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Abstract
We present Mesos, a platform for sharing commod-

ity clusters between multiple diverse cluster computing

frameworks, such as Hadoop and MPI 1. Sharing im-

proves cluster utilization and avoids per-framework data

replication. Mesos shares resources in a fine-grained

manner, allowing frameworks to achieve data locality by

taking turns reading data stored on each machine. To

support the sophisticated schedulers of today’s frame-

works, Mesos introduces a distributed two-level schedul-

ing mechanism called resource offers. Mesos decides

how many resources to offer each framework, while

frameworks decide which resources to accept and which

computations to run on them. Our experimental results

show that Mesos can achieve near-optimal locality when

sharing the cluster among diverse frameworks, can scale

up to 50,000 nodes, and is resilient to node failures.

1 Introduction
Clusters of commodity servers have become a major

computing platform, powering both large Internet ser-

vices and a growing number of data-intensive scientific

applications. Driven by these applications, researchers

and practitioners have been developing a diverse array of

cluster computing frameworks to simplify programming

the cluster. Prominent examples include MapReduce

[25], Dryad [33], MapReduce Online [24] (which sup-

ports streaming jobs), Pregel [37] (a specialized frame-

work for graph computations), and others [36, 17, 31].

It seems clear that new cluster computing frameworks

will continue to emerge, and that no framework will be

optimal for all applications. Therefore, organizations

will want to run multiple frameworks in the same cluster,

picking the best one for each application. Sharing a clus-

ter between frameworks is desirable for two reasons: it

improves utilization through statistical multiplexing, and

1We will continue to improve this Technical Report. The

latest version is available at http://mesos.berkeley.edu/
tr-mesos.pdf.

it lets applications share datasets that may be too expen-

sive to replicate. In this paper, we explore the problem

of efficiently sharing commodity clusters among diverse

cluster computing frameworks.

An important feature of commodity clusters is that

data is distributed throughout the cluster and stored on

the same nodes that run computations. In these en-

vironments, reading data remotely is expensive, so it

is important to schedule computations near their data.

Consequently, sharing the cluster requires a fine-grained
scheduling model, where applications take turns running

computations on each node. Existing cluster computing

frameworks, such as Hadoop and Dryad, already imple-

ment fine-grained sharing across their jobs by multiplex-

ing at the level of tasks within a job [34, 48]. However,

because these frameworks are developed independently,

there is no way to perform fine-grained sharing across

different frameworks, making it difficult to share clusters

and data efficiently between frameworks.

In this paper, we propose Mesos, a thin resource

management substrate that enables efficient fine-grained

sharing across diverse cluster computing frameworks.

Mesos gives diverse frameworks a common interface for

running fine-grained tasks in a cluster.

The main challenge Mesos must address is that differ-

ent frameworks have different scheduling needs. Each

framework has scheduling preferences specific to its pro-

gramming model, based on the dependencies between its

tasks, the location of its data, its communication pat-

tern, and domain-specific optimizations. Furthermore,

frameworks’ scheduling policies are rapidly evolving

[46, 48, 50, 35]. Therefore, designing a generic sched-

uler to support all current and future frameworks is hard,

if not infeasible. Instead, Mesos takes a different ap-

proach: giving frameworks control over their scheduling.

Mesos lets frameworks choose which resources to use

through a distributed scheduling mechanism called re-
source offers. Mesos decides how many resources to

offer each framework, based on an organizational pol-
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icy such as fair sharing, but frameworks decide which
resources to accept and which computations to run on

them. We have found that resource offers are flexible

enough to let frameworks achieve a variety of placement

goals, including data locality. In addition, resource offers

are simple and efficient to implement, allowing Mesos to

be highly scalable and robust to failures.

Mesos’s flexible fine-grained sharing model also has

other advantages. First, Mesos can support a wide variety

of applications beyond data-intensive computing frame-

works, such as client-facing services (e.g., web servers)

and compute-intensive parallel applications (e.g., MPI),

allowing organizations to consolidate workloads and in-

crease utilization. Although not all of these applications

run tasks that are fine-grained in time, Mesos can share

nodes in space between short and long tasks.

Second, even organizations that only use one frame-

work can leverage Mesos to run multiple isolated in-

stances of that framework in the same cluster, or multiple

versions of the framework. For example, an organization

using Hadoop might want to run separate instances of

Hadoop for production and experimental jobs, or to test

a new Hadoop version alongside its existing one.

Third, by providing a platform for resource sharing

across frameworks, Mesos allows framework develop-

ers to build specialized frameworks targeted at particu-

lar problem domains rather than one-size-fits-all abstrac-

tions. Frameworks can therefore evolve faster and pro-

vide better support for each problem domain.

We have implemented Mesos in 10,000 lines of C++.

The system scales to 50,000 nodes and uses Apache

ZooKeeper [4] for fault tolerance. To evaluate Mesos,

we have ported three cluster computing systems to run

over it: Hadoop, MPI, and the Torque batch scheduler.

To validate our hypothesis that specialized frameworks

provide value over general ones, we have also built a new

framework on top of Mesos called Spark, optimized for

iterative jobs where a dataset is reused in many parallel

operations. Spark can outperform Hadoop by 10x in it-

erative machine learning workloads. Finally, to evaluate

the applicability of Mesos to client-facing workloads, we

have built an elastic Apache web server farm framework.

This paper is organized as follows. Section 2 details

the data center environment that Mesos is designed for.

Section 3 presents the architecture of Mesos. Section 4

analyzes our distributed scheduling model and character-

izes the environments it works well in. We present our

implementation of Mesos in Section 5 and evaluate it in

Section 6. Section 7 surveys related work. We conclude

with a discussion in Section 8.

2 Target Environment
As an example of a workload we aim to support, con-

sider the Hadoop data warehouse at Facebook [5, 7].
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Figure 1: CDF of job and task durations in Facebook’s Hadoop

data warehouse (data from [48]).

Facebook loads logs from its web services into a 1200-

node Hadoop cluster, where they are used for applica-

tions such as business intelligence, spam detection, and

ad optimization. In addition to “production” jobs that run

periodically, the cluster is used for many experimental

jobs, ranging from multi-hour machine learning compu-

tations to 1-2 minute ad-hoc queries submitted interac-

tively through an SQL interface to Hadoop called Hive

[3]. Most jobs are short (the median being 84s long), and

the jobs are composed of fine-grained map and reduce

tasks (the median task being 23s), as shown in Figure 1.

To meet the performance requirements of these jobs,

Facebook uses a fair scheduler for Hadoop that takes

advantage of the fine-grained nature of the workload to

make scheduling decisions at the level of map and re-

duce tasks and to optimize data locality [48]. Unfortu-

nately, this means that the cluster can only run Hadoop

jobs. If a user wishes to write a new ad targeting al-

gorithm in MPI instead of MapReduce, perhaps because

MPI is more efficient for this job’s communication pat-

tern, then the user must set up a separate MPI cluster and

import terabytes of data into it.2 Mesos aims to enable

fine-grained sharing between multiple cluster computing

frameworks, while giving these frameworks enough con-

trol to achieve placement goals such as data locality.

