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Abstract
Cluster computing has become mainstream, resulting in

the rapid creation and adoption of diverse cluster com-

puting frameworks. We believe that no single frame-

work will be optimal for all applications, and that orga-

nizations will instead want to run multiple frameworks

in the same cluster. Furthermore, to ease development

of new frameworks, it is critical to identify common ab-

stractions and modularize their architectures. To achieve

these goals, we propose Nexus, a low-level substrate that

provides isolation and efficient resource sharing across

frameworks running on the same cluster, while giving

each framework maximum control over the scheduling

and execution of its jobs. Nexus fosters innovation in

the cloud by letting organizations run new frameworks

alongside existing ones and by letting framework devel-

opers focus on specific applications rather than building

one-size-fits-all frameworks.

1 Introduction

Cluster computing has become mainstream. Industry and

academia are running applications ranging from finance

to physics on clusters of commodity servers [6], fueled

by open-source platforms like Hadoop [3] and cloud ser-

vices like EC2 [1]. Driven by this wide range of applica-

tions, researchers and practitioners have been developing

a multitude of cluster computing frameworks. MapRe-

duce [23] provided a simple, low-level programming

model. Sawzall [39] and Pig [38] developed higher-

level programming models on top of MapReduce. Dryad

[32] provided a more general execution layer – data flow

DAGs. Recently, Google announced Pregel [35], a spe-

cialized framework for graph computations.

It seems clear that frameworks providing new pro-

gramming models, or new implementations of existing

models, will continue to emerge, and that no single

framework will be optimal for all applications. Conse-

quently, organizations will want to run multiple frame-
works, choosing the best framework for each applica-

tion. Furthermore, for economic reasons, organizations

will want to run these frameworks in the same cluster.

Sharing a cluster between frameworks increases utiliza-

tion and allows the frameworks to share large data sets

that may be too expensive to replicate.

To allow frameworks to share resources, developers

have so far taken the approach of building frameworks

on top of a common execution layer that performs shar-

ing. For example, Pig turns SQL-like queries into se-

ries of Hadoop jobs. Unfortunately, this approach may

limit performance – for example, Pig cannot pipeline

data between MapReduce stages because they are sep-

arate Hadoop jobs. Other efforts have proposed more

general execution layers, such as Dryad [32], on which a

variety of frameworks can run. However, general execu-

tion layers are more complex than specialized ones, and

they still incur the risk that a new programming model

cannot be expressed over the execution layer – for ex-

ample, the Bulk Synchronous Processes model used in

Pregel, where long-lived processes exchange messages,

cannot be expressed as an acyclic data flow in Dryad.

The problem with the single execution layer approach

is that a single entity is performing two tasks: isolating

resources between jobs and managing execution within
a job. We think that a far better approach, following the

exokernel model [25], is to define a small resource isolat-

ing kernel that is independent of any framework, and let

each framework control its own internal scheduling and

execution. In this paper, we propose Nexus, an isolation

and resource sharing layer for clusters based on this de-

sign. Nexus only places a minimal set of requirements

on frameworks to enable efficient resource sharing. Be-

yond that, it aims to give frameworks maximum control

over their scheduling and execution.

Sharing clusters is not a new problem. Multiple cluster

schedulers have been developed in the High Performance

Computing (HPC) and Grid communities [42, 41, 30, 47,
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19]. As a general rule, these systems ask users to submit

jobs to a queue and to request a number of resources (ma-

chines, cores, etc) for each job.1 Jobs are then launched

when enough machines become free. While this model

works well for batch-oriented HPC workloads, it faces

two important challenges in the environments that frame-

works like Hadoop are used in:

1. Dynamic workloads: Clusters are being used for in-

teractive ad-hoc queries and time-sensitive produc-

tion applications in addition to batch jobs. For ex-

ample, Facebook’s Hadoop data warehouse is used

for both production jobs and arbitrary user jobs [45].

Having production jobs wait in line behind a large

user job would be unacceptable, as would reserving

part of the cluster for production jobs and leaving it

idle when they are absent. Instead, schedulers for

Hadoop [45] and Dryad [33] implement fair sharing,

varying jobs’ allocations dynamically as new jobs

are submitted. This is possible because Hadoop and

Dryad jobs consist of small independent tasks, so the

number of machines a job is running on can change

during its lifetime.

2. Framework semantics: MapReduce and Dryad

achieve high performance by placing computations

on the nodes that contain their input data. While

some grid schedulers let jobs specify locality con-

straints at the level of geographic sites, most do not

let jobs control their placement at the level of nodes.

The problem is that the schedulers are not aware of

framework semantics that should be taken into ac-

count in scheduling decisions.

These challenges are caused by two core problems:

First, the granularity at which existing schedulers allo-

cate resources is too coarse for dynamic workloads and

data sharing. Second, framework semantics need to be

taken into account in scheduling decisions. Nexus ad-

dresses these issues through two main design principles:

1. Fine-grained sharing: Nexus asks that frameworks

split up their work into tasks, and makes scheduling

decisions at the level of tasks. This is the only major

requirement we make of frameworks. Nexus can run

tasks from multiple frameworks on the same node,

isolating them using various OS mechanisms. Tasks

can be viewed as a form of cooperative time-sharing

between frameworks.

2. Two-level scheduling: Nexus gives frameworks

choice in which resources they use through a two-

level scheduling model. At the first level, Nexus de-

cides how many resources to give each framework

based on an organizational allocation policy such

as fair sharing. At the second level, frameworks

1We survey HPC and grid schedulers in Section 8.

decide which of the available resources to use and

which tasks to run on each machine. This is achieved

through a mechanism called resource offers.

Although we have architected Nexus to let organiza-

tions define their own allocation policies, we have also

defined one policy that will be widely applicable: a gen-

eralization of weighted fair sharing to multiple resources

that takes into account the fact that frameworks may need

different amounts of CPU, memory, and other resources.

Implications The model enabled by Nexus, where a

single platform allows multiple frameworks to run on a

cluster, has wide-ranging implications for cluster com-

puting. First, this model accelerates innovation by let-

ting framework developers build specialized frameworks

targeted at particular problems instead of one-size-fits-

all abstractions. For example, a researcher that develops

a new framework optimized for machine learning jobs

can give this framework to a company that primarily uses

Hadoop and have it run alongside Hadoop.

Second, the isolation that Nexus provides between

frameworks is valuable even to organizations that only

wish to run a single software package, e.g. Hadoop. First,

Nexus allows these organizations to run multiple ver-

sions of Hadoop concurrently, e.g. a stable version for

production jobs and a faster but less stable version for

experimental jobs. Second, organizations may wish to

run one separate Hadoop instance per MapReduce job

for fault isolation. The stability of the Hadoop master

is a serious concern in large multi-user Hadoop clusters

[12]; if the master crashes, it takes down all jobs. Nexus

lets each job run its own MapReduce master, limiting the

impact of crashes.2 We believe that this second benefit of

isolation could drive adoption of Nexus, facilitating the

more important first benefit of accelerating innovation.

Finally, we are also exploring using Nexus to share

resources between workloads other than data-intensive

cluster computing frameworks. For example, we have

developed an Apache web farm “framework” that runs

multiple, load-balanced Apache servers as its tasks and

changes the number of tasks it uses based on load. Shar-

ing resources between front-end and back-end workloads

is very attractive to web application providers that expe-

rience diurnal load cycles. We have also ported MPI to

run over Nexus, allowing a variety of existing scientific

applications to share resources with new frameworks.

Evaluation To evaluate Nexus, we have ported two

popular cluster computing frameworks to run over it:

Hadoop and MPI. To validate our hypothesis that special-

ized frameworks can provide value over general ones, we

have also built a new framework on top of Nexus called

Spark, optimized for iterative jobs where a data set is

2The Nexus master is easier to make robust than the Hadoop master

because it has a simpler role and it needs to change less often.
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reused across many short tasks. This pattern is common

in machine learning algorithms. Spark provides a simple

programming interface and can outperform Hadoop by

8x in iterative workloads. To push the boundaries of the

isolation and dynamic scheduling provided by Nexus, we

have implemented a load-balanced elastic Apache web

server farm. Finally, we have verified that resource offers

let Hadoop achieve comparable data locality running on

Nexus to running alone.

