uses backup tasks
to mitigate slow nodes as in [16], but backup scheduling is

orthogonal to the problems we study in this paper.

The disadvantage of FIFO scheduling is poor response

times for short jobs in the presence of large jobs. The

first solution to this problem in Hadoop was Hadoop On

Demand (HOD) [6], which provisions private MapReduce

clusters over a large physical cluster using Torque [12].

HOD lets users share a common filesystem (running on all

nodes) while owning private MapReduce clusters on their

allocated nodes. However, HOD had two problems:

• Poor Locality: Each private cluster runs on a fixed set

of nodes, but HDFS files are divided across all nodes.

As a result, some maps must read data over the net-

work, degrading throughput and response time. One

trick to address this is to make each HOD cluster have

at least one node per rack, letting data be read over rack

switches [10], but this is not enough if rack bandwidth

is less than the bandwidth of the disks on each slave.

• Poor Utilization: Because each private cluster has a

static size, some nodes in the physical cluster may

be idle. This is suboptimal because Hadoop jobs are

“elastic,” unlike traditional HPC jobs, in that they can

change how many nodes they are running on over time.

Idle nodes could thus go towards speeding up jobs.

3 The FAIR Scheduler Design
To address the problems with HOD, we developed a fair

scheduler, simply called FAIR, for Hadoop at slot-level

granularity. Our scheduler has two main goals:

• Isolation: Give each user (job) the illusion of owning

(running) a private cluster.

• Statistical Multiplexing: Redistribute capacity un-

used by some users (jobs) to other users (jobs).

FAIR uses a two-level hierarchy. At the top level, FAIR

allocates task slots across “pools”, and at the second level,

each pool allocates its slots among multiple jobs in the

pool. Figure 2 shows an example hierarchy. While in

our design and implementation we used a two level hier-

archy, FAIR can be easily generalized to more levels.

FAIR uses a version of max-min fairness [8] with min-

imum guarantees to allocate slots across pools. Each pool

i is given a minimum share (number of slots) mi, which

can be zero. The scheduler ensures that each pool will re-

ceive its minimum share as long as it has enough demand,

and the sum over the minimum shares of all pools does

not exceed the system capacity. When a pool is not using

its full minimum share, other pools are allowed to use its

slots. In practice, we create one pool per user and special

pools for production jobs. This gives users (pools) perfor-
mance at least as good as they would have had in a private

Hadoop cluster 
capacity: 100 

Pool 2 (user 2) 
allocation: 40 

Pool 1 (user 1) 
allocation: 60 

Pool 3 (prod. job) 
allocation: 0 

Job 1 Job 2 Job 3 Job 4 Job 5 

m1 = 60 m3 = 10 

Figure 2: Example of allocations in our scheduler. Pools 1 and 3

have minimum shares of 60, and 10 slots, respectively. Because

Pool 3 is not using its share, its slots are given to Pool 2.

Hadoop cluster equal in size to their minimum share, but

often higher due to statistical multiplexing.

FAIR uses the same scheduling algorithm to allocate

slots among jobs in the same pool, although other schedul-

ing disciplines, such as FIFO and multi-level queueing,

could be used.

3.1 Slot Allocation Algorithm

We formally describe FAIR in Appendix 10. Here, we give

one example to give the reader a notion of how it works.

Figure 3 illustrates an example where we allocate 100

slots among four pools with the following minimum shares

mi and demands di: (m1 = 50,d1 = 46), (m1 = 10,d1 =
18), (m1 = 25,d1 = 28), (m4 = 15,d4 = 16). We visual-

ize each pool as a bucket, the size of which represents the

pool’s demand. Each bucket also has a mark represent-

ing its minimum share. If pool’s minimum share is larger

than its demand, the bucket has no mark. The allocation

reduces to pouring water into the buckets, where the total

volume of water represents the number of slots in the sys-

tem. FAIR operates in three phases. In the first phase, it fills

each unmarked bucket, i.e., it satisfies the demand of each

bucket whose minimum share is larger than its demand. In

the second phase, it fills all remaining buckets up to their

marks. With this step, the isolation property is enforced as

each bucket has received either its minimum share, or its

demand has been satisfied. In the third phase, FAIR im-

plements statistical multiplexing by pouring the remaining

water evenly into unfilled buckets, starting with the bucket

with the least water and continuing until all buckets are full

or the water runs out. The final shares of the pools are 46

for pool 1, 14 for pool 2, 25 for pool 3 and 15 for pool 4,

which is as close as possible to fair while meeting mini-

mum guarantees.

3.2 Slot Reassignment

As described above, at all times, FAIR aims to allocate the

entire capacity of the clusters among pools that have jobs.

A key question is how to reassign the slots when demand

changes. Consider a system with 100 slots and two pools

which use 50 slots each. When a third pool becomes ac-

tive, assume FAIR needs to reallocate the slots such that

each pool gets roughly 33 slots. There are three ways to
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46 
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25 

15 

(c)

m1=50 
d1=46 

m2=10 
d2=18 

m3=25 
d3=28 

m4=15 
d4=16 

10 

20 

30 

40 

50 

0 

0 
slots to assign 

46 

14 
25 

15 

(d)

Figure 3: Slot allocation example. Figure (a) shows pool demands (as boxes) and minimum shares (as dashed lines). The algorithm

proceeds in three phases: fill buckets whose minimum share is more than their demand (b), fill remaining buckets up to their minimum

share (c), and distribute remaining slots starting at the emptiest bucket (d).

free slots for the new job: (1) kill tasks of other pools’

jobs, (2) wait for tasks to finish, or (3) preempt tasks (and

resume them later). Killing a task allows FAIR to imme-

diately re-assign the slot, but it wastes the work performed

by the task. In contrast, waiting for the task to finish delays

slot reassignment. Task preemption enables immediate re-

assignment and avoids wasting work, but it is complex to

implement, as Hadoop tasks run arbitrary user code. FAIR

uses a combination of approaches (1) and (2).

When a new job starts, FAIR starts allocating slots to

it as other jobs’ tasks finish. Since MapReduce tasks are

typically short (15-30s for maps and a few minutes for

reduces), a job will achieve its fair share (as computed

by FAIR) quite fast. For example, if tasks are one minute

long, then every minute, we can reassign every slot in the

cluster. Furthermore, if the new job only needs 10% of the

slots, it gets them in 6 seconds on average. This makes

launch delays in our shared cluster comparable to delays in

private clusters.

However, there can be cases in which jobs do have

long tasks, either due to bugs or due to non-parallelizable

computations. To ensure that each job gets its share in

those cases, FAIR uses two timeouts, one for guaranteeing

the minimum share (Tmin), and another one for guarantee-

ing the fair share (Tf air), where Tmin < Tf air. If a newly

started job does not get its minimum share before Tmin ex-

pires, FAIR kills other pools’ tasks and re-allocates them to

the job. Then, if the job has not achieved its fair share by

Tf air, FAIR kills more tasks. When selecting tasks to kill,

we pick the most recently launched tasks in over-scheduled

jobs to minimize wasted computation, and we never bring a

job below its fair share. Hadoop jobs tolerate losing tasks,

so a killed task is treated as if it never started. While killing

tasks lowers throughput, it lets us meet our goal of giving

each user the illusion of a private cluster. User isolation

outweighs the loss in throughput.