In addition to sharing clusters between “back-end” ap-

plications such as Hadoop and MPI, Mesos also enables

an organizations to share resources between “front-end”

workloads, such as web servers, and back-end work-

loads. This is attractive because front-end applications

have variable load patterns (e.g. diurnal cycles and

spikes), so there is an opportunity to scale them down

at during periods of low load and use free resources

to speed up back-end workloads. We recognize that

there are obstacles beyond node scheduling to collo-

cating front-end and back-end workloads at very large

scales, such as the difficulty of isolating network traffic

[30]. In Mesos, we focus on defining a resource access

2This problem is not hypothetical; our contacts at Yahoo! and Face-

book report that users want to run MPI and MapReduce Online [13, 12].
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Figure 2: Mesos architecture diagram, showing two running

frameworks (Hadoop and MPI).

interface that allows these applications to coexist, and we

hope to leverage isolation solutions developed by others.

3 Architecture
We begin our description of Mesos by presenting our de-

sign philosophy. We then describe the components of

Mesos, our resource allocation mechanisms, and how

Mesos achieves isolation, scalability, and fault tolerance.

3.1 Design Philosophy

Recall that Mesos aims to provide a stable and scalable

core that diverse frameworks can run over to share cluster

resources. Because cluster frameworks are both highly

diverse and rapidly evolving, our overriding design phi-

losophy has been to define a minimal interface that en-
ables efficient resource sharing, and otherwise push con-
trol to the frameworks. Pushing control to the frame-

works has two benefits. First, it allows frameworks to

implement diverse approaches to various problems in the

cluster (e.g., dealing with faults), and to evolve these so-

lutions independently. Second, it keeps Mesos simple

and minimizes the rate of change required of the system,

which makes it easier to make Mesos scalable and robust.

Although Mesos provides a low-level interface, we ex-

pect higher-level libraries implementing common func-

tionality (such as fault tolerance) to be built on top of

it. These libraries would be analogous to library OSes in

the exokernel [27]. Putting this functionality in libraries

rather than in Mesos allows Mesos to remain small and

flexible, and lets the libraries evolve independently.

3.2 Overview

Figure 2 shows the components of Mesos. The system

consists a master process that manages slave daemons

running on each cluster node. We use ZooKeeper [4]

to make the master fault tolerant, as we shall describe

in Section 3.6. Frameworks running on Mesos consist of

two components: a scheduler that registers with the mas-

ter to be offered resources, and an executor process that
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Figure 3: Resource offer example.

is launched on slave nodes to run the framework’s tasks.

The main role of the Mesos master is to offer available

resources on slaves to framework schedulers through re-
source offers. Each resource offer contains a list of free

resources on multiple slaves. Multiple offers describing

disjoint resource sets can be outstanding at each time.

A pluggable allocation module in the master determines

how many resources to offer to each framework. Frame-

works’ schedulers select which of the offered resources

to use, and describe tasks to launch on those resources.

Figure 3 shows an example of how a framework gets

scheduled to run a task. In step (1), slave 1 reports to the

master that it has 4 CPUs and 4 GB of memory free. The

master then invokes the allocation policy module, which

tells it that framework 1 should be offered all available

resources. In step (2) the master sends a resource of-

fer describing what is available on slave 1 to framework

1. In step (3), the framework’s scheduler replies to the

master with information about two tasks to run on the

slave, using 〈2 CPUs, 1 GB RAM〉 for the first task, and

〈1 CPUs, 2 GB RAM〉 for the second task. Finally, in

step (4), the master sends the tasks to the slave, which al-

locates appropriate resources to the framework’s execu-

tor, which in turn launches the two tasks (depicted with

dotted-line borders in the figure). Because 1 CPU and 1

GB of RAM are still unallocated, the allocation module

may now offer them to framework 2. In addition, this

resource offer process repeats when tasks finish and new

resources become free.

The key aspect of Mesos that lets frameworks achieve

placement goals is the fact that they can reject resources.

In particular, we have found that a simple policy called

delay scheduling [48], in which frameworks wait for a

limited time to acquire preferred nodes, yields nearly op-

timal data locality. We report these results in Section 6.3.

In this section, we describe how Mesos performs two

major roles: allocation (performed by allocation modules

in the master) and isolation (performed by the slaves).

We include a discussion of one allocation policy we have

developed for fairly sharing multiple resources. We then
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describe elements of our architecture that let resource of-

fers work robustly and efficiently in a distributed system.

3.3 Resource Allocation

Mesos delegates allocation decisions to a pluggable allo-
cation module, so that organizations can tailor allocation

to their needs. In normal operation, Mesos takes advan-

tage of the fine-grained nature of tasks to only reallocate

resources when tasks finish. This usually happens fre-

quently enough to let new frameworks start within a frac-

tion of the average task length: for example, if a frame-

work’s share is 10% of the cluster, it needs to wait on

average 10% of the mean task length to receive its share.

Therefore, the allocation module only needs to decide

which frameworks to offer free resources to, and how

many resources to offer to them. However, our architec-

ture also supports long tasks by allowing allocation mod-

ules to specifically designate a set of resources on each

node for use by long tasks. Finally, we give allocation

modules the power to revoke (kill) tasks if resources are

not becoming free quickly enough.

In this section, we start by describing one allocation

policy that we have developed, which performs fair shar-

ing between frameworks using a definition of fairness

for multiple resources called Dominant Resource Fair-

ness. We then explain Mesos’s mechanisms for support-

ing long tasks and revocation.

3.3.1 Dominant Resource Fairness (DRF)

Because Mesos manages multiple resources (CPU, mem-

ory, network bandwidth, etc.) on each slave, a natural

question is what constitutes a fair allocation when differ-

ent frameworks prioritize resources differently. We car-

ried out a thorough study of desirable fairness properties

and possible definitions of fairness, which is detailed in

[29]. We concluded that most other definitions of fair-

ness have undesirable properties. For example, Compet-

itive Equilibrium from Equal Incomes (CEEI) [44], the

preferred fairness metric in micro-economics [39], has

the disadvantage that the freeing up of resources might

punish an existing user’s allocation. Similarly, other no-

tions of fairness violated other desirable properties, such

as envy-freedom, possibly leading to users gaming the

system by hoarding resources that they do not need.

To this end, we designed a fairness policy called dom-
inant resource fairness (DRF), which attempts to equal-

ize each framework’s fractional share of its dominant re-
source, which is the resource that it has the largest frac-

tional share of. For example, if a cluster contains 100

CPUs and 100 GB of RAM, and framework F1 needs 4

CPUs and 1 GB RAM per task while F2 needs 1 CPU

and 8 GB RAM per task, then DRF gives F1 20 tasks

(80 CPUs and 20 GB) and gives F2 10 tasks (10 CPUs

and 80 GB). This makes F1’s share of CPU equal to F2’s

share of RAM, while fully utilizing one resource (RAM).

DRF is a natural generalization of max/min fair-

ness [21]. DRF satisfies the above mentioned properties

and performs scheduling in O(log n) time for n frame-

works. We believe that DRF is novel, but due to space

constraints, we refer the reader to [29] for details.

3.3.2 Supporting Long Tasks

Apart from fine-grained workloads consisting of short

tasks, Mesos also aims to support frameworks with

longer tasks, such as web services and MPI programs.

This is accomplished by sharing nodes in space between

long and short tasks: for example, a 4-core node could be

running MPI on two cores, while also running MapRe-

duce tasks that access local data. If long tasks are placed

arbitrarily throughout the cluster, however, some nodes

may become filled with them, preventing other frame-

works from accessing local data. To address this prob-

lem, Mesos allows allocation modules to bound the to-

tal resources on each node that can run long tasks. The

amount of long task resources still available on the node

is reported to frameworks in resource offers. When a

framework launches a task, it marks it as either long or

short. Short tasks can use any resources, but long tasks

can only use up to the amount specified in the offer.