Contributions Our main contributions are:

• A cluster computing architecture that separates re-

source isolation into a small kernel gives frame-

works control over their execution and scheduling.

• A two-level scheduling model for fine-grained shar-

ing of clusters based on two abstractions: tasks and

resource offers.

• A generalization of weighted fair sharing to multi-

ple resources.

Outline This paper is organized as follows. Section 2

explains the environment that we have designed Nexus

to run in and details its assumptions and goals. Section

3 presents the Nexus architecture. Section 4 presents our

current scheduling policy – a generalization of weighted

fair sharing for multiple resources. Section 5 describes

our implementation of Nexus and of the frameworks we

run over it. Section 6 presents experimental results. We

include a discussion in Section 7, survey related work in

Section 8, and conclude in Section 9.

2 Assumptions and Goals

In this section, we explain the data center environment

and workload that Nexus is targeted for, the assumptions

it makes, and the goals it seeks to achieve.

2.1 Workload

Our target environment for Nexus is clusters of commod-

ity machines shared by multiple users for analytics work-

loads. Examples include the back-end clusters at large

web companies that MapReduce was developed for, re-

search clusters at universities, and scientific clusters such

as the Google/IBM/NSF Cluster Exploratory [11].

As an example of a workload we aim to support, con-

sider the data warehouse at Facebook [4, 8]. Facebook

loads logs from its production applications into a 600-

node Hadoop cluster, where they are used for applica-

tions such as ad targeting, spam detection, and ad-hoc

business intelligence queries. The workload includes

“production” jobs that directly impact customers, such as

identifying spam, long-running “experimental” jobs such

as tests for new spam detection algorithms, and “interac-

tive” jobs where an analyst submits a query (e.g. “what

fraction of Spanish users post videos”) and expects an

answer within minutes. If, at some point in time, only a

single job is running in the cluster, this job should be al-

located all of the resources. However, if a production job,

or a job from another user, is then submitted, resources

need to be given to the new job within tens of seconds.

To implement dynamic resource sharing, Facebook

uses a fair scheduler within Hadoop that works at the

granularity of map and reduce tasks [45]. Unfortunately,

this means that the scheduler can only handle Hadoop

jobs. If a user wishes to write a new spam detection al-

gorithm in MPI instead of MapReduce, perhaps because

MPI is more efficient for this job’s communication pat-

tern, then the user must set up a separate MPI cluster and

import data into it. The goal of Nexus is to enable dy-

namic resource sharing, including policies such as fair

sharing, between distinct cluster computing frameworks.

2.2 Allocation Policies

Nexus decides how many resources to allocate to each

framework using a pluggable allocation module. Orga-

nizations may write their own allocation modules, or use

the ones we have built. Because of its use in Hadoop and

Dryad schedulers [45, 5, 33], the policy we have focused

on most is weighted fair sharing. One of our contribu-

tions over these Hadoop and Dryad schedulers is that

we allow tasks to have heterogeneous resource require-

ments. We have developed a generalization of weighted

fair sharing for multiple resources that we present in Sec-

tion 4. No matter which allocation policy is used, our

goal is to be able to reallocate resources rapidly across

frameworks when new jobs are submitted, so that jobs

can start within tens of seconds of being submitted. This

is necessary to support interactive and production jobs in

environments like the data warehouse discussed above.

2.3 Frameworks

Organizations will use Nexus to run cluster computing

frameworks such as Hadoop, Dryad and MPI. As ex-

plained in the Introduction, we expect that multiple, iso-

lated instances of each framework will be running.

Nexus aims to give frameworks maximum flexibility,

and only imposes a small set of requirements on them to

support resource sharing. Most importantly, Nexus asks

frameworks to divide their work into units called tasks.

Nexus makes scheduling decisions at task boundaries –

when a task from one framework finishes, its resources

can be given to another framework. However, it leaves

it up to the frameworks to choose which task to run on

which node and which resources to use, through a mech-

anism called resource offers described in Section 3.2.

To allow resources to be reallocated quickly when new

frameworks join the system, Nexus expects frameworks

to make their tasks short (tens of seconds to minutes in

length) when possible. This is sufficiently short that in
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a large cluster, there will be tens of tasks finishing per

second. For example, in a 600-node cluster with 4 tasks

per node and an average task length of one minute, there

will be 40 tasks finishing per second, and a new frame-

work could achieve a share of 10% of the cluster (i.e. 240

tasks) in 6 seconds. To encourage frameworks to use

short tasks, we make tasks cheap to launch by reusing

“executor” processes from the same framework between

tasks, as explained in Section 3.1. Interestingly, frame-

works such as Hadoop already use short tasks for fault-

tolerance: First, having short tasks reduces the time it

takes to recover from a failed task. Second, if a node that

contains outputs from multiple tasks fails, these tasks can

be re-run in parallel on the other nodes in the cluster [23].

If a new framework is not being allocated resources

quickly enough because there are too many long tasks

running, we also reserve the right to kill tasks from run-

ning frameworks after an administrator-specified time-

out. Cluster computing frameworks already need to tol-

erate losing tasks due to hardware failures, so requiring

them to tolerate task killing is not onerous. Frameworks

with long-lived tasks, such as MPI jobs, may use check-

pointing [29] to recover and scale down after tasks are

killed. Alternatively, their users can ask the framework

to use a smaller share of the cluster than the user’s allo-

cation so that it never needs to be killed.

2.4 Summary

We detail the assumptions and goals of Nexus below.

Assumptions:
1. Frameworks decompose work into tasks. If rapid

reallocation of resources in response to workload

changes is desired, then frameworks should either

make their tasks short (seconds to minutes) or avoid

exceeding their share of the cluster.

2. Frameworks tolerate losing tasks. Nexus may kill

tasks to enforce scheduling policies.

3. Single administrative domain. Our current imple-

mentation does not attempt to make security and pri-

vacy guarantees in the case of adversarial users.

4. Allocation policies are at the level of frameworks.
In order to have frameworks map onto organiza-

tional entities such as users, separate users are ex-

pected to use separate framework instances.

Goals:
1. Maximum flexibility for frameworks. Frame-

works should be given maximum flexibility in how

they schedule and execute their tasks. Scheduling

concerns that are common in data-intensive frame-

works, such as data locality, should be supported.

2. Dynamic, responsive scheduling. Frameworks’ al-

locations should change as new jobs are submitted,
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Figure 1: Comparing the architectures of Hadoop and Nexus.

The shaded regions make up Nexus. Hadoop can run on top of

Nexus, alongside Dryad.

through policies such as fair sharing, priority, etc.

3. Performance isolation for processes from different

frameworks running on the same node.

4. Support for pluggable allocation policies.
5. Support for heterogeneous resource demands.

Different tasks, even within a framework, may need

different amounts of resources (CPU, memory, etc).

6. Support for heterogeneous nodes. Cluster nodes

may have different amounts of CPU, memory, etc.

3 Nexus Architecture

3.1 System Components

Nexus consists of a master process managing a num-

ber of slave daemons, one on each node in a cluster.

Frameworks wishing to use Nexus each register a sched-
uler process with the Nexus master in order to be as-

signed resources (registration also associates a user with

the framework, for use by allocation policies). Resource

allocation is performed through a mechanism called re-
source offers that we describe in Section 3.2, which lets

frameworks pick which available resources to use. When

a framework accepts resources on a particular slave, it

can launch tasks to use the resources by giving Nexus

an opaque task descriptor for each task. Each descriptor

is passed to a framework-specific executor process that

Nexus starts on the slave,3 which runs the task. The ex-

ecutor is shared by all of a framework’s tasks on a given

slave, allowing the framework to amortize initialization

costs and to keep data cached in memory between tasks.4

An executor is free to run each task in its own thread, or

3The executor is fetched from a shared file system such as HDFS.
4If a slave accrues idle executors from too many frameworks, how-

ever, Nexus may kill some of them when the slave is low on memory.
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to spawn any number of separate processes for each task,

depending on the level of isolation it desires between its

tasks. Executors from different frameworks are isolated

from one another, as described in Section 3.3. Finally, as

executors finish tasks, they send status updates to inform

the master that resources can be re-allocated.