3.3 Obstacles to Fair Sharing

After deploying an initial version of FAIR, we identified

two aspects of MapReduce which have a negative impact

on the performance (throughput, in particular) of FAIR.

Since these aspects are not present in the tradiotional HPC

scheduling we discuss them in detail:

• Data Locality: MapReduce achieves its efficiency by

running tasks on the nodes that contain their input data,

but we found that a strict implementation of fair shar-

ing can break locality. This problem also happens with

strict implementations of other scheduling disciplines,

including FIFO in Hadoop’s default scheduler.

• Reduce/Map Interdependence: Because reduce tasks

must wait for their job’s maps to finish before they can

complete, they may occupy a slot for a long time, starv-

ing other jobs. This also leads to underutilization of the

slot if the waiting reduces have little data to copy.

The next two sections explain and address these problems.

4 Data Locality
The first aspect of MapReduce that poses scheduling chal-

lenges is the need to place computation near the data. This

increases throughput because network bisection bandwidth

is much smaller in a large cluster than the total bandwidth

of the cluster’s disks. Running on a node that contains the

data (node locality is most efficient, but when this is not

possible, running on the same rack (rack locality) provides

better performance than being off-rack. Rack interconnects

are usually 1 Gbps, whereas bandwidth per node at an ag-

gregation switch can be 10x lower. Rack bandwidth may

still be less than the total bandwidth of the disks on each

node, however. For example, Facebook’s nodes have 4

disks, with a bandwidth of 50-60 MB/s each or 2 Gbps

in total, while its rack links are 1 Gbps.

We describe two locality problems observed at Face-

book, followed by a technique called delay scheduling to

address them. We analyze delay scheduling in Section

4.3 and explain a refinement, IO-rate biasing, for handling

hotspots.

4.1 Locality Problems

The first locality problem we saw was in small jobs. Fig-

ure 4 shows locality for jobs of different sizes (number of

maps) running in production at Facebook over a month.

Each point represents a bin of sizes. The first point is for

jobs with 1 to 25 maps, which only achieve 5% node local-

ity and 59% rack locality. In fact, 58% of jobs at Facebook

fall into this bin, because small jobs are common for ad-hoc

queries and hourly reports in a data warehouse.

This problem is caused by a behavior we call head-of-
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Figure 4: Data locality vs. job size in production at Facebook.
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Figure 5: Expected effect of sticky slots in 100-node cluster.

line scheduling. At any time, there is a single job that must

be scheduled next according to fair sharing: the job farthest

below its fair share. Any slave that requests a task is given

one from this job. However, if the head-of-line job is small,

the probability that blocks of its input are available on the

slave requesting a task is low. For example, a job with

data on 10% of nodes achieves 10% locality. This problem

is present in all current Hadoop schedulers, including the

FIFO scheduler, because they all give tasks to the first job

in some ordering (by submit time, fair share, etc).

A related problem, sticky slots, happens even with large

jobs if fair sharing is used. Suppose, for example, that there

are 10 jobs in a 100-node cluster with one slot per node,

and each is running 10 tasks. Suppose Job 1 finishes a

task on node X. Node X sends a heartbeat requesting a new

task. At this point, Job 1 has 9 tasks running while all

other jobs have 10. Therefore, Job 1 is assigned the slot

on node X again. Consequently, in steady state, jobs never
leave their original slots. This leads to poor locality as in

HOD, because input files are distributed across the cluster.

Locality can be low even with few jobs. Figure 5 shows

expected locality in a 100-node cluster with 3-way block

replication and one slot per node as a function of number of

concurrent jobs. Even with 5 jobs, locality is below 50%.

Sticky slots do not occur in Hadoop due to a bug in how

Hadoop counts running tasks. Hadoop tasks enter a “com-

mit pending” state after finishing their work, where they

request permission to rename their output to its final file-

name. The job object in the master counts a task in this

state as running, whereas the slave object doesn’t. There-

fore another job can be given the task’s slot. While this is

bug (breaking fairness), it has limited impact on through-

put and response time. Nonetheless, we explain sticky slots

to warn other system designers of the problem. In Section

6, we show that sticky slots lower throughput by 2x in a

modified version of Hadoop without this bug.

4.2 Our Solution: Delay Scheduling

The problems we presented stem from a lack of choice in

the scheduler: following a strict queueing order forces a

job with no local data to be scheduled. We address them

through a simple technique called delay scheduling. When

a node requests a task, if the head-of-line job cannot launch

a local task, we skip this job and look at subsequent jobs.

However, if a job has been skipped long enough, we let it

launch non-local tasks, avoiding starvation. In our sched-

uler, we use two wait times: jobs wait T1 seconds before

being allowed to launch non-local tasks on the same rack

and T2 more seconds before being allowed to launch off-

rack. We found that setting T1 and T2 as low as 15 seconds

can bring locality from 2% to 80% even in a pathological

workload with very small jobs and can double throughput.

Formal pseudocode for delay scheduling is as follows:

Algorithm 1 Delay Scheduling

Maintain three variables for each job j, initialized as j.level =
0, j.wait = 0, and j.skipped = f alse.

if a heartbeat is received from node n then
for each job j with j.skipped = true, increase j.wait by the

time since last heartbeat and set j.skipped = f alse
if n has a free map slot then

sort jobs in by distance below min and fair share

for j in jobs do
if j has a node-local task t for n then

set j.wait = 0 and j.level = 0

return t to n
else if j has rack-local task t on n and ( j.level ≥ 1 or

j.wait ≥ T1) then
set j.wait = 0 and j.level = 1

return t to n
else if j.level = 2 or ( j.level = 1 and j.wait ≥ T2) or

( j.level = 0 and j.wait ≥ T1 +T2) then
set j.wait = 0 and j.level = 2

return t to n
else

set j.skipped = true
end if

end for
end if

end if

Each job begins at a locality level of 0, where it can only

launch node-local tasks. If it waits at least T1 seconds, it

goes to locality level 1 and may launch rack-local tasks.

If it waits a further T2 seconds, it goes to level 2 and may

launch off-rack tasks. It is straightforward to add more lo-
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cality levels for clusters with more than a two-level net-

work hierarchy. Finally, if a job ever launches a “more

local” task than the level it is on, it goes back to a previous

level. This ensures that a job that gets unlucky early in its

life will not always keep launching non-local tasks.

Delay scheduling performs well even with values of T1

and T2 as small as 15 seconds. This happens because map

tasks tend to be short (10-20s). Even if each map is 60s

long, in 15 seconds, we have a chance to launch tasks on

25% of the slots in the cluster, assuming tasks finish uni-

formly throughout time. Because nodes have multiple map

slots (5 at Facebook) and each block has multiple replicas

(usually 3), the chance of launching on a local node is high.