Of course, a framework may launch a long task with-

out marking it as such. In this case, Mesos will eventu-

ally revoke it, as we discuss next.

3.3.3 Revocation

As described earlier, in an environment with fine-grained

tasks, Mesos can reallocate resources quickly by simply

waiting for tasks to finish. However, if a cluster becomes

filled by long tasks, e.g., due to a buggy job or a greedy

framework, Mesos can also revoke (kill) tasks. Before

killing a task, Mesos gives its framework a grace period
to clean it up. Mesos asks the respective executor to kill

the task, but kills the entire executor and all its tasks if

it does not respond to the request. We leave it up to the

allocation module to implement the policy for revoking

tasks, but describe two related mechanisms here.

First, while killing a task has a low impact on many

frameworks (e.g., MapReduce or stateless web servers),

it is harmful for frameworks with interdependent tasks

(e.g., MPI). We allow these frameworks to avoid be-

ing killed by letting allocation modules expose a guar-
anteed allocation to each framework – a quantity of

resources that the framework may hold without losing

tasks. Frameworks read their guaranteed allocations

through an API call. Allocation modules are responsible

for ensuring that the guaranteed allocations they provide

can all be met concurrently. For now, we have kept the

semantics of guaranteed allocations simple: if a frame-

work is below its guaranteed allocation, none of its tasks
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should be killed, and if it is above, any of its tasks may be

killed. However, if this model is found to be too simple,

it is also possible to let frameworks specify priorities for

their tasks, so that the allocation module can try to kill

only low-priority tasks.

Second, to decide when to trigger revocation, alloca-

tion modules must know which frameworks would use

more resources if they were offered them. Frameworks

indicate their interest in offers through an API call.

3.4 Isolation

Mesos provides performance isolation between frame-

work executors running on the same slave by leveraging

existing OS isolation mechanisms. Since these mecha-

nisms are platform-dependent, we support multiple iso-

lation mechanisms through pluggable isolation modules.

In our current implementation, we use operating sys-

tem container technologies, specifically Linux containers

[10] and Solaris projects [16], to achieve isolation. These

technologies can limit the CPU, physical memory, vir-

tual memory, network bandwidth, and (in new Linux ker-

nels) IO bandwidth usage of a process tree. In addition,

they support dynamic reconfiguration of a container’s re-

source limits, which is necessary for Mesos to be able to

add and remove resources from an executor as it starts

and finishes tasks. In the future, it would also be attrac-

tive to use virtual machines as containers. However, we

have not yet done this because current VM technologies

add non-negligible overhead in data-intensive workloads

and have limited support for dynamic reconfiguration.

3.5 Making Resource Offers Scalable and Robust

Because task scheduling in Mesos is a distributed process

in which the master and framework schedulers communi-

cate, it needs to be efficient and robust to failures. Mesos

includes three mechanisms to help with this goal.

First, because some frameworks will always reject cer-

tain resources, Mesos lets them short-circuit the rejection

process and avoid communication by providing filters to

the master. We support two types of filters: “only offer

nodes from list L” and “only offer nodes with at least R
resources free”. A resource that fails a filter is treated ex-

actly like a rejected resource. By default, any resources

rejected during an offer have a temporary 5-second filter

placed on them, to minimize the programming burden on

developers who do not wish to manually set filters.

Second, because a framework may take time to re-

spond to an offer, Mesos counts resources offered to a

framework towards its share of the cluster for the purpose

of allocation. This is a strong incentive for frameworks

to respond to offers quickly and to filter out resources

that they cannot use, so that they can get offers for more

suitable resources faster.

Third, if a framework has not responded to an offer

Scheduler Callbacks 
resource_offer(offer_id, offers) 
offer_rescinded(offer_id) 
status_update(task_id, status) 
slave_lost(slave_id) 

Executor Callbacks 
launch_task(task_descriptor) 
kill_task(task_id) 

Executor Actions 
send_status(task_id, status) 

Scheduler Actions 
reply_to_offer(offer_id, tasks,  
                 needs_more_offers) 
request_offers() 
set_filters(filters) 
get_safe_share() 
kill_task(task_id) 

Table 1: Mesos API functions for schedulers and executors.

The “callback” columns list functions that frameworks must

implement, while “actions” are operations that they can invoke.

for a sufficiently long time, Mesos rescinds the offer and

re-offers the resources to other frameworks.

We also note that even without the use of filters, Mesos

can make tens of thousands of resource offers per second,

because the scheduling algorithm it must perform (fair

sharing) is highly efficient.

3.5.1 API Summary

Table 1 summarizes the Mesos API. The only function

that we have not yet explained is the kill task function

that a scheduler may call to kill one of its tasks. This is

useful for frameworks that implement backup tasks [25].

3.6 Fault Tolerance

Since the master is a centerpiece of our architecture, we

have made it fault-tolerant by pushing state to slaves and

schedulers, making the master’s state soft state. At run-

time, multiple Mesos masters run simultaneously, but

only one master is the leader. The others masters act

as hot standbys ready to take over if the current leader

fails. ZooKeeper [4] is used to implement leader elec-

tion among masters. Schedulers and slaves also find out

about the current leader through ZooKeeper. Upon the

failure of the master, the slaves and schedulers connect

to the newly elected master and help restore its state. We

also ensure that messages sent to a failed master are re-

sent to the new one through a thin communication layer

that uses sequence numbers and retransmissions.

Aside from handling master failures, Mesos reports

task, slave and executor failures to frameworks’ sched-

ulers. Frameworks can then react to failures using poli-

cies of their choice.

Finally, to deal with scheduler failures, Mesos can

be extended to allow a framework to register multiple

schedulers such that if one fails, another is notified by the

Mesos master and takes over. Frameworks must use their

own mechanisms to share state between their schedulers.
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4 Mesos Behavior
In this section, we study Mesos’s behavior for different

workloads. In short, we find that Mesos performs very

well when frameworks can scale up and down elastically,

tasks durations are homogeneous, and frameworks pre-

fer all nodes equally. When different frameworks pre-

fer different nodes, we show that Mesos can emulate a

centralized scheduler that uses fair sharing across frame-

works. In addition, we show that Mesos can handle het-

erogeneous task durations without impacting the perfor-

mance of frameworks with short tasks. We also discuss

how frameworks are incentivized to improve their perfor-

mance under Mesos, and argue that these incentives also

improve overall cluster utilization. Finally, we conclude

this section with some limitations of Mesos’s distributed

scheduling model.

4.1 Definitions, Metrics and Assumptions

In our discussion, we consider three metrics:

• Framework ramp-up time: time it takes a new

framework to achieve its allocation (e.g., fair share);

• Job completion time: time it takes a job to complete,

assuming one job per framework;

• System utilization: total cluster utilization.

We characterize workloads along four attributes:

• Scale up: Frameworks can elastically increase their

allocation to take advantage of free resources.

• Scale down: Frameworks can relinquish resources

without significantly impacting their performance.

• Minimum allocation: Frameworks require a certain

minimum number of slots before they can start us-

ing their slots.

• Task distribution: The distribution of the task dura-

tions. We consider both homogeneous and hetero-

geneous distributions.