Nexus reports failures to frameworks but expects them

to implement their own recovery mechanisms. In the

event of a task failure, an executor can send a status up-

date signaling the loss of the task. In the event of an

executor failure, the executor and its child processes are

killed and the framework’s scheduler is informed of the

lost executor. Finally, in the event of a node failure, the

framework’s scheduler is informed of a lost slave.

Figure 1 shows the components of Nexus and com-

pares them with those of Hadoop. Many elements

of Nexus—a scheduler, executors, tasks, and status

updates—map closely to elements of Hadoop and other

cluster computing frameworks such as Dryad. Nexus

factors these elements out into a common layer, reducing

the burden on framework developers and giving frame-

works a common API for accessing resources so that they

can share clusters. The close mapping of Nexus compo-

nents to components of existing frameworks also makes

porting frameworks to Nexus fairly straightforward. For

example, our port of Hadoop reuses Hadoop’s master

as a scheduler and Hadoop’s slave as an executor, and

just changes the communication between them to pass

through Nexus.

We note that Nexus imposes no storage or communi-

cation abstractions on frameworks. We expect data to be

shared through a distributed file system such as GFS [27]

or Hadoop’s HDFS [3] running on each slave alongside

Nexus. Tasks are free to communicate using sockets.

3.2 Resource Allocation

The main challenge with Nexus’s two-level scheduling

design is ensuring that each framework gets resources

that it wishes to use. For example, a Hadoop job might

want to run tasks on the nodes that contain its input file,

an iterative job might prefer to run tasks on nodes where

it already has executors to re-use data cached in memory,

and an MPI job might need 4 GB of RAM per task.

Our solution to this problem is a decentralized two-

level scheduling mechanism called resource offers. At

the first level, an allocation module in the master de-

cides which framework to offer resources to when there

are free resources in the system, following an organiza-

tional policy such as fair sharing. At the second level,

frameworks’ schedulers may accept or reject offers. If a

framework rejects an offer, it will continue to be “below

its share,” and it will therefore be offered resources first

in the future when resources on new nodes become free.

In detail, whenever there are free resources, Nexus

performs the following steps:

1. Allocate: The allocation module determines which

framework(s) to offer the free resources to and how

much to offer to each framework.

2. Offer: Frameworks are sent a list of resource of-

fers. A resource offer is a (hostname, resources) pair,

where “resources” is a vector containing the number

of free CPU cores, GB of RAM, and potentially other

resources on a given machine.

3. Accept/Reject: Frameworks respond to offers with

a possibly empty list of (task descriptor, hostname,
resources) tuples. A framework is free to claim as

many total resources on a machine as were in the of-

fer and to divide these between several tasks.

A few more details are needed to complete the model.

First, frameworks will often always reject certain re-

source offers. To short-circuit the rejection process,

frameworks can provide filters to the master. Two types

of filters we support are “only offer machines from list

L” and “only offer machines with at least R resources

free”. A filter may last indefinitely, or get decommis-

sioned after a framework-specified timeout. A frame-

work may also choose to update its filters at any time.

By default, any resources rejected during an offer have

a temporary 1-second filter placed on them, to minimize

the programming burden on framework developers who

do not wish to constantly update their filters.

Second, to accommodate frameworks with large re-

source requirements per task, Nexus allows administra-

tors to set a minimum offer size on each slave, and it will

not offer any resources on that slave until this minimum

amount is free. Without this feature, a framework with

large resource requirements (e.g. 2 CPUs and 4 GB RAM

per task) might starve in a cluster that is filled by tasks

with small requirements (e.g. 1 CPU and 1 GB RAM),

because whenever a small task finishes and its resources

are re-offered, the framework with large requirements

cannot accept the offer but frameworks with smaller re-

quirements can. We currently ask administrators to man-

ually configure per-machine minimum offer sizes, be-

cause there is a tradeoff between the largest task sup-

ported and the amount of fragmentation incurred when

resources wait idle for a large enough offer to form. We

are investigating making this process more automatic.

3.2.1 Example

To illustrate how resource offers work, suppose that two

MapReduce frameworks, F1 and F2, each wish to run a

map function on a large data set that is distributed across

all of a cluster’s nodes. Suppose that the both frame-

works’ tasks require 1 CPU core and 1 GB of RAM each,

and that each node has 2 cores and 2 GB of RAM. Fi-

nally, suppose that the cluster’s allocation policy is fair
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sharing: each framework should get an equal number of

tasks.5 Then, the allocation module might implement the

following algorithm: “whenever resources become free,

offer them to the framework with the fewest resources

whose filters do not block the offer.”

When the first framework, say F1, registers, it is of-

fered all of the resources in the cluster and starts tasks

everywhere. After F2 registers, it is offered the resources

that free up as tasks from F1 finish, until both frame-

works have an equal number of resources. At this point,

some nodes will be running one task from each frame-

work, some nodes will be running two tasks from F1, and

some nodes will be running two tasks from F2. For some

time, both frameworks will stay running in the same set

of locations, because whenever a task from a particular

framework finishes, its resources will be offered back to

the same framework (because that framework is now be-

low its fair share), and the framework will launch a new

task on the same node. If this situation continued indefi-

nitely, data locality would suffer because F1 would never

get to run on nodes that only F2 has tasks on, and vice-

versa; we call this problem sticky slots [45]. However,

once one of the frameworks, say F1, finishes reading

all the data that it wanted to read on a particular node,

it starts filtering out resources on this node. These re-

sources are offered to F2, which accepts them. F2 now

has a higher share of the cluster than F1. Therefore, when

any of F2’s tasks finishes, its resources are offered to F1.

Consequently, F1 will be able to take resources on nodes

that F2 was previously monopolizing, in effect “swap-

ping places” with F1. Both frameworks will thus get a

chance to run on all nodes and achieve high data locality.

3.2.2 Discussion

Our resource offer mechanism differs from the schedul-

ing mechanisms used in most cluster schedulers because

it is decentralized. An alternative approach would be to

have each framework give Nexus a set of preferences

about resources it wants, specified in some “preference

language”, and have Nexus match frameworks with re-

sources using a centralized algorithm.

At first, the centralized approach appears attractive

because it gives Nexus global knowledge about frame-

works’ needs. However, this approach has an important

disadvantage: preferences that cannot be expressed in
the preference language cannot be accounted for. Be-

cause Nexus aims to support a wide variety of both cur-

rent and future frameworks, it seems unlikely that a sin-

gle preference language could be designed that is expres-

sive enough for all frameworks, easy for developers to

use, and useful for making scheduling decisions.

In fact, even the preferences of a fairly simple frame-

5We discuss how to define weighted fair sharing for multiple re-

sources in depth in Section 4.

work like MapReduce are complex: A MapReduce job

first wants to run a number of map tasks, each on one

of the nodes that has a replica of its input block. How-

ever, if nodes with local data cannot be obtained, the job

prefers running tasks in the same rack as one of the input

blocks. After some fraction of maps finish, the job also

wants to launch reduce tasks, which may have different

CPU and memory requirements than maps, to start fetch-

ing map outputs. Finally, until all the maps are finished,

the job never wants to end up with only reduces running;

if Nexus started sending the job only resource offers with

CPU and memory amounts suitable for reduces, then the

job would never finish.

Advocates of a preference language based approach

argue that scheduling decisions based on global knowl-

edge will be better than any distributed decisions made

by frameworks responding to offers. However, we have

found that for many preferences, such as data local-

ity, resource offers achieve nearly optimal performance

(e.g. 95% of tasks run on the nodes that contain their in-

put). We discuss this in Section 6.4.

Our resource offer approach has the added advantage

that it is simple and efficient to implement, allowing the

Nexus master to be scalable and reliable. We hypothesize

that the ability to run a wide variety of frameworks on

a single, stable platform will offset any small losses in

performance caused by using resource offers.

3.3 Framework Isolation

Nexus aims to provide performance isolation on slave

nodes between framework executors. Given the fine

grained nature of our tasks, an isolation mechanism

should have the following properties:

• An isolation mechanism should not impose high

overheads for executor startup and task execution.