For example, with 5 slots per node and 3 replicas, there are

15 slots in which a task can run. The probability of at least

one of them freeing up in 15s is 1− (3/4)15 = 98.6%.

4.3 Analysis

We analyzed delay scheduling from two perspectives: min-

imizing response times and maximizing throughput. Our

goal was to determine how the algorithm behaves as a func-

tion of the values of the delays, T1 and T2. Through this

analysis, we also derived a refinement called IO-rate bias-

ing for handling hotspots more efficiently.

4.3.1 Response Time Perspective

We used a simple mathematical model to determine how

waits should be set if the only goal is to provide the best

response time for a given job. In this model, we assume

that competing map tasks don’t affect each other’s band-

width – perhaps because the bulk of the bandwidth in the

cluster is used by reduce tasks, or because the job is small

(which is 10-15s of response time matter). Instead, a non-

local map just takes D seconds longer to run than a local

map. D depends on the task; it might be 0 for CPU-bound

jobs. We model the arrival of task requests at the master

as a Poisson process where requests from nodes with local

data arrive at a rate of one every t seconds. This is a good

approximation if there are enough slots with local data re-

gardless of the distribution of task lengths, by the Law of

Rare Events. Suppose that we set the wait time for launch-

ing tasks locally to w. We calculated the expected gain in a

task’s response time from delay scheduling, as opposed to

launching it on the first request received, to be:

E(gain) = (1− e−w/t)(D− t) (1)

A first implication of this result is that delay scheduling

is worthwhile if D > t. Intuitively, waiting is worthwhile if

the delay from running non-locally is less than the expected

wait for a local slot. This happens because 1− e−w/t is

always positive, so the sign of the gain is determined by

D− t. Waiting might not be worthwhile in two conditions:

if D is low (e.g. the job is not IO-bound) or if t is high (the

job has few maps left or the cluster is running long tasks).

A second implication is that when D > t, the optimal

wait time is infinity. This is because 1− e−w/t approaches

1 as w increases. This result might seem counterintuitive,

but it follows from the Poisson nature of our task request

arrival model: if waiting used to be worthwhile because

D > t and we have waited some time and not received a

local task request, then D is still greater than t so waiting

is still worthwhile. In practice, infinite delays do not make

sense, but we see that expected gain grows with w and lev-

els out fast (for example, if w = 2t then 1− e−w/t = 0.86).

Therefore, delays can be set to bound worst-case response

time, rather than needing to be carefully tuned.

In conclusion, a scheduler optimizing only for response

time should launch CPU-bound right away but use delay

scheduling for IO-bound jobs, except maybe towards the

end of the job when only a few tasks are left to run.

4.3.2 Throughput Perspective

From the point of view of throughput, if there are many

jobs running and load across nodes is balanced, it is always

worthwhile to skip jobs that cannot launch local tasks – a

job further in the queue will have a task to launch. How-

ever, there is a problem if there’s a “hotspot” node that

many jobs want to run on: this node becomes a bottleneck,

while other nodes are left idle. Setting the wait thresholds

to any reasonably small value will prevent this, because the

tasks waiting on the hotspot will be given to other nodes. If

the tasks waiting on the hotspot have similar performance

characteristics, there will be no impact on throughput.

A refinement can be made when the tasks waiting on the

hotspot have different performance characteristics. In this

case, it is best to launch CPU-intensive tasks non-locally,
while running IO-bound tasks locally. We call this policy

IO-rate biasing. IO-rate biasing helps because CPU-bound

tasks read data at a lower rate than IO-bound tasks, and

therefore, running them remotely places less load on the

network than running IO-bound tasks remotely. For exam-

ple, suppose that two types of tasks waiting on a hotspot

node: IO-bound tasks from Job 1 that take 5s to process a

64 MB block, and CPU-bound tasks from Job 2 that take

25s to process a block. If the scheduler launches a task

from Job 1 remotely, this task will try to read data over the

network at 64MB/5s = 12.8 MB/s. If this bandwidth can’t

be met, the task will run longer than 5s, decreasing over-

all throughput (rate of task completion). Even if the 12.8

MB/s can be provided, this flow will compete with reduce

traffic, decreasing throughput. On the other hand, if the

scheduler runs the task from Job 2 remotely, the task only

needs to read data at 64MB/25s = 2.56 MB/s, and still takes

25s if the network can provide this rate.

IO-rate biasing can be implemented by simply setting

the wait times T1 and T2 for CPU-bound jobs lower than

for IO-bound jobs in the delay scheduling algorithm. In

Section 6, we show an experiment with where setting de-

lays this way yields a 15% improvement in throughput.
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We also note that the 3-way replication of blocks in

Hadoop means that hotspots likely to arise only if many

jobs access a small hot file. If each job access a different

file or input files are large, then data will be distributed

evenly throughout the cluster, and it is unlikely that all

three replicas of a block are heavily loaded by a power of

2 choices argument. In the case where there is a hot file,

another solution is to increase its replication level.

5 Reduce/Map Interdependence
In addition to locality, another aspect MapReduce that cre-

ates scheduling challenges is the dependence between the

map and reduce phases. Maps generate intermediate re-
sults that are stored on disk. Each reducer copies its por-

tion of the results of each map, and can only apply the

user’s reduce function once it has results from all maps.

This can lead to a “slot hoarding” problem where long jobs

hold reduce slots for a long time, starving small jobs and

underutilizing resources. We developed a solution called

copy-compute splitting that divides reduces into copy and

compute tasks with separate admission control. We also

explain two other implications of the reduce/map depen-

dence: its effect on batch response times (Section 5.3) and

the problem disk space usage by intermediate results (Sec-

tion 5.4). Although we explore these issues in MapReduce,

they apply in any system where some tasks read input from

multiple other tasks, such as Dryad.

5.1 Reduce Slot Hoarding Problem

The first reduce scheduling problem we saw occurs in fair

sharing when there are large jobs running in the cluster.

Hadoop normally launches reduce tasks for a job as soon as

its first few maps finish, so that reduces can begin copying

map outputs while the remaining maps are running. How-

ever, in a large job with tens of thousands of map tasks, the

map phase may take a long time to complete. The job will

hold any reduce slots it receives during this until its maps

finish. This means that if there are periods of low activity

from other users, the large job will take over most or all of

the reduce slots in the cluster, and if any new job gets sub-

mitted later, that job will starve until the large job finishes.

Figure 6 illustrates this problem.

This problem also affects throughput. In many large

jobs, map outputs are small, because the maps are filter-

ing a data set (e.g. selecting records involving a particular

advertiser from a log). Therefore, the reduce tasks occupy-

ing slots are mostly idle until the maps finish. However, an

entire reduce slot is allocated to these tasks, because their

compute phases will be expensive once their copy phases

end. The job effectively “reserved” slots for a future CPU-

or memory-intensive computation, but during the time that

the slots are reserved, other jobs could have run CPU and

memory intensive tasks in these slots.