We also differentiate between two types of resources:

required and preferred. We say that a resource is re-
quired if a framework must acquire it in order to run. For

example, we consider a graphical processing unit (GPU)

a required resource if there are frameworks that must use

a GPU to run. Likewise, we consider a machine with a

public IP address a required resource if there are frame-

works that need to be externally accessible. In contrast,

we say that a resource is preferred if a framework will

perform “better” using it, but can also run using other re-

sources. For example, a framework may prefer using a

node that locally stores its data, but it can remotely ac-

cess the data from other nodes if it must.

We assume that all required resources are explicitly al-

located, i.e., every type of required resource is an element

in the resource vector in resource offers. Furthermore,

provided a framework never uses more than its guaran-

teed allocation of required resources, explicitly account-

ing for these resources ensures that frameworks will not

get deadlocked waiting for them to become available.

For simplicity, in the reminder of this section we as-

sume that all tasks run on identical slices of machines,

which we call slots. Also, unless otherwise specified, we

assume that each framework runs a single job.

Next, we use this simple model to estimate the frame-

work ramp-up time, the job completion time, and the job

resource utilization. We emphasize that our goal here is

not to develop a detailed and exact model of the system,

but to provide a coarse understanding of the system be-

havior.

4.2 Homogeneous Tasks

In the rest of this section we consider a task duration dis-

tribution with mean Ts. For simplicity, we present results

for two distributions: constant task sizes and exponen-

tially distributed task sizes. We consider a cluster with n
slots and a framework, f , that is entitled to k slots. We

assume the framework runs a job which requires βkTs

computation time. Thus, assuming the framework has k
slots, it takes the job βTs time to finish. When comput-

ing the completion time of a job we assume that the last

tasks of the job running on the framework’s k slots finish

at the same time. Thus, we relax the assumptions about

the duration distribution for the tasks of framework f .

This relaxation does not impact any of the other metrics,

i.e., ramp-up time and utilization.

We consider two types of frameworks: elastic and

rigid. An elastic framework can scale its resources up

and down, i.e., it can start using slots as soon as it ac-

quires them, and can release slots as soon its task finish.

In contrast, a rigid framework can start running its jobs

only after it has allocated all its slots, i.e., a rigid frame-

work is a framework where the minimum allocation is

equal to its full allocation.

Table 2 summarizes the job completion times and the

utilization for the two types of frameworks and for the

two types of task length distributions. We discuss each

case next.

4.2.1 Elastic Frameworks

An elastic framework can opportunistically use any slot

offered by Mesos, and can relinquish slots without sig-

nificantly impacting the performance of its jobs. We as-

sume there are exactly k slots in the system that frame-

work f prefers, and that f waits for these slots to become

available to reach its allocation.

Framework ramp-up time If task durations are con-

stant, it will take framework f at most Ts time to acquire

k slots. This is simply because during a Ts interval, ev-

ery slot will become available, which will enable Mesos
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Elastic Framework Rigid Framework

Constant dist. Exponential dist. Constant dist. Exponential dist.

Completion time (1/2 + β)Ts (1 + β)Ts (1 + β)Ts (ln k + β)Ts

Utilization 1 1 β/(1/2 + β) β/(ln k − 1 + β)

Table 2: The job completion time and utilization for both elastic and rigid frameworks, and for both constant task durations and

task durations that follow an exponential distribution. The framework starts with zero slots. k represents the number of slots the

framework is entitled under the given allocation, and βTs represents the time it takes a job to complete assuming the framework

gets all k slots at once.

to offer the framework all its k preferred slots.

If the duration distribution is exponential, the expected

ramp-up time is Ts ln k. The framework needs to wait on

average Ts/k to acquire the first slot from the set of its k
preferred slots, Ts/(k−1) to acquire the second slot from

the remaining k− 1 slots in the set, and Ts to acquire the

last slot. Thus, the ramp-up time of f is

Ts × (1 + 1/2..+ 1/k) � Ts ln k. (1)

Job completion time Recall that βTs is the comple-

tion time of the job in an ideal scenario in which the

frameworks acquires all its k slots instantaneously. If

task durations are constant, the completion time is on

average (1/2 + β)Ts. To show this, assume the start-

ing and the ending times of the tasks are uniformly dis-

tributed, i.e., during the ramp-up phase, f acquires one

slot every Ts/k on average. Thus, the framework’s job

can use roughly Tsk/2 computation time during the first

Ts interval. Once the framework acquires its k slots, it

will take the job (βkTs − Tsk/2)/k = (β − 1/2)Ts

time to complete. As a result the job completion time

is Ts + (β − 1/2)Ts = (1/2 + β)Ts (see Table 2).

In the case of the exponential distribution, the ex-

pected completion time of the job is Ts(1 + β) (see Ta-

ble 2). Consider the ideal scenario in which the frame-

work acquires all k slots instantaneously. Next, we com-

pute how much computation time does the job “lose”

during the ramp up phase compared to this ideal sce-

nario. While the framework waits Ts/k to acquire the

first slot, in the ideal scenario the job would have been al-

ready used each of the k slots for a total of k×Ts/k = Ts

time. Similarly, while the framework waits Ts/(k − 1)
to acquire the second slot, in the ideal scenario the job

would have been used the k − 1 slots (still to be allo-

cated) for another (k − 1)×Ts/(k − 1) = Ts time. In

general, the framework loses Ts computation time while

waiting to acquire each slot, and a total of kTs compu-

tation time during the entire ramp-up phase. To account

for this loss, the framework needs to use all k slots for

an additional Ts time, which increases the expected job

completion time by Ts to (1 + β)Ts.

System utilization As long as frameworks can scale

up and down and there is enough demand in the system,

the cluster will be fully utilized.

4.2.2 Rigid Frameworks

Some frameworks may not be able to start running jobs

unless they reach a minimum allocation. One example is

MPI, where all tasks must start a computation in sync. In

this section we consider the worst case where the min-

imum allocation constraint equals the framework’s full

allocation, i.e., k slots.

Job completion time While in this case the ramp-up

time remains unchanged, the job completion time will

change because the framework cannot use any slot before

reaching its full allocation. If the task duration distribu-

tion is constant the completion time is simply Ts(1+β),
as the framework doesn’t use any slot during the first

Ts interval, i.e., until it acquires all k slots. If the dis-

tribution is exponential, the completion time becomes

Ts(ln k + β) as it takes the framework Ts ln k to ramp

up (see Eq. 1).

System utilization Wasting allocated slots has also a

negative impact on the utilization. If the tasks duration is

constant, and the framework acquires a slot every Ts/k
on average, the framework will waste roughly Tsk/2
computation time during the ramp-up phase. Once it ac-

quire all slots, the framework will use βkTs to complete

its job. The utilization achieved by the framework in this

case is then βkTs/(kTs/2 + βkTs) � β/(1/2 + β).

If the task distribution is exponential, the ex-

pected computation time wasted by the framework is

Ts(k ln(k − 1) − (k − 1)). The framework acquires the

first slot after waiting Ts/k, the second slot after wait-

ing Ts/(k − 1), and the last slot after waiting Ts time.

Since the framework does not use a slot before acquiring

all of them, it follows that the first acquired slot is idle

for
∑k−1

i=1 Ts/i, the second slot is idle for
∑k−2

i=1 Ts/i,
and the next to last slot is idle for Ts time. As a result,

the expected computation time wasted by the framework

during the ramp-up phase is

Ts ×
∑k−1

i=1
i

k−i =

Ts ×
∑k−1

i=1

(
k

k−i − 1
)
=

Ts × k ×∑k−1
i=1

1
k−i − Ts × (k − 1) �

Ts × k × ln(k − 1)− Ts × (k − 1)
Ts × (k ln(k − 1)− (k − 1))

Assuming k � 1, the utilization achieved by the

framework is βkTs/((k ln(k−1)−(k−1))Ts+βkTs) �

7



β/(ln k − 1 + β) (see Table 2).