• An isolation mechanism should allow Nexus to dy-

namically change resource allocations after the ex-

ecutors have been started, as the number of tasks an

executor is running may change during its lifetime.

While isolation is a first-order concern of our architec-

ture, we believe we should be able leverage existing iso-

lation mechanisms. Unfortunately, even given the sub-

stantial amount of attention performance isolation has re-

ceived, no solution has emerged that is optimal for both

properties. Given that sites will have varying isolation

needs, Nexus is designed to be able to support multiple

isolation mechanisms through pluggable modules. We

explain the mechanism we currently use in Section 5.1.

3.4 Resource Revocation

We discuss the mechanism of resource revocation in this

section, and defer to Section 4.3 for an analysis of when

6



revocation is needed, and the magnitude of revocation

that might need to be done.

Revocation policies will depend greatly on site-

specific needs and desires. In general, however, the

Nexus allocation module, will initiate revocation when

it wants to ameliorate a disparity in some framework’s

fair share. This may occur (a) when a new framework

registers or (b) when an existing framework, who is be-

low its fair share, revives resource offers when there are

insufficient, or no, available resources.

Similar to previous work, Nexus uses visible resource

revocation [25]. That is, the Nexus allocation module

informs a framework that it needs to return a specified

amount of resources to the cluster within a specified

timeout (which might be statically configured, or dynam-

ically determined). We augment this basic revocation

scheme, however, by including revocation constraints;

a revocation request will specify some subset of nodes

from which the resources must be returned, where that

subset may be one node, or the entire cluster. If a frame-

work fails to return enough resources by the timeout, the

Nexus scheduler may choose to reclaim resources itself.

It may, however, choose to reclaim only a subset of the

resources in the original request. A framework sched-

uler receives “task killed” updates for all tasks during

this process.

Using this revocation mechanism allows the Nexus

allocation module to provide maximal flexibility for a

framework when that flexibility is affordable. Often, this

will provide a framework some freedom to pick which

tasks to kill (if it needs to kill any tasks at all: a frame-

work may have been offered resources that it hasn’t yet

accepted that satisfy the revocation constraints).

4 Fair Scheduling

As described in Section 3, Nexus is a two-level scheduler

that lets users influence scheduling decisions by their se-

lection of offers. This is done when a user, which Nexus

considers to be below its fair share, is offered slots. The

user can then reject undesirable offers, and accept desir-

able ones. In this section, we try to answer the question

of what the fair share of a user should be. This is compli-

cated by that there are multiple different resources, and

users have possibly different demands and constraints on

them. We provide fairness properties, scheduling algo-

rithms, and a mechanism for killing.

Our model is that the system consists of a discretized

amount of different resources, such as 32 CPU slots, 256
GB memory, and 10 GB of disk space. Each user implic-

itly, or explicitly, defines a demand vector, specifying the

per-task resource usage, e.g. 〈2, 5, 100〉, implying tasks

should each be given 2 CPUs etc. At runtime, the above

User 1 User 2 

a) Asset Fairness b) Dominant Resource Fairness 

100% 

50% 

0% 
CPU Memory 

100% 

50% 

CPU Memory 
0% 

Figure 2: Example with two frameworks with demand vectors

〈1, 3〉 and 〈1, 1〉. a) Allocation under Asset Fairness, equaliz-

ing their total resource usage. b) Allocation under Dominating

Resource Fairness, equalizing the share of their dominating re-

source.

vectors change dynamically. Thus, Nexus’ scheduler ap-

proximates this model.

We will refer to the following canonical example

throughout this section. Consider a cluster with 300
CPUs and 300 GB memory, and two users with demand

vectors 〈1, 3〉 and 〈1, 1〉, respectively.

First attempt: Asset Fairness. One intuitive schedul-

ing policy we tried is to account for all resources that a

user uses. We refer to this as asset fairness. The goal

would then be to schedule users such that every user’s

sum of all resources is the same. This might seem natu-

ral since the usage of a chunk of each resource can be

equated with a fixed cost, which then implies that all

users would be given resources for the same amount of

budget.

Asset fairness can, however, give rise to undesirable

outcomes. In our canonical example, asset fairness will

give the first user 60 tasks and the second user 120 tasks.

The first user will use 〈60, 180〉 resources, while the sec-

ond will use 〈120, 120〉 (see Figure 2). While each user

uses a total of 240 resources, the second user has got

less than half (150) of both resources. We believe that

this could be considered unfair, making the second user’s

owner inclined to buy a separate cluster of dimension

〈150, 150〉, using it all by itself.

4.1 Dominating Resource Fairness

The last example highlights that users might not care

about the sum of their allocated resources, but instead

care about their number of tasks. In other words, users

care about the resource that they relatively demand most

of, since that is the resource they will be allocated most

of. We define a user’s dominating resource to be the

resource that it percentage-wise demands most of, e.g.

with a total 10 CPUs and 40GB memory, a user that de-
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mands 1 CPU and 2 GB memory per task has CPU as

its dominating resource, as that is the resource that dom-

inates its relative demand.

It is, thus, natural to attempt to give all users equal

amounts of their dominating resource. We call this, dom-
inating resource fairness. This is achieved by assigning

to each user i a dominating share xi, which is i’s share of

its dominating resource, i.e. xi = maxj{sij}, where sij

is user i’s fractional share of resource j.6 The scheduler

allocates resources to the user with least xi.
7

If we consider our canonical example, dominating re-

source fairness will allocate the two users 50 and 150
tasks, respectively. Thus, the resource usage of the two

users becomes, 〈50, 150〉, and 〈150, 150〉, respectively

(see Figure 2). Hence, both users get half of their domi-

nating resource, i.e. xi = 0.5.

Properties. Dominating resource fairness satisfies a

share guarantee property that we consider crucial: each

user receives 1
n fraction of at least one of its resources.

Informally, share guarantee can be interpreted as:

Each user will get at least as much resources
as it would get by running its own cluster.

Dominating resource fairness satisfies share guaran-

tee, modulo fractional task allocations. To see that, note

that a user which has 1
n of one of its resources surely

has 1
n of its dominating resource, and vice versa. Share

guarantee, thus, ensures that a user gets 1
n of its dominant

resource. If every user is given exactly 1
n of all resources,

every user will be able to get 1
n of their dominating re-

source.

We compare dominating resource fairness with previ-

ous work of fairness in networking. Dominating resource

fairness is an adaptation of max-min fairness to cluster

environments [20, pg 448]. An allocation according to

dominating resource fairness is max-min fair in the sense

that any increase in a user p’s tasks will be at the expense

of a decrease in another user q’s task, where p already

had more of its dominating resource than q had of its

dominating resource. To see this, note that dominating

resource fairness is an approximation of progressive fill-
ing [20, pg 450], in which all users’ usage of their dom-

inating resource is increased at the same rate, while pro-

portionally increasing its other resources, until some re-

source is exhausted, in which case those users’ allocation

is finalized, and this is repeated recursively for remaining

users.

Another way to understand dominating resource

fairness is through Jain’s Fairness Index (JFI) [34]:

6Asset fairness can be achieved by instead assigning xi =
∑

j
sij .

7The Nexus schedulers actually return a list of users sorted in in-

creasing order by xi. The reason for the list is that Nexus’ scheduler

attempts to always schedule the first user in the list for which there are

available resources.

(
∑

i
xi)2

n
∑

i
xi

2 , where n is the number of users in the clus-

ter, and xi is their resource share. JFI was originally

intended for sharing a single resource, but we let xi be

the dominating share of user i. Thus, a maximum JFI

of 1.0 corresponds to scheduling resources according to

dominating resource fairness, as it implies that every user

has the same amount of their dominating resource. Thus,

dominating resource fairness can be seen as a greedy al-

gorithm for maximizing JFI.

Share guarantee only ensures that each user gets a 1
n

share. After each user has got 1
n fraction of its dominat-

ing resource, there might be room for more tasks. This is

especially the case with heterogeneous demand vectors,

e.g. two users with demands 〈1, 9〉, 〈9, 1〉 can both be

allocated 90% of their dominating resource. We next ex-

plain different ways to allocate the resources that remain

after the share guarantee has been satisfied.