It may appear that these problems could be solved by

starting reduce tasks later or making them pausable. How-
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Figure 6: Reduce slot hoarding example. The cluster starts with

jobs 1, 2 and 3 running and sharing both map and reduce slots. As

jobs 2 and 3 finish, job 1 acquires all slots in the cluster. When

job 4 is submitted, it can take map slots (because maps finish

constantly) but not reduce slots (because job 1’s reduces wait for

all its maps to finish).

ever, the implementation of reduce tasks in Hadoop can

lower throughput even when a single job is running. The

problem is that two operations with distinct resource re-

quirements – an IO-intensive copy and a CPU-intensive re-

duce – are bundled into a single task. At any time, a reduce

slot is either using the network to copy map outputs or us-

ing the CPU to apply the reduce function, but not both.

This can degrade throughput in a single job with multiple

waves of reduce tasks because there is a tendency for re-

duce reduces to copy and compute in sync: When the job’s

maps finish, the first wave of reduce tasks start computing

nearly simultaneously, then they finish at roughly the same

time and the next wave begins copying, and so on. At any

time, all slots are copying or all slots are computing. The

job would run faster by overlapping IO and CPU (continu-

ing to copy while the first wave is computing).

5.2 Our Solution: Copy-Compute Splitting

Our proposed solution to these problems is to split reduce

tasks into two logically distinct types of tasks, copy tasks
and compute tasks, with separate forms of admission con-

trol.2 Copy tasks fetch and merge map outputs, an opera-

tion which is normally network-IO-bound.3 Compute tasks

apply the user’s reduce function to the map outputs.

Copy-compute splitting could be implemented by hav-

ing separate processes for copy and compute tasks, but

this is complex because compute tasks need to read copy

outputs efficiently (e.g. through shared memory). Instead,

2This idea was also proposed to us independently by a member of

another group submitting a paper on cluster scheduling to SOSP.
3They may also apply associative “combiner” operations [16] such as

addition, maximum and counting, but these are usually inexpensive.
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we implemented it by adding an admission control step to

Hadoop’s existing reducer processes before the compute

phase starts. We call this Compute Phase Admission Con-

trol (CPAC). When a reducer finishes copying data, it asks

the slave daemon on its machine for permission to begin

its compute phase. The slave limits the number of reducers

computing at any time. This lets nodes run more reducers

than they have compute resources for, but limit competi-

tion for these resources. We also limit the number of copy-

phase reducers each job can have on the node to its number

of compute slots, letting other jobs use the other slots.

For example, a dual-core machine that would normally

be configured with 2 reduce slots might allow 6 simulta-

neous reducers, but only let 2 of them to be computing at

each time. This machine would also limit the number of

reduces that can be copying per job to 2. If a single large

job is submitted to the cluster, the machine will only run

two of its reducers while its maps are running. During this

time, smaller jobs may use the other slots for both copying

and computing. When the large job’s maps finish and its

reducers begin computing, the job is allowed to launch two

more reducers to overlap copying with computation.

In the general case, CPAC works as follows:

• Each slave has two limits: maxReducers total reducers

may be running and maxComputing reducers may be

computing at a time. maxComputing is set to the num-

ber of reduce slots the node would have in unmodified

Hadoop, while maxReducers is several times higher.

• Each job can also only have maxComputing reduces

performing copies on each node.

Because CPAC reuses the existing reduce task code in

Hadoop, it required only 50 lines of code to implement and

performs as well as unmodified Hadoop when only a single

job is running (with some caveats explained below).

Although we described CPAC in terms of task slots, any

admission control mechanism can be used to determine

when new copy and compute tasks may be launched. For

example, a slave may look at working set sizes of currently

running tasks to determine when to admit more reducers

into the compute phase, or the master may look at net-

work IO utilization on each slave to determine determine

where and when to launch copy tasks. CPAC already ben-

efits from Hadoop’s logic for preventing thrashing based

on memory requirements for each task [5], because from

Hadoop’s point of view, CPAC’s tasks are just reduce tasks.

CPAC does have some limitations as presented. First, it

is still possible to starve small jobs if there are enough long

jobs running to fill all maxReducers slots on each node.

This situation was not common at Facebook, and further-

more, the preemption timeouts in our scheduler let starved

jobs acquire task slots after several minutes by killing tasks

from older jobs if the problem does occur. We plan to ad-

dress this problem in our scheduler by allowing some re-

duce slots on to be reserved for short jobs or production

jobs. Another option is to allow pausing of copy tasks, but

while this is easy to implement (the reducer periodically

asks the slave whether to pause), it complicates scheduling

(e.g. when do we unpause a task vs. running a new task).

A second potential problem is that memory allocated to

merging map outputs in each reducer needs to be smaller,

so that tasks in their copy phase do not interfere with those

computing. Hadoop already supports sorting map results

on disk if there are too many of them, but CPAC may

cause more reduce tasks to spill to disk. One solution that

works for most jobs is to increase the number of reduce

tasks, making each task smaller. This cannot be applied

in jobs where some key in the intermediate results has a

large number of values associated with it, since the values

for the same key have to go through the same reduce task.

For such jobs, it may be better to accumulate the results in

memory in a single reducer and work on them there, for-

going the overlapping of network IO and computation that

would be achieved with CPAC. A memory-aware admis-

sion control mechanism for slaves, like [5], handles this

automatically. In addition, we let users of our scheduler

manually cap the number of reduces a job runs per node.

5.3 Effect of Dependence on Batch Response Times

A counterintuitive consequence of the dependence between

map and reduce tasks is that response time for a batch of

jobs can be wprse with fair sharing than with FIFO, even

with if copy-compute splitting is used. That is, given a

fixed set of jobs S to run, it may take longer to run S with

fair sharing than with FIFO. This cannot happen in, for

example, packet scheduling or CPU scheduling. This effect

is relevant for example when an organization needs to build

a set of reports every night in the least possible time.

As a simple example, suppose there are two jobs run-

ning, each of which would take 100s to finish its maps and

another 100s to finish its reduces. Suppose that the bulk

of the time in reduces is spent in computation, not network

IO. Then, if fair sharing is used, the two jobs will take 400s

to finish: during the first 200s, both jobs will be running

map tasks and competing for IO, while during the last 200s,

both jobs will be running CPU-intensive reduce tasks. On

the other hand, if FIFO is used, the jobs take only 300s to

finish: Job 1 completes its maps in 100s, then starts its re-

duces; during the next 100s, Job 1 runs reduces while Job 2

runs maps; and finally, in the last 100s, Job 2 runs reduces.

Figure 7 illustrates this situation. FIFO achieves 33% bet-

ter response time by pipelining computations better: it lets

the IO-intensive maps from Job 2 run concurrently with the

CPU-intensive reduces from Job 1. The gain could be up to

2x with more than 2 concurrent jobs. This effect happens

regardless of whether copy-compute splitting is used. We

also show a 20% difference with real jobs in Section 6.