4.2.3 Placement Preferences

So far, we have assumed that frameworks have no slot

preferences. In practice, different frameworks prefer dif-

ferent nodes and their preferences may change over time.

In this section, we consider the case where frameworks

have different preferred slots.

The natural question is how well Mesos will work in

this case when compared to a centralized scheduler that

has full information about framework preferences. We

consider two cases: (a) there exists a system configura-

tion in which each framework gets all its preferred slots

and achieves its full allocation, and (b) there is no such

configuration, i.e., the demand for preferred slots exceeds

the supply.

In the first case, it is easy to see that, irrespective of the

initial configuration, the system will converge to the state

where each framework allocates its preferred slots after

at most one Ts interval. This is simple because during

a Ts interval all slots become available, and as a result

each framework will be offered its preferred slots.

In the second case, there is no configuration in which

all frameworks can satisfy their preferences. The key

question in this case is how should one allocate the pre-

ferred slots across the frameworks demanding them. In

particular, assume there are x slots preferred by m frame-

works, where framework i requests ri such slots, and∑m
i=1 ri > x. While many allocation policies are pos-

sible, here we consider the weighted fair allocation pol-

icy where the weight associated with a framework is its

intended allocation, si. In other words, assuming that

each framework has enough demand, framework i will

get x×si/(
∑m

i=1 si).

As an example, consider 30 slots that are preferred

by two frameworks with intended allocations s1 = 200
slots, and s2 = 100 slots, respectively. Assume that

framework 1 requests r1 = 40 of the preferred slots,

while framework 2 requests r2 = 20 of these slots. Then,

the preferred slots are allocated according to weighted

fair sharing, i.e., framework 1 receives x×s1/(s1+s2) =
20 slots, and framework 2 receives the rest of 10 slots.

If the demand of framework 1 is less than its share,

e.g., r1 = 15, then framework 1 receives 15 slots (which

satisfies its demand), and framework 2 receives the rest

of 15 slots.

The challenge with Mesos is that the scheduler does

not know the preferences of each framework. Fortu-

nately, it turns out that there is an easy way to achieve

the fair allocation of the preferred slots described above:

simply offer slots to frameworks proportionally to their

intended allocations. In particular, when a slot becomes

available, Mesos offers that slot to framework i with

probability si/(
∑n

i=1 si), where n is the total number

of frameworks in the system. Note that this scheme is

similar to lottery scheduling [45]. Furthermore, note that

since each framework i receives roughly si slots during

a time interval Ts, the analysis of the ramp-up and com-

pletion times in Section 4.2 still holds.

There are also allocation policies other than fair shar-

ing that can be implemented without knowledge of

framework preferences. For example, a strict priority

scheme (e.g., where framework 1 must always get pri-

ority over framework 2) can be implemented by always

offering resources to the high-priority framework first.

4.3 Heterogeneous Tasks

So far we have assumed that frameworks have homo-

geneous task duration distributions. In this section, we

discuss heterogeneous tasks, in particular, tasks that are

short and long, where the mean duration of the long tasks

is significantly longer than the mean of the short tasks.

We show that by sharing nodes in space as discussed in

Section 3.3.2, Mesos can accommodate long tasks with-

out impacting the performance of short tasks.

A heterogeneous workload can hurt frameworks with

short tasks by increasing the time it takes such frame-

works to reach their allocation and to acquire preferred

slots (relative to the frameworks’ total job durations). In

particular, a node preferred by a framework with short

tasks may become fully filled by long tasks, greatly in-

creasing a framework’s waiting time.

To address this problem, Mesos differentiates between

short and long slots, and bounds the number of long

slots on each node. This ensures there are enough short

tasks on each node whose slots become available with

high frequency, giving frameworks better opportunities

to quickly acquire a slot on one of their preferred nodes.

In addition, Mesos implements a revocation mechanism

that does not differentiate between long and short tasks

once a framework exceeds its allocation. This makes sure

that the excess slots in the system (i.e., the slots allo-

cated by frameworks beyond their intended allocations)

are all treated as short slots. As a result, a framework

under its intended allocation can acquire slots as fast as

in a system where all tasks are short. At the same time,

Mesos ensures that frameworks running their tasks on

long slots and not exceeding their guaranteed allocations

won’t have their tasks revoked.

4.4 Framework Incentives

Mesos implements a decentralized scheduling approach,

where each framework decides which offers to accept or

reject. As with any decentralized system, it is impor-

tant to understand the incentives of various entities in the

system. In this section, we discuss the incentives of a

framework to improve the response times of its jobs.
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Short tasks: A framework is incentivized to use short

tasks for two reasons. First, it will be able to allocate

any slots; in contrast frameworks with long tasks are re-

stricted to a subset of slots. Second, using small tasks

minimizes the wasted work if the framework loses a task,

either due to revocation or simply due to failures.

No minimum allocation: The ability of a framework

to use resources as soon as it allocates them–instead of

waiting to reach a given minimum allocation–would al-

low the framework to start (and complete) its jobs earlier.

Note that the lack of a minimum allocation constraint im-

plies the ability of the framework to scale up, while the

reverse is not true, i.e., a framework may have both a

minimum allocation requirement and the ability to allo-

cate and use resources beyond this minimum allocation.

Scale down: The ability to scale down allows a frame-

work to grab opportunistically the available resources, as

it can later release them with little negative impact.

Do not accept unknown resources: Frameworks are

incentivized not to accept resources that they cannot use

because most allocation policies will account for all the

resources that a framework owns when deciding which

framework to offer resources to next.

We note that these incentives are all well aligned with

our goal of improving utilization. When frameworks use

short tasks, Mesos can reallocate resources quickly be-

tween them, reducing the need for wasted work due to

revocation. If frameworks have no minimum allocation

and can scale up and down, they will opportunistically

utilize all the resources they can obtain. Finally, if frame-

works do not accept resources that they do not under-

stand, they will leave them for frameworks that do.

4.5 Limitations of Distributed Scheduling

Although we have shown that distributed scheduling

works well in a range of workloads relevant to current

cluster environments, like any decentralized approach, it

can perform worse than a centralized scheduler. We have

identified three limitations of the distributed model:

Fragmentation: When tasks have heterogeneous re-

source demands, a distributed collection of frameworks

may not be able to optimize bin packing as well as a cen-

tralized scheduler.

There is another possible bad outcome if allocation

modules reallocate resources in a naive manner: when

a cluster is filled by tasks with small resource require-

ments, a framework f with large resource requirements

may starve, because whenever a small task finishes, f
cannot accept the resources freed up by it, but other

frameworks can. To accommodate frameworks with

large per-task resource requirements, allocation modules

can support a minimum offer size on each slave, and ab-

stain from offering resources on that slave until this min-

imum amount is free.

Note that the wasted space due to both suboptimal bin

packing and fragmentation is bounded by the ratio be-

tween the largest task size and the node size. Therefore,

clusters running “larger” nodes (e.g., multicore nodes)

and “smaller” tasks within those nodes (e.g., having a

cap on task resources) will be able to achieve high uti-

lization even with a distributed scheduling model.