Maximizing Utilization. It is possible to use domi-

nating resource fairness until each user has received 1
n

of it its dominating resource, and thereafter use another

scheduler that opts for maximum utilization of the re-

sources. We found one scheduler particularly efficient

for maximizing utilization. It is a greedy scheduler

whose goal is to schedule the user that will give the most

even utilization of all resources. This is done by calculat-

ing for each user, u, what the utilization of every resource

would be if u would be allocated another task accord-

ing to its demand vector. It then calculates the the vari-

ance of utilization across the resources, and returns the

list of users sorted in increasing order of variance. We

compared this to a linear program that scheduled users

for optimal utilization, and found that it performs close

to the optimum. Nevertheless, scheduling for utilization

might not be desirable as we show next.

Gaming the Scheduler. A scheduler that optimizes for

maximum utilization can always be gamed by a user that

shapes its demand vector to be identical to the remaining

resources. For example, if the remaining resources are

〈6, 18, 24〉, a user can make its demand vector 〈1, 3, 4〉,
ensuring that an allocation for it can perfectly use all re-

maining resources.

Dominating resource fairness is, however, harder to

game. If a user demands more of some resource that

it does not need, it is likely to get hurt in scheduling. If

the surplus demand changes its dominating resource, its

dominating share will be higher as soon as it is allocated,

penalizing it during scheduling, even though it cannot

use the surplus resource. If the extra demand does not

change its dominating resource, it is still possible that it

gets hurt in scheduling because its surplus demand can-

not be satisfied. Gaming can, however, be possible in

certain specific scenarios. For instance, a user, u, might
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get ahead by requesting a surplus resource, which when

allocated makes other users’ demand vectors insatiable,

allowing u to get ahead of them during scheduling.

4.2 Weighted Fair Sharing

We have so far assumed that resources are to be shared

equally among the users. In practise, it is desirable to be

able to weight the sharing. The motivation for this is that

different organizational entities might have contributed

different amount of resources to the cluster or that there

is a payment scheme in which different cluster owners

pay for parts of the cluster. In either case, sharing could

be weighted on a users basis, as well as on a resource

basis. For example, some organization might have con-

tributed with more memory resources, and should there-

fore have a higher share of the memory resources.

Weighted fair sharing is implemented in Nexus sim-

ilarly to Lottery Scheduling [43]. Every user i has a

vector of weights of positive real numbers wij , where

1≤j≤r for r resources. The weight wij expresses that

user i’s fair proportion of resource j is
wij∑
k

wkj
.

The definition of a dominating share for user i now

changes to xi = maxj{ sij

wij
}. Thus, share guarantee

says that a user i will get at least
wij∑
k

wkj
fraction of its

dominating resource j. Note that dominating resource

scheduling now uses the new definition of a dominating

share, xi.

If wij = 1.0 for all users and resources, weighted fair

sharing reduces to equal fair sharing. Another use case is

to assign user-wide weights. For example, if wij = k for

all j, while wkj = 1.0 for all k �=i and all j, then user i
will have twice the proportion of all resources compared

to every other user in the system. We have found that the

latter use often suffices, as one would like to weight on a

per-user level, and not on a per-resource level.

4.3 Resource Revocation

It is the job of the scheduler to decide which users’

tasks should be revoked, and on what machines. This

is complicated by that the granularity of tasks can

be a value below the specified minimum offer size,

min offer. If care is not taken, the revoked tasks

might not make enough room for a new task that is of

dimension min offer. In the worst case, a user above

its fair share might be running very small tasks on ev-

ery machine, such that even if all its tasks were revoked,

there might not be room for a new task.

Nexus’ avoids the above scenario by assigning to each

slave machine a fairness score indicating how fair the

allocation would be if min offer resources would be

freed on that machine through killing. It thereafter se-

lects the most fair machine for revokation, and repeats

the process to free more resources. When a user filter ex-

ists, Nexus assigns a minimum score to those machines,

ensuring that they will be selected for revokation last.

The fairness score is based on JFI and is calculated

for each slave m by sorting the users running on m in

decreasing order of their dominating share. Nexus then

traverses the list of users and marks their tasks for re-

vocation until room has been made for a min offer.

Thereafter, a cluster-wide JFI is calculated, discounting

the marked tasks against users’ shares, and assigns the

score to m.

Nexus’ will pick the slave with highest JFI for re-

source revokation. It will send notification to the marked

users and give them a grace period to kill tasks on that

machine. If only a single user’s tasks are marked for re-

vocation, Nexus offers that user the freedom to kill that

amount of its tasks on any machine it is running on. After

the grace period expires, Nexus selects the marked tasks

and kills them.

The above scheme attempts to achieve maximum fair-

ness while minimizing resource revokation. Note that in

the typical case where the user u that is most above its

fair share is running more than min offer on a single

machine, the above scheme will always always pick u
for resource revocation. This is because the slave that u
is running on will receive the highest JFI score.

5 Implementation

We have implemented Nexus in approximately 5,000

lines of C/C++. The implementation, which was de-

signed for any 32-bit and 64-bit POSIX-compliant oper-

ating system, has been tested on both Linux and Solaris.

To reduce the complexity of our implementation, we

use a library which provides an actor-based program-

ming model that uses efficient asynchronous techniques

for I/O [9]. We use the library and its built-in message se-

rialization to perform all of the communication between

the different components of Nexus.

The current implementation assumes the use of social-

ized utilities, such as HDFS and MapOutputServer, and

only supports resource offers for CPU cores and memory

(i.e., it does not provide storage and I/O isolation.)

An important benefit of using C/C++ to implement

Nexus has been our ability to easily interoperate with

other languages. In particular, we use the Simplified

Wrapper and Interface Generator (SWIG) to generate in-

terfaces and bindings in Ruby, Python, and Java. As it

turns out, none of our example frameworks are written

against the C/C++ API.

We use the rest of this section to accomplish two

things: first, we elaborate on how we provide perfor-

mance isolation between framework executors and sec-

ond we discuss in detail how frameworks can be imple-

mented to run on Nexus.

9



Nexus easily interoperates with other languages, in

particular, we use the Simplified Wrapper and Interface

Generator (SWIG) to generate interfaces and bindings in

Ruby, Python, and Java.

5.1 Framework Isolation

Recall from Section 3.3, that a good isolation mechanism

for Nexus should (a) have low overheads for executor

startup and task execution and (b) have the ability to let

Nexus change resource allocations dynamically.

Given those constraints, we present possible mecha-

nisms below:

Processes and ulimit Using processes as the “con-

tainer” for isolation is appealing because processes are

a lightweight and portable mechanism. However, ulimit

and setrlimit alone are insufficient for providing aggre-

gate resource limits across process trees (e.g. a process

and all of its descendants).

Virtual Machines Virtual machines are an appeal-

ing container, however, virtualization imposes I/O over-

heads [22] that may not be acceptable for data-intensive

applications like MapReduce. In addition, VMs take a

fairly long time to start up, increasing latency for short

lived executors.

Cpusets, Containers, Zones, etc. Modern operating

systems are begining to provid mechanisms to isolate en-

tire process trees. For example, Linux supports cpusets

and cgroups for CPU isolation [16], and Linux contain-

ers [15] are aimed to provide more comprehensive isola-

tion. These mechanisms tend to be very lightweight and

are dynmically configurable while a process is running

(similar to ulimit and setrlimit).

Solaris provides a relatively advanced set of mecha-

nisms for resource isolation [14], which allows, for ex-

ample, one to set cumulative limits on CPU share, resi-

dent set size, and OS objects such as threads, on a process

tree. A nice property of the Solaris mechanisms is that

you can configure, at least for some resources, the abil-

ity to let idle resources get used by processes that have

reached their limits.

For our current implementation, we choose to use the

Solaris resource management mechanisms. This allows

Nexus to isolate CPU usage and memory usage per ex-

ecutor process tree.