To explore this issue, we ran simulations of a 10-node

MapReduce cluster to which 30 jobs of various sizes are

submitted at random intervals. Our simulated nodes have

one map slot and one reduce slot each. We generated job
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Figure 7: Fair Sharing vs FIFO in simple workload.

sizes using a Zipfian distribution, so that each job would

have between 1 and 400 maps and a random number of re-

duces between 1 and numMaps/5. We created 20 submis-

sion schedules and tested them with FIFO and fair sharing

with and without copy-compute splitting, as well as fair

sharing with task-killing (jobs may kill other jobs’ tasks

when they are starved). Figure 8 shows response time of

the workload as a whole under each scheduler. Figure 9

shows slowdown for each job, which is defined as response

time of a job in our simulation divided response time the

job would achieve if it were running alone on a cluster with

copy-compute splitting. There are several effects seen.

Slowdowns with FIFO routinely reach 90x, showing the

unsuitability of FIFO for multi-user workloads. Fair shar-

ing, preemption and copy-compute splitting each cut slow-

down in half. However, FIFO’s batch response time is al-

ways best, even with copy-compute splitting.

5.4 Space Usage Concerns with Intermediate Data

The final complication caused by task interdependence is

the issue of space used up by intermediate results on disk.

Disk space is often a limited resource because in MapRe-

duce there is motivation to keep as much data as possible

on a cluster. For example, in a data warehouse, it is ben-

eficial to keep as many months’ worth of data as possible.

While many jobs use map tasks to filter a data set and thus

have small map outputs, it is also possible to have maps

that “explode” their input and create large amounts of in-

termediate data. One example of such jobs at Facebook is

map-side joins with small tables.

Hadoop already has safeguards ensure that a node’s

disks won’t be filled up – the node will refuse to admit

tasks that are expected to overflow its disk. However, it is

possible to get “stuck” if two jobs are running concurrently

and the disk becomes full before either finishes. To avoid

such deadlocks, results from one job must be deleted un-

til the other job completes. Any heuristic for selecting the

victim job works as long as it allows some job in the cluster

to monotonically make progress. Some possibilities are:

• Evict the job that was submitted latest.
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Figure 8: Batch response times in simulated workload.
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Figure 9: Averages of maximum and mean slowdowns in 20 sim-

ulation runs.

• Evict the job with the least progress (% of tasks done).

We note, however, that one heuristic that does not work

is to evict the job using the most space. This can lead to

a situation where new jobs coming into the cluster keep

evicting old jobs, and no job ever finishes (for example, if

there are 10 TB of free space and each job needs 10 TB,

but new jobs enter just as each old job is about to finish).

Finally, we found that different scheduling disciplines

can use very different amounts of intermediate space for

a given workload. FIFO will use the least space because

it runs jobs sequentially (its disk usage will be the maxi-

mum of the required space for each job). Fair sharing may

use N times more space than optimal where N is the num-

ber of entities sharing the cluster at a time. Shortest Re-

maining Time First can use unboundedly high amounts of

space if the distribution of job sizes is long-tailed, because

large jobs may be preempted by smaller jobs, which get

preempted by even smaller jobs, and so forth for arbitrar-

ily many levels. We explore tradeoffs between throughput,

response time, and space usage further in Section 7.

6 Evaluation
We evaluate our scheduling techniques through mi-

crobenchmarks showing the effect of particular compo-

nents, and a macrobenchmark simulating a multi-user

workload based on Facebook’s production workload.

Our benchmarks were performed in three environments:

Amazon’s Elastic Compute Cloud (EC2) [1], which is a

commercial virtualized hosting environment, and private

100-node and 450-node clusters. On EC2, we used “extra-
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Environment Nodes Hardware and Configuration
EC2 100 4 2GHz cores, 4 disks and 15 GB RAM

per node; appear to have 1 Gbps links.

4 map and 2 reduce slots per node.

Small

Private

Cluster

100 8 cores and 4 disks per node; 1 Gbps

Ethernet; 4 racks. 6 map and 4 reduce

slots per node.

Large Private

Cluster

450 8 cores and 4 disks per node; 1 Gbps

Ethernet; 34 racks. 6 map and 4 reduce

slots per node.

Table 1: Experimental environments.

large” VMs which appear to occupy a whole physical

nodes. The first two environments are atypical of large

MapReduce installations because they had fairly good bi-

section bandwidth – the small private cluster spanned only

4 racks, and while topology information is not provided by

EC2, tests revealed that nodes were able to send 1 Gbps to

each other. Unfortunately, we only had access to the 450-

node cluster for a limited time. We ran a recent version

of Hadoop from SVN trunk, configured with a block size

of 128 MB because this improved performance (Facebook

uses this setting in production) and with task slots per node

based on hardware capabilities. Table 1 details the hard-

ware in each environment and the slot counts used.

For our workloads, we used a “loadgen” example job in

Hadoop that is used in Hadoop’s included Gridmix bench-

mark. Loadgen is a configurable job where the map tasks

output some keepMap percentage of the input records,

then the reduce tasks output a keepReduce percentage of

the intermediate records. With keepMap = 100% and

keepReduce = 100%, the job is equivalent to sort (which is

the main component of Gridmix). With keepMap = 0.1%

and keepReduce = 100%, the job emulates a scan work-

load where a small amount of records are aggregated (this

is the second workload used in Gridmix). Making this into

a map-only job emulates a “filter” job (select a subset of

a large data set for further processing). We also extended

loadgen to allow making mappers and reducers more CPU-

intensive by performing some number of mathematical op-

erations while processing each input record.

6.1 Macrobenchmark

We ran a multi-user benchmark on EC2 with job sizes

and arrivals based on Facebook’s production work-

load. The benchmark used loadgen jobs with random

keepMap/keepReduce values and random amounts of CPU

work per record (maps took between 9s and 60s). We

chose to create our own macrobenchmark instead of run-

ning Hadoop’s Gridmix because, while Gridmix contains

multiple jobs of multiple sizes, it does not simulate a multi-

user workload (it runs all small jobs first, then all medium

jobs, etc). Our benchmark, referred to as BM for short,

consisted of 50 jobs of 9 sizes (numbers of maps). Table

2 shows the job size distribution at Facebook, which we

grouped into 9 size bins. We picked a representative size

Bin #Maps % at Facebook Size in BM Jobs in BM
0 1-25 58% 16 29

1 25-50 9.6% 40 5

2 50-100 8.6% 80 4

3 100-200 8.4% 160 4

4 200-400 5.6% 320 3

5 400-800 4.3% 600 2

6 800-1600 2.5% 1200 1

7 1600-3200 1.3% 2400 1

8 > 3200 1.7% 6400 1

Table 2: Job size distribution at Facebook and sizes and number

of jobs chosen for each bin in our multi-user benchmark BM.

from each bin and submitted some number of jobs of this

size to make it easier to average the performance of these

jobs. For each job, we set number of reducers to 5% to

25% of the number of maps. Jobs were submitted roughly

every 30s by a Poisson process, corresponding to the rate

of submission at Facebook. The benchmarks ran for 30-40

minutes each (25 to submit the jobs and more to finish).