Interdependent framework constraints: It’s possible

to construct scenarios where, because of esoteric inter-

dependencies between frameworks’ performance, only a

single global allocation of the cluster resources performs

well. We argue such scenarios are rare in practice. In

the model discussed in this section, where frameworks

only have preferences over placement, we showed that

allocations approximate those of optimal schedulers.

Framework complexity: Using resources offers may

make framework scheduling more complex. We argue,

however, that this difficulty is not in fact onerous. First,

whether using Mesos or a centralized scheduler, frame-

works need to know their preferences; in a centralized

scheduler, the framework would need to express them to

the scheduler, whereas in Mesos, it needs to use them to

decide which offers to accept. Second, many scheduling

policies for existing frameworks are online algorithms,

because frameworks cannot predict task times and must

be able to handle node failures and slow nodes. These

policies are easily implemented using the resource offer

mechanism.

5 Implementation
We have implemented Mesos in about 10,000 lines of

C++. The system runs on Linux, Solaris and Mac OS X.

Mesos applications can be programmed in C, C++,

Java, Ruby and Python. We use SWIG [15] to generate

interface bindings for the latter three languages.

To reduce the complexity of our implementation, we

use a C++ library called libprocess [8] that provides

an actor-based programming model using efficient asyn-

chronous I/O mechanisms (epoll, kqueue, etc). We

also leverage Apache ZooKeeper [4] to perform leader

election, as described in Section 3.6. Finally, our current

frameworks use HDFS [2] to share data.

Our implementation can use Linux containers [10] or

Solaris projects [16] to isolate applications. We currently

isolate CPU cores and memory.3

We have implemented five frameworks on top of

Mesos. First, we have ported three existing cluster sys-

tems to Mesos: Hadoop [2], the Torque resource sched-

3Support for network and IO isolation was recently added to the

Linux kernel [9] and we plan to extend our implementation to isolate

these resources too.
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uler [42], and the MPICH2 implementation of MPI [22].

None of these ports required changing these frameworks’

APIs, so all of them can run unmodified user programs.

In addition, we built a specialized framework called

Spark, that we discuss in Section 5.3. Finally, to show the

applicability of running front-end frameworks on Mesos,

we have developed a framework that manages an elastic

web server farm which we discuss in Section 5.4.

5.1 Hadoop Port

Porting Hadoop to run on Mesos required relatively few

modifications, because Hadoop concepts such as map

and reduce tasks correspond cleanly to Mesos abstrac-

tions. In addition, the Hadoop “master”, known as the

JobTracker, and Hadoop “slaves”, known as TaskTrack-

ers, naturally fit into the Mesos model as a framework

scheduler and executor.

We first modified the JobTracker to schedule MapRe-

duce tasks using resource offers. Normally, the Job-

Tracker schedules tasks in response to heartbeat mes-

sages sent by TaskTrackers every few seconds, reporting

the number of free slots in which “map” and “reduce”

tasks can be run. The JobTracker then assigns (prefer-

ably data local) map and reduce tasks to TaskTrackers.

To port Hadoop to Mesos, we reuse the heartbeat mecha-

nism as described, but dynamically change the number of

possible slots on the TaskTrackers. When the JobTracker

receives a resource offer, it decides if it wants to run any

map or reduce tasks on the slaves included in the offer,

using delay scheduling [48]. If it does, it creates a new

Mesos task for the slave that signals the TaskTracker (i.e.

the Mesos executor) to increase its number of total slots.

The next time the TaskTracker sends a heartbeat, the Job-

Tracker can assign the runnable map or reduce task to

the new empty slot. When a TaskTracker finishes run-

ning a map or reduce task, the TaskTracker decrements

it’s slot count (so the JobTracker doesn’t keep sending

it tasks) and reports the Mesos task as finished to allow

other frameworks to use those resources.

We also needed to change how map output data is

served to reduce tasks. Hadoop normally writes map

output files to the local filesystem, then serves these to

reduce tasks using an HTTP server included in the Task-

Tracker. However, the TaskTracker within Mesos runs as

an executor, which may be terminated if it is not running

tasks, which would make map output files unavailable

to reduce tasks. We solved this problem by providing

a shared file server on each node in the cluster to serve

local files. Such a service is useful beyond Hadoop, to

other frameworks that write data locally on each node.

In total, we added 1,100 lines of new code to Hadoop.

5.2 Torque and MPI Ports

We have ported the Torque cluster resource manager to

run as a framework on Mesos. The framework consists

of a Mesos scheduler “wrapper” and a Mesos executor

“wrapper” written in 360 lines of Python that invoke dif-

ferent components of Torque as appropriate. In addition,

we had to modify 3 lines of Torque source code in or-

der to allow it to elastically scale up and down on Mesos

depending on the jobs in its queue.

The scheduler wrapper first configures and launches a

Torque server and then periodically monitors the server’s

job queue. While the queue is empty, the scheduler wrap-

per refuses all resource offers it receives. Once a job gets

added to Torque’s queue (using the standard qsub com-

mand), the scheduler wrapper informs the Mesos master

it can receive new offers. As long as there are jobs in

Torque’s queue, the scheduler wrapper accepts as many

offers to satisfy the constraints of its jobs. When the

executor wrapper is launched it starts a Torque back-

end daemon that registers with the Torque server. When

enough Torque backend daemons have registered, the

torque server will launch the first job in the queue. In the

event Torque is running an MPI job the executor wrapper

will also launch the necessary MPI daemon processes.

Because jobs that run on Torque are typically not re-

silient to failures, Torque never accepts resources beyond

its guaranteed allocation to avoid having its tasks re-

voked. The scheduler wrapper will accept up to its guar-

anteed allocation whenever it can take advantage of those

resources, such as running multiple jobs simultaneously.

In addition to the Torque framework, we also created a

Mesos “wrapper” framework, written in about 200 lines

of Python code, for running MPI jobs directly on Mesos.

5.3 Spark Framework

To show the value of simple but specialized frameworks,

we built Spark, a new framework for iterative jobs that

was motivated from discussions with machine learning

researchers at our institution.

One iterative algorithm used frequently in machine

learning is logistic regression [11]. An implementation

of logistic regression in Hadoop must run each iteration

as a separate MapReduce job, because each iteration de-

pends on values computed in the previous round. In this

case, every iteration must re-read the input file from disk

into memory. In Dryad, the whole job can be expressed

as a data flow DAG as shown in Figure 4a, but the data

must still must be reloaded from disk into memory at

each iteration. Reusing the data in memory between iter-

ations in Dryad would require cyclic data flow.

Spark’s execution is shown in Figure 4b. Spark uses

the long-lived nature of Mesos executors to cache a slice

of the data set in memory at each executor, and then run

multiple iterations on this cached data. This caching is
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Figure 4: Data flow of a logistic regression job in Dryad

vs. Spark. Solid lines show data flow within the framework.

Dashed lines show reads from a distributed file system. Spark

reuses processes across iterations, only loading data once.

achieved in a fault-tolerant manner: if a node is lost,

Spark remembers how to recompute its slice of the data.

Spark leverages Scala to provide a language-integrated

syntax similar to DryadLINQ [47]: users invoke paral-

lel operations by applying a function on a special “dis-

tributed dataset” object, and the body of the function is

captured as a closure to run as a set of tasks in Mesos.