We use the Solaris resource management mecha-

nisms [14] to enable Nexus to isolate CPU usage and

memory usage per executor process tree. Solaris pro-

vides a relatively advanced set of mechanisms for re-

source isolation which allows, for example, one to set

cumulative limits on CPU share, resident set size, and OS

objects such as threads, on a process tree. A nice prop-

erty of the Solaris mechanisms is that you can enable,

at least for some resources, idle resources to be used by

processes that have reached their limits.

One contributing factor in our decision to use Solaris

was our desire to run large-scale tests on Amazon EC2,

since Linux containers would have required patching the

Linux kernel, which is not allowed by EC2.

As operating system isolation mechanisms improve,

they should only strengthen the performance isolation

guarantees that Nexus can provide. We explore how well

the performance isolation mechanisms worked in Section

6.

5.2 Frameworks

We have ported Hadoop and the MPICH [21] implemen-

tation of MPI to run on Nexus. Neither of these ports

required changing the existing interfaces, so existing run

unmodified. In addition, we built a new framework from

scratch for writing machine learning applications as well

as a framework that elastically scales Apache [2] web

servers. We describe the implementation details of each

framework below.

5.2.1 Hadoop

Porting Hadoop to run on Nexus required minimal mod-

ification of Hadoop internals because Hadoop’s concepts

such as tasks map cleanly onto Nexus abstractions. We

used Hadoop’s existing master, the JobTracker, as our

Nexus scheduler, and we used Hadoop’s slave daemon,

the TaskTracker, as our executor. We needed to imple-

ment two major changes:

• Factoring out the map output server from the Task-

Tracker. Normally, Hadoop has each TaskTracker

serve local map outputs to reduces, but if the Task-

Tracker runs as an executor, it may occasionally be

killed. We made the map output server a separate

daemon shared across Hadoop instances.

• Changing scheduling to use Nexus’s resource offer

mechanism, as we describe below.

In normal operation, Hadoop schedules tasks on its

slaves in response to heartbeat messages that slaves send

every 3 seconds to report their status. Each slave has a

number of “map slots” and “reduce slots” in which it can

run map and reduce tasks respectively. In each heartbeat,

the slave reports its total number of slots of each type

and the number of slots it has free. The JobTracker gives

the slave new tasks if there are free slots, preferentially

choosing tasks with data local to the slave.

The heartbeat mechanism provides a good opportunity

to add support for Nexus because it presents a simple

interface to “pull” tasks for a particular slave from the

JobTracker. In our port, we take advantage of this inter-

face to maximize the amount of Hadoop code we reuse.

Whenever Nexus makes a resource offer on a particular

slave to our Nexus scheduler (which is located in the Job-

Tracker), we check whether there are any runnable map
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or reduce tasks. If there are, we accept the offer (modulo

a detail on data locality which we get to later), and we

send a message to the slave that the offer was on to have

it increase its number of map or reduce slots. Whether

we choose to add a map slot or a reduce slot depends on

which tasks are available; if both are available, we keep a

configurable ratio of map and reduce slots on each slave

(by default 1:1). After the slave receives the Nexus-level

task and increases its slot count, the next time it sends a

heartbeat to the master, Hadoop’s standard scheduling al-

gorithm is invoked to pick a Hadoop-level map or reduce

task to run. Then, whenever the slave sends a heartbeat to

the master saying that a task is done, our shim layer also

decrements the slave’s slot count and reports the task as

finished to Nexus. Finally, if we create a slot but the slave

is not assigned a task within two heartbeats (perhaps be-

cause jobs finished), it removes the slot and also sends a

task-done report to Nexus.

A final detail deals with data locality. When consid-

ering which slaves to launch map tasks on, we take a

policy of waiting up to t seconds to find a slave that con-

tains local data for one of the yet-unlaunched map tasks

in the system. If no such slave is found, we accept a

non-local task. The wait time is reset only if we ever get

a local task again. This simple mechanism, called de-
lay scheduling, is explained in our previous work [45],

where it was found to provide near-perfect data locality

in a fair scheduler for Hadoop.

In total, our changes to Hadoop were 1100 lines of

code, of which 1000 are new files adding the shim layer

and the map output server.

5.2.2 MPICH

MPI is a language-independent message-passing API

used to implement parallel programs that run primar-

ily on supercomputers and clusters. MPI works by

launching daemons on machines that will participate in

the computation. A user then executes the standard

mpiexec to run a program on each of the machines run-

ning daemons.

Rather than make invasive changes in the implemen-

tation of MPICH, we created a framework “wrapper”

around mpiexec that registers with the Nexus master,

launches a local MPI “master” daemon, accepts resource

offers large enough to run instances of the specified pro-

gram, and then has the executor launch an MPI daemon

that connects back to the “master” daemon. Once the

wrapper has acquired enough resources to run the pro-

gram, it invokes mpiexec which uses the local MPI

daemon to begin the distributed MPI computation. Note

that because MPI uses the MPI daemon’s to launch more

processes, nothing extra needs to be done to ensure sub-

sequently launched processes on the slaves will be prop-

erly isolated.

The simplicity of this approach is a direct consequence

of how a majority of MPI jobs are executed. Since few

MPI jobs actually fork and launch computation dynami-

cally, we choose not to provide any mechanism for doing

so, and we implemented a very simple scheduling policy

– accept any offered resources that are large enough to

launch the program.

Currently, the wrapper launches MPI jobs conserva-

tively. That is, it never attempts to use more than

its fair share of the resources to avoid resource re-

vocation. Mechanisms such as Berkeley Lab Check-

point/Restart [29] could be used to support revocation.

The entire wrapper was written using our Python inter-

face and bindings for Nexus in about 200 lines of code.

5.2.3 Spark

Nexus enables the creation of specialized frameworks

optimized for workloads for which more general exe-

cution layers may not be optimal. To test the hypoth-

esis that simple specialized frameworks provide value,

we identified one class of jobs that machine learning re-

searchers at our institution ran on Hadoop and found per-

formed poorly – iterative jobs, where a data set is reused

across a number of iterations. We built a framework

called Spark optimized for these workloads.

Example Job A simple example of an iterative al-

gorithm used in machine learning is logistic regression

[10]. This algorithm seeks to find the line that best sep-

arates two clusters of labeled data points. The algorithm

starts with a random separating line, w. Then, on each it-

eration, it computes the gradient of an objective function

that measures how well the line is separating the points,

and shifts w in the direction of this gradient. The gradient

computation amounts to evaluating a function f(x,w) on

each data point x and summing these results.

An implementation of logistic regression in Hadoop

must run each iteration as a separate MapReduce job,

because each iteration depends on the w computed at the

previous one. This imposes overhead because every it-

eration must re-read the input file into memory. Dryad

could express the whole job as a data flow DAG as shown

in Figure 3 a). However, it still has the problem that each

iteration must reload the data file from disk; there is no

way in Dryad to ask one vertex to evaluate f(x,w) for

multiple values of w, as this requires cyclic data flow.

Spark’s execution is shown in Figure 3 b). Spark uses

the long-lived nature of Nexus executors to cache a slice

of the data set in memory at each executor, and then run

multiple iterations on this same cached data.

Spark Details Spark is implemented in Scala [13], a

high-level object-oriented/functional programming lan-

guage that runs over the JVM. Users write jobs in Scala,

and invoke Spark through a language-integrated syntax
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Figure 3: Comparison of execution of the logistic regression

job in Dryad and Spark. Solid lines represent data flow within

the cluster computing framework. Dashed lines represent reads

from a distributed file system. In Spark, the same worker pro-

cesses are reused across iterations and reads only happen once.

Figure 4: Implementation of logistic regression in Spark. The

body of the inner loop (highlighted) runs in parallel on Nexus.

similar to DryadLINQ [44]: users write a for loop over a

special “distributed data set” object, and the body of the

for loop is passed as closure to run as a Nexus task on

the appropriate node for each slice of the data.8 Spark

allows users to ask for a parallel data set to be read from

the Hadoop Distributed File System, transformed, and

cached in memory at executors. It then schedules tasks

to run on executors that already have the appropriate data

cached, using a delay scheduling algorithm similar to our

Hadoop port. Figure 4 shows how the logistic regression

algorithm is expressed in Spark.