We generated three job submission schedules according

to this model and compared five algorithms: FIFO and fair

sharing with and without copy-compute splitting, as well

as fair sharing with both copy-compute splitting and delay

scheduling (all the techniques in our paper together).

Figure 10 shows results from the “median” schedule

where the average gain from our scheduling techniques

was neither the lowest nor the highest. The figure shows

average response time gain for each type (bin) of jobs over

their response time in FIFO (e.g. a value of 2 means the job

ran 2x faster than in FIFO), as well as the maximum gain

for each bin (the gain of the job that improved the most).

We see that fair sharing (figure (a)) can cut response times

in half over FIFO small jobs, at the expense of long jobs

taking slightly longer. However, some jobs are still de-

layed due to reduce slot hoarding. Fair sharing with copy-

compute splitting (figure (b)) provides gains of up to 4.6x
for small jobs, with the average gain for jobs in bins 0 and

1 being 1.8-2x. Finally, FIFO with copy-compute splitting

(figure (c)) yields some gains but less than fair sharing.

Adding delay scheduling does not change the response

time of fair sharing with copy-compute splitting percep-

tibly, so we do not show a graph for it. However, it in-

creases locality to 99-100% from 15-95% as shown in

Figure 11 (the values for FIFO, fair sharing, etc with-

out delay scheduling were similar so we only show one

set of bars). This would increase throughput in a more

bandwidth-constrained environment than EC2.

In the other two schedules, average gains from fair shar-

ing with copy-compute splitting for the type-0 jobs were 5x
and 2.5x. Maximum gains were 14x and 10x respectively.

6.2 Microbenchmarks

6.2.1 Delay Scheduling with Small Jobs

To test the effect of delay scheduling on locality and

throughput in a small job workload, we generated a large
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(b) Fair Sharing + Copy-Comp. Split.
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(c) FIFO + Copy-Comp. Split.

Figure 10: Average and best response time gains (as a factor reduction in from FIFO) for jobs in each bin for various algorithms in

multi-user benchmark.
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Figure 11: Locality for each job bin in multi-user benchmark.
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Figure 12: Finish times in small-jobs experiment.

input set of random data and ran workloads against it in the

Small Private Cluster. Each job was a map-only “scan” job

which reads an input file and outputs 0.5% of the records in

it, simulating “filtering” jobs common in parsing log data.

We ran jobs with 3, 10 and 100 map tasks (i.e. input files of

384, 1280 or 12800 MB, since we used a block size of 128

MB). The benchmarks ran varying numbers of jobs based

on the job size so as to take 10-20 minutes in total. We

compared fair sharing and FIFO with and without with de-

lay scheduling (T1 = T2 = 15s). FIFO performed the same

as fair sharing, so we only show two bars.

Figure 12 shows normalized running times of the work-

load, while Table 3 shows locality achieved by each sched-

uler. Delay scheduling increased throughput by 1.2x for

3-map jobs, 1.7x for 10-map jobs, and 1.3x for 100-map

jobs, and raised data locality to at least 75% and rack lo-

cality to at least 94%. The throughput gain is higher for

10-map jobs than for 100-map jobs because locality with

100-map jobs is fairly good even without delay schedul-

ing. However, the gain for the smallest jobs (3 maps) is

Job Size Node/Rack Locality
with Standard Sched.

Node/Rack Locality
with Delay Sched.

3 maps 2% / 50% 75% / 96%

10 maps 37% / 98% 99% / 100%

100 maps 84% / 99% 94% / 99%

Table 3: Locality in small-jobs experiment.
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Figure 13: Finish times in sticky slots experiment.

lower than for 10-map jobs, because at small job sizes, job

initialization becomes a bottleneck in Hadoop.

Interestingly, virtually all the gains in the 10-map and

100-map cases are due to moving from rack-local to node-

local tasks; rack locality was good even without delay

scheduling because our cluster contained only 4 racks and

each file is replicated on 2 racks in Hadoop. We expect

performance gains to be higher in a larger cluster.

6.2.2 Delay Scheduling with Sticky Slots

As explained in Section 4.1, sticky slots do not normally

occur in Hadoop due to a counting bug. We tested a ver-

sion of Hadoop with this bug fixed to quantify the effect of

sticky slots. We ran this test in the EC2 environment. We

generated a large 180-GB data set (2 GB per node), submit-

ted between 5 and 50 concurrent scan jobs on it, and mea-

sured the time to finish all jobs and the locality achieved.

Figures 13 and 14 show the results with and without delay

scheduling (with T1 = 10s). Delay scheduling improves by

throughput by 1.1x for 10 concurrent jobs, 1.6x for 20 con-

current jobs, and 2x for 50 concurrent jobs. It also brings

locality from 90-27% to 99-100%.
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Figure 14: Node locality in sticky slots experiment.

6.2.3 Impact of Delay Scheduling on Response Time

We measured the response time of a small 16-map / 1-

reduce job (scanning 2 GB and sending 0.1% of the data

to the reduce task) with and without delay scheduling (10s)

on EC2 to quantify the impact on response time. We ran the

job eight times under each condition. Running alone, the

job took 32-37s, with a mean of 35.4s. With delay schedul-

ing, the job took 32-38s with a mean again of 35.4s. The

difference in response time was not statistically significant,

but locality improved from 25% to 100%.

6.2.4 IO-Rate Biasing

To evaluate IO-rate biasing, we generated a hotspot situa-

tion on EC2 as follows. We created a 2 GB file with 3x

replication as input. We then had 20 simulated “workers”

submit jobs on this file for 10 minutes. Ten workers sub-

mitted compute-intensive jobs which performed a number

of mathematical operations after reading each input record,

taking about 36s per map task, while ten others submitted

IO-bound scan jobs as in the previous experiments, which

take 9s per map task. Each worker repeatedly submitted

a job and waited for it to finish. After 10 minutes, we

counted total jobs completed. We tested this workload us-

ing three algorithms (all under fair sharing): untuned delay

scheduling with T1 = 10s delay for both types of jobs, no

delay scheduling, and delay scheduling with IO-rate bias-

ing (T1 = 10s for scans and 0s for compute jobs).

Figure 15 shows the throughput for each algorithm. Un-

tuned delay scheduling achieved the worst throughput and

response times, because both compute and scan jobs would

wait up to 10s to run on a contended data-local local slot,

and then half the time a compute job would take the slot

and hold it for 36s (whereas a scan job would only take

10s) – this is an environment where the throughput analy-

sis at the start of Section 4.3.2 breaks down because there

is a hotspot. Turning delay scheduling off led to better

performance simply because tasks could get launched ear-

lier. However, using delay scheduling with IO-rate bias-

ing (delaying only the scan jobs) led to the best perfor-

mance because the scans would almost always get data-

local slots. Compute jobs also ran faster due to a combina-

tion of less data being sent across the network and possibly
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Figure 15: Throughputs in IO-rate biasing experiment.

less CPU contention on the machines serving the blocks.

The throughput gain with IO-rate biasing over no delay

scheduling was 8% for scans and 10% for compute jobs,

while the gain over untuned delay scheduling was 15% for

scans and 44% for compute jobs.