Spark then schedules these tasks to run on executors that

already have the appropriate data cached, using delay

scheduling. By building on-top-of Mesos, Spark’s im-

plementation only required 1300 lines of code.

Due to lack of space, we have limited our discussion of

Spark in this paper and refer the reader to [49] for details.

5.4 Elastic Web Server Farm

We built an elastic web farm framework that takes ad-

vantage of Mesos to scale up and down based on ex-

ternal load. Similar to the Torque framework, the web

farm framework uses a scheduler “wrapper” and ex-

ecutor “wrapper”. The scheduler wrapper launches an

haproxy [6] load balancer and periodically monitors its

web request statistics to decide when to launch or tear-

down servers. Its only scheduling constraint is that it will

launch at most one Apache instance per machine, and

then set a filter to stop receiving further offers for that

machine. The wrappers are implemented in 250 lines of

Python.

6 Evaluation
We evaluated Mesos by performing a series of experi-

ments using Amazon’s EC2 environment.

6.1 Macrobenchmark

To evaluate the primary goal of Mesos, which is enabling

multiple diverse frameworks to efficiently share the same

cluster, we ran a macrobenchmark consisting of a mix

of fine and course-grained frameworks: three Hadoop

frameworks and a single Torque framework. We submit-

ted a handful of different sized jobs to each of these four

frameworks. Within the Hadoop frameworks, we ran
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Figure 5: Cluster utilization over time on a 50-node cluster with

three Hadoop frameworks each running back-to-back MapRe-

duce jobs, plus one Torque framework running a mix of 8 node

and 24 node HPL MPI benchmark jobs.

Application Duration Alone Duration on Mesos
MPI LINPACK 50.9s 51.8s

Hadoop WordCount 159.9s 166.2s

Table 3: Overhead of MPI and Hadoop benchmarks on Mesos.

back-to-back WordCount MapReduce jobs, and within

the Torque framework we submitted jobs running the

High-Performance LINPACK [19] benchmark (HPL).

This experiment was performed using 50 EC2 in-

stances, each with 4 CPU cores and 15 GB RAM. Figure

5 shows node utilization over time. The guaranteed al-

location for the Torque framework was 48 cores (1/4 of

the cluster). Eight MPI jobs were launched, each using

8 nodes, beginning around time 80s. The Torque frame-

work launches tasks that use only one core. Six of the

HPL jobs were able to run as soon as they were sub-

mitted, bringing the Torque framework up to its guaran-

teed allocation of 48 cores. Thereafter, two of them were

placed in the job queue and were launched as soon as

the first and second HPL jobs finished (around time 315s

and 345s). The Hadoop instances tasks fill in any avail-

able remaining slots, keeping cluster utilization at 100%.

6.2 Overhead

To measure the overhead Mesos imposes on existing

cluster computing frameworks, we ran two benchmarks
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Figure 6: Data locality and average job running times for 16

Hadoop instances on a 93-node cluster using static partitioning,

Mesos, or Mesos with delay scheduling.
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using the MPI (not with Torque) and Hadoop. These ex-

periments were performed using 50 EC2 instances, each

with 2 CPU cores and 6.5 GB RAM. We used the High-

Performance LINPACK [19] benchmark for MPI and the

WordCount workload for Hadoop. Table 3 shows aver-

age running times across three runs of MPI and Hadoop

both with and without Mesos.

6.3 Data Locality through Fine-Grained Sharing
and Resource Offers

In this experiment, we demonstrate how Mesos’ resource

offer mechanism enables frameworks to control their

tasks’ placement and in particular, data locality. We ran

16 instances of Hadoop using 93 EC2 instances, each

with 4 CPU cores and 15 GB RAM. Each instance ran a

map-only scan job that searched a 100 GB file spread

throughout the cluster on a shared HDFS file system.

Each job printed 1% of the input records as output. We

tested four scenarios: giving each Hadoop instance its

own 5-6 node static partition of the cluster (to emu-

late organizations that use coarse-grained sharing mech-

anisms), and all instances on Mesos using either no delay

scheduling, 1s delay scheduling or 5s delay scheduling.

Figure 6 shows averaged measurements from all 16

Hadoop instances across 3 runs of each scenario. Us-

ing static partitioning yields very low (18%) data local-

ity because the Hadoop instances are forced to fetch data

from nodes outside their partition. In contrast, running

the Hadoop instances on Mesos improves data locality

even without delay scheduling because each Hadoop in-

stance takes turns accessing all the nodes in the cluster.

Adding a 1-second delay brings locality above 90%, and

a 5-second delay achieves 95% locality, which is com-

petitive with running Hadoop alone. As expected, the

average performance of each Hadoop instance improves

with locality: jobs run 1.7x faster in the 5s delay scenario

than with static partitioning.

6.4 Benefit of Specialized Frameworks

We evaluated the benefit of running iterative jobs using

the specialized Spark framework (Section 5.3) over the

general-purpose Hadoop framework. We used a logistic

regression job implemented in Hadoop by local machine

learning researchers, and implemented a second version

using Spark and Mesos. We ran each version separately

on 20 EC2 instances, each with 4 CPU cores and 15 GB

RAM. Each experiment used a 29 GB data file and varied

the number of logistic regression iterations from 1 to 20

(see Figure 7).

With Hadoop, each iteration takes 127s on average,

while with Spark, the first iteration takes 174s, but sub-

sequent iterations take about 6 seconds. Basically, the

time to evaluate the function for each iteration is domi-

nated by the time to read the input data from HDFS and
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Figure 7: Hadoop and Spark logistic regression running times.

Figure 8: The average session load on the load balancer, the

average number of sessions across each web server, and the

number of web servers running over time.

parse it into floating point numbers. Hadoop incurs the

read/parsing cost for each iteration, while Spark reuses

cached blocks of parsed data and only incurs the cost

once (using slower text-parsing routines), leading to a

10.7x speedup on 30 iterations.

6.5 Elastic Web Farm

To demonstrate an interactive framework dynamically

scaling on Mesos we ran an elastic web farm on Mesos.

We used HTTPerf [38] to generate increasing and then

decreasing load on the web farm. As the average load

on each server reaches 150 sessions/second, the elastic

web farm framework signals to Mesos that it is willing to

accept more resources and launches another Apache in-

stance. We ran experiments using 4 EC2 instances with

8 CPU cores and 6.5 GB RAM. Figure 8 shows the web

farm dynamically adapts the number of web servers to

the offered load (sessions/second at the load balancer)

to ensure that the load at each web server remains at or

below 150 sessions/sec. The brief drops in sessions per

second at the load balancer were due to limitations in the

current haproxy implementation, which required the

framework to restart haproxy to increase or decrease

the number of Apache servers.
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6.6 Mesos Scalability

To evaluate Mesos’ scalability, we emulated large clus-

ters by using 99 Amazon EC2 instances, each with 8

CPU cores and 6 GB RAM. We used one EC2 instance

for the master with the remaining instances each run-

ning multiple slaves. During the experiment, each of 200

frameworks randomly distributed throughout the cluster

continuously launches one task at a time for each slave

that it receives an offer. Each task sleeps for a specified

period of time, based on a normal distribution around 10

seconds with a standard deviation of 2, and then ends.

We choose 10 seconds to help demonstrate Mesos scala-

bility under high load. In practice, average task runtime

will be higher, yielding lower load on the master. Once

the cluster reaches steady-state (i.e., the 200 frameworks

achieve their fair share and all cluster resources are in

use), we launch a single framework from a random slave

within the cluster that runs a single 10 second task. Note

that each slave reports 8 CPU cores and 6 GB RAM, and

each framework runs tasks that consume 4 CPU cores

and 3 GB RAM. Figure 9 shows the average of 5 run-

times for launching the single framework after reaching

steady-state.