Spark is implemented in 800 lines of code, but can

outperform a Hadoop implementation of logistic regres-

sion by 8x, as shown in Section 6.3. Due to lack of

space, we limit our discussion of Spark in this paper and

refer the reader to http://www.cs.berkeley.edu/

˜matei/spark for more details.

8This for-loop syntax integration has previously been used by a

Scala API for Hadoop [28].

Average time (s)
MPI 50.85

MPI on Nexus 51.79

Table 1: Overhead of running the MPI LINPACK benchmark

on Nexus

Average time (s)
Hadoop 159.87

Hadoop on Nexus 166.19

Table 2: Overhead of running the WordCount Hadoop work-

load on Nexus

5.2.4 Elastic Web Farm

To explore how to implement a more interactive frame-

work, we built an elastic web farm. Sharing resources

between web servers and other frameworks is a natural

desire; when the web load is low the machines can be

used for launching tasks from other frameworks and as

the web load increases more instances of the web server

can be launched.

We used the load balancer haproxy [7] as our front-end

and Apache as our back-end, however any web server

would have been sufficient. Similar to the MPI wrap-

per framework, we created a framework which wraps

the launching and killing of web servers on nodes. The

wrapper queries the front-end for load statistics, and uses

that to decide whether or not to launch, or teardown,

servers. The wrapper’s only scheduling constraint is that

it only launches one Apache instance per machine, and it

uses filters to assist the Nexus master in this respect.

One unfortunate aspect of using haproxy as the front-

end was that it does not provide good mechanisms to do

hot-swapping of its configuration files. Instead, haproxy

needs to be restarted for each reconfigure, which can of-

ten cause certain connections to be terminated.

Like the MPI wrapper, this wrapper was written using

our Python interface and bindings for Nexus and is about

250 lines of Python.

6 Evaluation

We evaluated Nexus by performing a series of ex-

periements using Amazon’s EC2.

6.1 Overhead

To measure the overhead Nexus imposes on frameworks

we ran two benchmarks using Hadoop and MPI. These

experiments were performed on EC2 using 50 nodes,

each with 2 CPU cores and 6.5 GB of memory. We used

the WordCount workload for Hadoop and we used the

High-Performance LINPACK [18] benchmark for MPI.

Tables 2 and 1 show the average running time across

three runs of Hadoop and MPI both with and without
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Nexus, respectively. As these results show, the overhead

of Nexus is statistically insignificant, when it exists at all.

6.2 Dynamic Resource Sharing

We wanted to evaluate how well Nexus performs with

multiple different frameworks running simultaneously.

This experiment was performed on EC2 with 70 nodes,

each with 2 CPU cores and 6.5 GB of memory.

For this experiement we decided to run Hadoop,

Spark, and MPI and allocate resources according to dom-

inating resource fairness (where each framework has an

equal weight). Similar to above, we used the WordCount

workload for Hadoop and the LINPACK benchmark for

MPI. The Spark framework was running a job perform-

ing logistic regression. The logistic regression job per-

forms a series of iterations, in between each of which it

does not use any resources in the cluster.

The results of this experiement are shown in 5. In

this experiement, CPU was the bottleneck resource in the

cluster. In this experiement we first launched the Spark

framework, which was offered the entire cluster and ac-

cepted it. After about 15 seconds we launched Hadoop,

which received its fair share (50% of the CPUS) within a

few seconds. After about 50 seconds we launched MPI.

Within a few seconds MPI was offered its fair share of

the CPUS (approximately 1
3 ), which it accepted and be-

gan running its tasks. At roughly this same point the

Spark job completed its first iteration and released all

of its resources, which Hadoop utilized almost instantly.

Each time the Spark job began a new iteration, it was of-

fered roughly 1
3 of the CPU resources within a few tens

of seconds. Finally, around 330 seconds the Hadoop job

completed, and the Spark framework was offered, and

accepted, the extra resources. Because of the nature of

the MPI job, it was not able to benefit from any of the

extra resources.

This experiment helps to illuminate how the share of

the cluster can be shared dynamically between different

frameworks. In this case, we show how quickly frame-

works like Spark and Hadoop can utilize extra resources

when they aren’t being used while the MPI framework

can continue executing below its fair share unharmed.

6.3 Benefit of Specialized Frameworks

In this experiment, we evaluate whether the specialized

Spark framework described in Section 5, which is op-

timized for iterative jobs, provides a benefit over the

general-purpose Hadoop framework. We use a logistic

regression job implemented on top of Hadoop by ma-

chine learning researchers in our department to evaluate

Spark. We implemented a second version of the job in

Spark ourselves. We ran the job on a 11 GB data file

on 43 EC2 machines with 8 cores each. The data file

contained each point as plain text, which according to
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Figure 5: Timeline showing the shares of the cluster given to

MPI, Hadoop and Spark in the dynamic resource sharing ex-

periment.

Figure 6: Comparing the running time of logistic regression

when implemented using Spark vs. using Hadoop.

the machine learning researchers that wrote the job is a

standard format in which machine learning data sets are

provided. We varied the number of iterations of logis-

tic regression from 1 to 20, and ran each job on a stan-

dalone Hadoop cluster, a Hadoop framework running on

Nexus, and a Spark framework running on Nexus. Figure

6 shows the results, which averages values from 3 runs.

We see that each iteration of the job takes 41s on av-

erage on both Hadoop and Hadoop on Nexus. Some

variation happens because the jobs are so short, and

Hadoop’s heartbeat intervals are 3 seconds so any varia-

tion in scheduling opportunities might result in a 3 sec-

ond delay. In contrast, Spark takes 60s to run the first

iteration (because it uses slower text-parsing routines),

but each subsequent iteration is on average 2 seconds.

This is because in the logistic regression job, the func-

tion f(x,w) evaluated at each iteration is so inexpensive

that the cost to read the input data from HDFS and parse

the text into floating point numbers dominates the com-

putation. Hadoop must incur this cost on each iteration,

while Spark reuses blocks of parsed data cached in mem-

ory and only incurs the cost once. This leads to a 8.5x

speedup on 20 iterations.

6.4 Resource Offers and Data Locality

In this experiment, we wanted to verify whether the re-

source offer mechanism in Nexus allows frameworks
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Figure 7: Results from data locality experiment. The top graph

shows the percentage of local map tasks in each setting, while

the bottom graph shows the average job running time in each

setting.

to achieve control over their tasks’ placement, and in

particular high data locality. We ran 16 instances of

Hadoop on a 93-node EC2 cluster with 4 cores per node.

All of the instances were running a map-only filter job

that read a 100 GB file striped throughout the cluster

on a shared HDFS file system and outputted 1% of the

records. We tested four scenarios: Separate Hadoop

MapReduce clusters of 5-6 nodes each, to emulate orga-

nizations that use coarse-grained resource managers, and

all instances on Nexus using either no delay scheduling,

1s delay scheduling or 5s delay scheduling.

The results are shown in Figure 7, which averages

numbers from 3 runs of each scenario. We see that

data locality is very low (18%) on the separate clus-

ters. Running the Hadoop frameworks on Nexus im-

proves locality even with no delay scheduling because

each node is running tasks from 4 random Hadoop in-

stances, so each Hadoop instance has tasks on more

than 5-6 nodes. Adding delay scheduling brings locality

above 90%, even with a 1-second delay. Five-second de-

lay scheduling achieves 95% locality, which is similar to

Hadoop running alone (for comparison, a single instance

of Hadoop running on the whole cluster achieves 93%

locality for the job we used). Finally, performance im-

proves with locality, with the 5s delay scenario running

jobs 1.7x faster than separate Hadoop instances.

6.5 Elastic Web Farm

Finally, we wanted to evaluate how well interactive

frameworks can co-exist with other frameworks. This
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Figure 8: The average session load on the load balancer over

time, as well as the average number of sessions across web

servers.

included investigating how quickly these frameworks

would be offered resources and how well the isolation

mechanism we choose to use works. To do this we ran

two experiements, one where the only framework run-

ning in the cluster was the elastic web farm and the other

where we run both the elastic web farm and a “hog”

framework. The hog framework is designed to consume

available resources by launching tasks that use one or

more threads to read and write a specified amount of data

for a specified period of time. In this case, the hog frame-

work launched tasks that created ten threads that each

spent approximately two minutes continuously cycling

through 64 MB of data. We ran our experiment using 4

EC2 nodes each with 8 CPU cores and 6.5 GB of mem-

ory. Note that to apply pressure to the isolation mecha-

nism each each hog task would request only 1 CPU core

and 512 MB of memory.