6.2.5 Copy-Compute Splitting in Single Job

In addition to the experiments in Section 6.1 that mea-

sure throughput gain from copy-compute splitting in a

multi-user workload, we ran an experiment demonstrat-

ing a gain in a single-user, single-job workload. Unfor-

tunately, Hadoop’s copy tasks are fairly CPU-intensive

because they perform large amounts of memory copies

when merging map outputs, so there is little gain from

copy-compute splitting unless the network bandwidth is

very limited (copy tasks compete with compute tasks with

CPU). The largest cluster we had access to was a 450-node

cluster with nodes distributed on 34 racks. On this cluster,

we ran a synthetic job with an identity map function and a

compute-intensive reduce function. The job had 1.8 TB of

input data, 14624 map tasks and 5000 reduce tasks. The

reduces ran in three waves because the cluster was config-

ured with 1800 reduce slots (four per node). The job took

on average 12.9 minutes with standard reduce scheduling

and 11.8 minutes with copy-compute splitting, a 9% gain.

We expect the gain to be higher in larger clusters (where bi-

section bandwidth is more limited) or with a more efficient

implementation of copy tasks.

6.2.6 Batch Response Time with Fair Sharing vs FIFO

We illustrate the throughput reduction for fair sharing over

FIFO in MapReduce explained in Section 5.3 using a work-

load with 5 jobs running either in FIFO or fair sharing on

the EC2 environment. Each job read 100 GB of data. The

job’s maps produced 200 GB of output total (i.e. doubling

the size of their input), which was passed on to 190 reduce

tasks. The reduce tasks outputted only a small result set

but also performed expensive mathematical computations

for each input record. We repeated the experiment three

times. Fair Sharing took 26.2 ± 0.3 minutes to complete

the workload, while FIFO took 22.1 ± 0.2 minutes. This

corresponds to 19% higher throughput with FIFO.
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7 Discussion
Underlying our work is a classic tradeoff between utiliza-

tion and user isolation. In considering how to provision

data-intensive computing infrastructure, there is a spec-

trum between having a separate cluster per user, which pro-

vides great isolation but poor utilization, and having a sin-

gle FIFO cluster, which provides great utilization but no

isolation. Our work enables a sweet spot on this spectrum

– sharing a large cluster efficiently while giving each user

response times equivalent to a small private cluster. This

lets interactive queries and production jobs run on a shared

cluster. Furthermore, the data consolidation in a shared

cluster enables applications that would be impossible to

run on smaller private clusters with partitioned data. To-

gether, these factors let an organization extract more value

from its data per dollar of computing infrastructure.

We identified two aspects of the data-intensive cluster

computing setting that pose problems to sharing: data lo-

cality and interdependent tasks. Although we worked in

the setting of MapReduce, these problems are relevant in

any cluster computing system that uses DAGs of processes

to perform computations, such as Dryad [20]. Any such

system needs to place tasks on nodes that contain their in-

put, and risks experiencing the head-of-line scheduling and

sticky slot problems we described. Similarly, tasks that

must collect data from multiple other tasks before perform-

ing a computation are common. Our delay scheduling and

copy-compute splitting techniques can improve throughput

and response time in any data flow based system.

We divide our discussion into three parts. Section 7.1

describes lessons for making cluster computing systems

sharable. Section 7.2 analyzes tradeoffs between schedul-

ing disciplines in MapReduce. Finally, we present other

scheduling issues we considered at Facebook in Section

7.3.

7.1 Lessons For Multi-User Cluster Scheduling

Because of the significant benefits of shared clusters when

there is shared data, we believe that cluster computing sys-

tem designers should consider making multi-user support

a primary goal. Our work shows that, as long as jobs are

composed of small independent tasks, it is possible to iso-

late users while utilizing a cluster efficiently. We identify

four principles that help achieve this goal:

1. Make tasks small in length and in resource consump-

tion. Having short tasks lets new jobs start up quickly.

Limiting resource use by each task (e.g. making tasks

single-threaded and having multiple slots per node) fur-

ther increases scheduling opportunities. This principle

is similar to making time slices small in a cooperative

multiprocessing OS. Interestingly, MapReduce initially

used small independent tasks for fault tolerance, to vir-

tualize where and when a task runs. This same virtual-

izability lets us achieve high scheduler responsiveness.

2. Delimit tasks into pieces with orthogonal resource
requirements to have separate admission control for

each piece. Using separate processes is not necessary;

an admission control check as in CPAC can be enough.

3. When tasks must be long, make them preemptable.
For example, it would be possible to pause copy tasks

to better control load on slaves. This is similar to mak-

ing processes preemptable in a time-slicing OS.

4. Be ready to sacrifice some isolation for throughput,
as illustrated by delay scheduling.

7.2 Scheduling Tradeoffs in MapReduce

We explore MapReduce scheduling tradeoffs in Table 4

by comparing four scheduling disciplines along four axes.

The disciplines we compare are FIFO, fair sharing, short-

est job first, and multi-level queueing (separate queues for

small and large jobs, with weighted fair sharing between

the queues). The axes we compare on are average response

time, batch response time (response time for a group of

jobs submitted together), intermediate space, and user iso-

lation (defined as the ability to provide worst-case per-

formance comparable to owning a smaller private cluster

regardless of user workload). Intermediate space is not

usually considered in compute-oriented cluster scheduling

problems but matters in MapReduce because there is an in-

centive to store as much data as possible on a cluster. We

summarize the three most interesting results:

1. Batch response times can suffer in disciplines other

than FIFO because maps may finish later and therefore

pipelining between map and reduce tasks decreases.

For this reason, we plan to support FIFO and multi-

level queueing within pools in our scheduler.

2. FIFO uses the least space (no more than needed by the

largest job), as explained in Section 5.4, while disci-

plines that must to let multiple jobs coexist need more

space. Space usage is unboundedly bad with Shortest

Job First because arbitrarily many jobs may stay in the

system for an arbitrarily long time.

3. Only fair sharing provides isolation (even in multi-level

queues, one user’s jobs may be delayed by other users).

Even though fair sharing is suboptimal for response

time and space usage, we found that user isolation trumps

these concerns by creating an environment where users can

launch jobs at any time without fear of interference. In

fact, at Facebook, average job sizes decreased when we in-

troduced fair sharing, because users preferred submitting

small queries that sample a data set and return within min-

utes to large jobs that scan the entire data set but take tens

of minutes. In other words, user isolation increased “in-

sight throughput” (useful analyses per second). One final

benefit is that launching jobs right away lets users find bugs

faster: without fair sharing, a user who submits a job a

buggy map or reduce function will not find out until the

job reaches the head of the queue and gets launched.
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Discipline Batch Response Time Average Response Time Intermediate Space User Isolation
First In First Out best bad unless job sizes are similar best none

Fair Sharing can suffer boundedly bad boundedly bad best
Shortest Job First can suffer best but starves long jobs unboundedly bad none

Multi-Level Queuing can suffer good boundedly bad some

Table 4: Tradeoffs between various scheduling disciplines in MapReduce.