Our initial Mesos implementation (labeled “reactive”

in Figure 9) failed to scale beyond 15,000 slaves because

it attempted to allocate resources immediately after every

task finished. While the allocator code is fairly simple,

it dominated the master’s execution time, causing laten-

cies to increase. To amortize allocation costs, we modi-

fied Mesos to perform allocations in batch intervals. To

demonstrate how well this implementation scaled we ran

the same experiment as before, however we also tried

variations with average task lengths of 10 and 30 sec-

onds (these are labeled as “10 s” and “30 s” in Figure 9).

As the graph shows, with 30 second average task length

Mesos imposes less than 1 second of additional overhead

on frameworks. Unfortunately, the EC2 virtualized envi-

ronment limited scalability beyond 50,000 slaves, as at

50,000 slaves the master was processing 100,000 pack-

ets per second (in+out), which has been shown to be the

current achievable limits in EC2[14].

6.7 Fault Tolerance

To evaluate recovery from master failures, we conducted

an experiment identical to the scalability experiment, ex-

cept that we used 20 second task lengths, and two Mesos

masters connected to a 5 node ZooKeeper quorum us-

ing a default tick timer set to 2 seconds. We ran the

experiment using 62 EC2 instances, each with 4 CPU

cores and 15 GB RAM. We synchronized the two mas-

ters’ clocks using NTP and measured the mean time to

recovery (MTTR) after killing the active master. The

MTTR is the time for all of the slaves and frameworks

to connect to the second master. Figure 10 shows the av-

Figure 9: Mesos master’s scalability versus number of slaves.
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Figure 10: Mean time for the slaves and applications to recon-

nect to a secondary Mesos master upon master failure. The plot

shows 95% confidence intervals.

erage MTTR with a 95% confidence interval for differ-

ent cluster sizes. Although not shown, we experimented

with different sizes of ZooKeeper quorums (between 1

and 11). The results consistently showed that MTTR is

always below 15 seconds, and typically 7-8 seconds.

7 Related Work
HPC and Grid schedulers. The high performance

computing (HPC) community has long been managing

clusters [42, 51, 28, 20]. Their target environment typ-

ically consists of specialized hardware, such as Infini-

band, SANs, and parallel filesystems. Thus jobs do not

need to be scheduled local to their data. Furthermore,

each job is tightly coupled, often using barriers or mes-

sage passing. Thus, each job is monolithic, rather than

composed of smaller fine-grained tasks. Consequently,

a job does not dynamically grow or shrink its resource

demands across machines during its lifetime. Moreover,

fault-tolerance is achieved through checkpointing, rather

than recomputing fine-grained tasks. For these reasons,

HPC schedulers use centralized scheduling, and require

jobs to declare the required resources at job submission

time. Jobs are then allocated course-grained allocations

of the cluster. Unlike the Mesos approach, this does
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not allow frameworks to locally access data distributed

over the cluster. Furthermore, jobs cannot grow and

shrink dynamically as their allocations change. In ad-

dition to supporting fine-grained sharing, Mesos can run

HPC schedulers, such as Torque, as a frameworks, which

then can schedule HPC workloads appropriately.

Grid computing has mostly focused on the problem

of making diverse virtual organizations share geograph-

ically distributed and separately administered resources

in a secure and inter-operable way. Mesos could well

be used within a virtual organization, which is part of a

larger grid that, for example, runs Globus Toolkit.

Public and Private Clouds. Virtual machine clouds,

such as Amazon EC2 [1] and Eucalyptus [40] share com-

mon goals with Mesos, such as isolating frameworks

while providing a low-level abstraction (VMs). How-

ever, they differ from Mesos in several important ways.

First, these systems share resources in a coarse-grained

manner, where a user may hold onto a virtual machine

for an arbitrary amount of time. This makes fine-grained

sharing of data difficult Second, these systems generally

do not let applications specify placement needs beyond

the size of virtual machine they require. In contrast,

Mesos allows frameworks to be highly selective about

which resources they acquire through resource offers.

Quincy. Quincy [34] is a fair scheduler for Dryad. It

uses a centralized scheduling algorithm based on min-

cost flow optimization and takes into account both fair-

ness and locality constraints. Resources are reassigned

by killing tasks (similarly to Mesos resource killing)

when the output of the min-cost flow algorithm changes.

Quincy assumes that tasks have identical resource re-

quirements, and the authors note that Quincy’s min-cost

flow formulation of the scheduling problem is difficult

to extend to tasks with multi-dimensional resource de-

mands. In contrast, Mesos aims to support multiple clus-

ter computing frameworks, including frameworks with

scheduling preferences other than data locality. Mesos

uses a decentralized two-level scheduling approach lets

frameworks decide where they run, and supports hetero-

geneous task resource requirements. We have shown that

frameworks can still achieve near perfect data locality us-

ing delay scheduling.

Specification Language Approach. Some systems,

such as Condor and Clustera [43, 26], go to great lengths

to match users and jobs to available resources. Clustera

provides multi-user support, and uses a heuristic incor-

porating user priorities, data locality and starvation to

match work to idle nodes. However, Clustera requires

each job to explicitly list its data locality needs, and does

not support placement constraints other than data local-

ity. Condor uses the ClassAds [41] to match node proper-

ties to job needs. This approach of using a resource spec-

ification language always has the problem that certain

preferences might currently not be possible to express.

For example, delay scheduling is hard to express with

the current languages. In contrast, the two level schedul-

ing and resource offer architecture in Mesos gives jobs

control in deciding where and when to run tasks.

8 Conclusion
We have presented Mesos, a resource management sub-

strate that allows diverse parallel applications to effi-

ciently share a cluster. Mesos is built around two con-

tributions: a fine-grained sharing model where applica-

tions divide work into smaller tasks, and a distributed

scheduling mechanism called resource offers that lets ap-

plications choose which resources to run on. Together,

these contributions let Mesos achieve high utilization, re-

spond rapidly to workload changes, and cater to applica-

tions with diverse placement preferences, while remain-

ing simple and scalable. We have shown that existing

cluster applications can effectively share resources with

Mesos, that new specialized cluster computing frame-

works, such as Spark, can provide major performance

gains, and that Mesos’s simple architecture enables the

system to be fault tolerant and to scale to 50,000 nodes.

Mesos is inspired by work on microkernels [18], ex-

okernels [27] and hypervisors [32] in the OS community

and by the success of the narrow-waist IP model [23] in

computer networks. Like a microkernel or hypervisor,

Mesos is a stable, minimal core that isolates applications

sharing a cluster. Like an exokernel, Mesos aims to give

applications maximal control over their execution. Fi-

nally, like IP, Mesos encourages diversity and innovation

in cluster computing by providing a “narrow waist” API

that lets diverse applications coexist efficiently.

In future work, we intend to focus on three areas. First,

we plan to further analyze the resource offer model to

characterize environments it works well in and determine

whether any extensions can improve its efficiency while

retaining its flexibility. Second, we plan to use Mesos as

a springboard to experiment with cluster programming

models. Lastly, we intend to build a stack of higher-level

programming abstractions on Mesos to allow developers

to quickly write scalable, fault-tolerant applications.
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