In both experiments we generated workload using

HTTPerf [36]. Figure 8 shows the measured average

number of sessions on the load balancer, as well as the

average measured sessions across web servers when both

the hog framework and the elastic web framework were

running simultaneously. The vertical lines of the fig-

ure indicate when the number of web servers is alterned.

The effect of this is seen on the average web server load,

which stays low relative to the generated load.

Running the same workload without the hog frame-

work showed no statistically significant differences. As

mentioned in Section 5.2.4, connection errors occured

during the hot-swapping of configuration files, however,

both of the experiements suffered equally from this issue.

7 Discussion

7.1 Philosophy

Nexus shares many goals in common with operating sys-

tems. Nexus provides (1) a clean abstraction of tasks to

frameworks, (2) performance and fault isolation between

frameworks, and (3) fair multiplexing of CPU, memory,
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and other resources available on slave nodes. These are

some of the goals of traditional operating systems.

Our approach shares much in common with the exok-

ernel [25], microkernels [17], and hypervisors [31]. Like

an exokernel, Nexus aims to give frameworks as much

control over their execution as possible via as low level

abstraction as possible to achieve generality. Like a mi-

crokernel or hypervisor, Nexus is a stable, minimal core

that provides performance and fault isolation to frame-

works sharing a cluster.

7.2 Limitations and Future Work

I/O isolation As mentioned in sections 3.3 and 5.1,

while a primary goal of Nexus is resource isolation, in

order to limit the scope of our research we chose to lever-

age existing work to achieve this goal. Similarly, in fu-

ture work, we aim to leverage existing mechanisms to

provide isolation and fair sharing of disk I/O and net-

work bandwidth. Sharing network bandwidth is particu-

larly challenging, as the use of existing quality of service

mechanisms in the operating systems on nexus slaves

is not sufficient because fair network bandwidth shar-

ing must also be implemented at the aggregation switch

level.

Fairness of individual resources Nexus does not pro-

vide any fairness guarantees on the level of individ-

ual resources. Therefore, frameworks should not make

assumptions about the provisioning of individual re-

sources. In particular, locality deadlocks may occur if

two different frameworks each accept a slot offer and

thereafter wait for the other framework’s slot to become

free. Moreover, a framework that is below its fair share

can accept a resource offer and leave those resources per-

manently idle. Nexus, will not guarantee that those re-

sources are revoked. It might, however, revoke resources

belonging to a framework that is above its fair share.

However, framework schedulers can implement a time-

out after which they accept any resource offer to amelio-

rate the problem.

Socialized services Some cluster services, similar to

those provided by Amazon Web Services (SQS, S3,

etc.), might be useful to many frameworks and might

be designed to run distributed throughout the cluster. A

concrete example we have already encountered is the

Hadoop Distributed File System, which Hadoop uses for

MapReduce input and output. As future work we intend

to allow Nexus to support socialized services—, which

are services that require resources but are accessible by

all frameworks. Such services are necessary in order to

leverage sharing data sets and also to amortize the over-

head of running such services. Much research remains to

be done in order to moderate fair the access to socialized

resources.

Utility libraries Similar to exokernel, in addition to

building and porting standalone frameworks (such as

Hadoop and Spark), we also intend to provide utility li-
braries, i.e. implementations of common distributed sys-

tem services. Our goal is to make creating new frame-

works as painless as possible by factoring out as many

common functionalities as possible. For example, exist-

ing libraries that encapsulate communication or message

passing models for executors to use for communicating

with each other (much as we used existing MPI imple-

mentation to create a new framework). Another exam-

ple might be entire implementations of common frame-

work schedulers, or building blocks for constructing such

schedulers (e.g. a library that provides logic to do spec-

ulative execution [46]).

8 Related Work

8.1 Cluster Computing Frameworks

We have discussed and described a number of existing

cluster computing frameworks. These include MapRe-

duce [23], as well as Sawzall [39] and Pig [38], which

were built on top of MapReduce. Also Dryad [32] and

Clustera [24], which provide more general execution

models. Nexus does not compete with any single cluster

framework, but instead aims to provide a common sub-

strate that a wide array of existing and future frameworks

can build upon.

8.2 Infrastructure as a Service

Cloud infrastructures such as Amazon EC2 [1] and Eu-

calyptus [37] allow for sharing between users by allow-

ing virtual machines in a shared cloud to be rented by

the hour. In such an environment, it would be possi-

ble for separate frameworks to run concurrently on the

same physical cluster by creating separate virtual clus-

ters (i.e., EC2 allocations). However, VMs can take min-

utes to start and sharing data between separate virtual

clusters is difficult to accomplish and can result in poor

data locality. Nexus provides abstractions (i.e., tasks and

slots) that eradicate the need for many applications to

use heavyweight VMs. In addition, Nexus allows frame-

works to select where to run tasks via the resource offer

mechanism, allowing multiple frameworks to share data

while achieving good data locality.

8.3 Cluster Scheduling Systems

Many resource managers and job schedulers for the clus-

ter exist, such as Torque [41], Portable Batch System

(PBS) [30], Sun’s GridEngine [26], and Cobalt [19].

Nexus differs from these existing cluster resource man-

agers and schedulers in the fine-grained nature of tasks

and also in its two level scheduling of tasks in which

frameworks play an interactive role via resource offers.
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In contrast, most of these systems give each job a fixed

block of machines at once, rather than letting a job’s al-

location scale up and down in a fine-grained manner, and

do not provide frameworks much control over data local-

ity.

Some systems, such as Condor and Clustera [42, 24]

go to great lengths to match users and jobs to available

resources. Clustera provides multi-user support, and uses

a heuristic incorporating user priorities, data locality and

starvation to match work to idle nodes. However, Clus-

tera requires each job to explicitly list its locality needs

(e.g. by listing its input files). Similarly, Condor uses

the “ClassAd” mechanism [40] to match node properties

to job needs. In these two systems, and more generally

any system that provides a language for jobs to express

preferences about resources they want to use, there will

be job needs that cannot be expressed in the language.

In contrast, The two level scheduling and resource offer

architecture in Nexus gives jobs arbitrary flexibility in

deciding where and when they run tasks.

8.4 Virtual Machines

While it is a goal of Nexus to provide resource iso-

lation between frameworks, Nexus itself does not en-

force resource isolation between tasks on slave nodes

nodes. Rather, Nexus leverages existing mechanisms for

resource isolation (i.e. see section 3.3 for a further dis-

cussion of this), and manages isolation in order to pro-

vide the higher level goal of .

8.5 Scheduling

Quincy [33] is a scheduler for Dryad. It uses centralized

one level scheduling, task killing (similar to Nexus re-

source revocation), supports fair sharing at the level of

fixed sized tasks, and accounts for data locality. In con-

trast, Nexus uses a two level scheduler with resource of-

fers, and support dynamic multi resource task sizes.

9 Conclusion

We have described Nexus, a common substrate for clus-

ter computing that provides isolation and efficient re-

source multiplexing of fine grained tasks across frame-

works running on the same cluster. Nexus provides each

framework freedom to implement its own programming

model and dynamically schedule the execution of its

jobs.

Nexus uses an interactive two-level scheduling archi-

tecture that enables fine-grained, dynamic sharing be-

tween frameworks via tasks and resource offers. By re-

maining pluggable, Nexus provides organizations flexi-

bility in choosing a first level resource scheduling pol-

icy, but provides a default module implementing a novel

weighted fair scheduler generalized for multiple re-

sources.

We have presented an implementation of Nexus and of

a varied set of frameworks such as MPI and Hadoop, that

can run over it. We have presented experiments demon-

strating frameworks sharing a single cluster, with high

cluster utilization, good data locality and fair sharing.

To validate our hypothesis that specialized frame-

works can provide value over general ones, we built a

new machine learning framework on top of Nexus which

can outperform Hadoop by 8 times on iterative work-

loads.
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