7.3 Other Scheduling Issues

Through our work developing a job scheduler for Hadoop,

we identified several scheduling concerns that we do not

explore in this paper, but plan to study in future work:

Code Locality: Running multiple tasks from a job on the

same node is beneficial because it amortizes the cost of

copying the job’s code to this node. Furthermore, Hadoop

lets tasks from the same job reuse JVM instances, reducing

startup costs. Fixing the Hadoop bug that prevents sticky

slots from happening and using delay scheduling may im-

prove code locality by letting a job run on a node until

it exhausts its input data, then move on to other nodes.

The issue of maximizing “code locality” is similar to affin-

ity scheduling in multiprocessor operating systems, where

we attempt to pin a thread to a processor for as long as

possible; however, we expect that in the MapReduce set-

ting, data locality will be the primary consideration in task

placement, while code locality will be secondary.

Slave Load Management: When jobs with different re-

source requirements (especially memory needs) coexist, it

would be beneficial to use a more elaborate mechanism

for load management on slave nodes than task slots, as

discussed in Section 2. Work in [5] allows Hadoop to

avoid thrashing memory on a slave when some tasks have

high requirements by using less than the full number of

slots. However, another issue that can happen is starva-
tion of memory-intensive jobs if jobs with smaller mem-

ory requirements keep taking slots. Task-killing in our

scheduler (Section 3.2) can be used to make room for the

memory-intensive job, but we also plan to investigate a de-

lay scheduling technique where a high-memory job picks

a number of nodes to run on and waits for enough tasks

on each of them to complete. In addition, we will need to

change our fairness/accounting model so that a job taking

up more memory counts as having filled more “slots”.

8 Related Work
Fair Sharing: A plethora of fair sharing algorithms have

been developed in the networking and OS domains to pro-

vide isolation and statistical multiplexing among flows and

computation tasks [8,13,17,24]. Many of these schedulers

have been extend to the hierarchical setting, where each

interior node in the hierarchy share bandwidth or CPU re-

sources across its children [14, 18, 21, 23]. While these al-

gorithms are sophisticated and scalable, they do not deal

with data locality, as they share only one resource, and in

general they ignore interdependencies between tasks/flows.

HPC: Schedulers for HPC clusters, like Torque [12], sup-

port job priority and resource-consumption-aware schedul-

ing. However, the HPC jobs they schedule run on a fixed

number of machines which communicate through a mech-

anism like MPI. MapReduce jobs are elastic, so we can

change allocations over time. HPC jobs are also CPU-

bound, so there is less need for node-level data locality.

Grids: Grid schedulers like Condor [22] support locality

constraints, but usually at the level of geographic sites,

because the jobs are still more compute-intensive than

MapReduce. Recent work in grid scheduling [15] also pro-

poses replicating data to multiple geographic sites in re-

sponse to jobs being launched. This is similar to increasing

a file’s replication level in Hadoop.

Parallel Databases: Like MapReduce, parallel databases

run data-intensive workloads on a distributed system. The

main aspects differentiating MapReduce from these sys-

tems are the scale and use of commodity hardware in

MapReduce, and the MapReduce execution strategy of

small independent tasks instead of long-running pipelined

queries. The largest parallel databases, like Teradata, can

run on up to 1024 dual-core nodes, but use external stor-

age arrays and proprietary high-speed interconnects with

high bisection bandwidth [9, 11]. This makes data local-

ity less of a concern than in Hadoop (any node in Ter-

adata can access any disk if the primary node assigned

to that disks fails), but increases system costs. In con-

trast, Hadoop can run on 10000-core clusters of commodity

machines connected by Ethernet [2], but this necessitates

careful management of data locality. In addition, paral-

lel database queries are generally long-running processes

that pipeline data between operators rather than short tasks

like Hadoop’s, reducing opportunity for high-granularity

scheduling. A single “monster query” can take up the en-

tire system [9]. Admission control is used to avoid over-

subscribing resources [7], which means that queries may

need to wait in a queue to be executed. To avoid starving

interactive queries, resources may be explicitly reserved

for them [7], but this leads to underutilization when there

are no interactive queries running. In contrast, our Hadoop

scheduler can use all resources towards batch jobs and re-

assign slots quickly when interactive jobs are submitted.

9 Conclusion
While MapReduce has proven a popular execution model

for large batch jobs, recently, many organizations have

started to share their MapReduce (Hadoop) clusters among
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multiple users, which run a mix of batch and short in-

teractive jobs. To enable this use model, we have pro-

posed FAIR, a fair scheduler that provides isolation,

guarantees a minimum share to each user (job), and

achieves statistical multiplexing. During its initial deploy-

ment, we have identified two aspects of MapReduce—

data locality and task interdependence—which consider-

ably hurt FAIR’s throughput. To address this issue we

have developed two simple yet robust techniques: delay

scheduling and copy-compute splitting. Using a wide ar-

ray of experiments we have shown that FAIR achieves iso-

lation, low response time, and high throughput.
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Appendix A: Slot Allocation in FAIR
In this section, we formally present FAIR’s slot allocation

algorithm, which is a version of the max-min fairness with

minimum guarantees. Let di and mi denote the demand

and minimum share of pool i. Let S denote the set of active

pools, where an active pool is a pool that has at least one

running job, and let F denote the total number of slots in

the system. We say that the allocation is feasible if there

are enough slots in the system such as all minimum shares

can be satisfied,i.e., ∑i∈S mi ≤ F . The code in Algorithm 2

computes for each pool i its fair share fi. This algorithm

implements the bucket-filling intuition in Section 3.1.

Algorithm 2 Slot Allocation in FAIR

SA = S; // un-allocated pools
SB = /0; // allocated pools
M = F ; // un-allocated slots
// allocate slots to pools whith demands ≤ min. shares
for (each pool i ∈ SA) do

if di < mi then
fi = di; M− = di;

SA = SA \{i}; SB = SB ∪{i};

end if
end for
// allocate min. share to remaining pools
for (each pool i ∈ SA) do

fi = mi; M− = mi;

end for
// distribute remaining slots
while ((SA �= /0)∧ (M > 0)) do

dmin = smallest demand among pools in SA;

fmin = smalest share among pools in SA;

Smin = set of all pools whose share is fmin;

fnext−min = next smallest share among pools in SA;

Δ f = min(M/|Smin|,dmin − fmin, fnext−min − fmin)
for (each pool i ∈ Smin) do

fi+ = ΔF ; M− = ΔF ;

SA = SA \{i}; SB = SB ∪{i};

end for
end while

The code contains three main loops (stages). The first

for loop considers every pool whose demand is no larger

than its minimum share. Since every pool is guaranteed its

minimum share, the demands of all these pools are satis-

fied. The rest of the code considers the remaining pools

with demands greater than their minimum shares. The sec-

ond for loop makes sure that every such pool receives at

least its minimum share. Finally, the while loop redis-

tributes the remaining slots across the pools, by equally in-

creasing the shares of the pools with the lowest shares until

either their demands are met or free slots are exhausted.
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