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Abstract— The Border Gateway Protocol (BGP) allows each
autonomous system (AS) to select routes to destinations based
on semantically-rich and locally-determined policies. This
autonomously exercised policy freedom can cause instability,
where unresolvable policy-based disputes in the network result
in interdomain route oscillations. Several recent works have
established that such instabilities can only be eliminated by
enforcing a globally accepted preference ordering on routes
(such as shortest path). To resolve this conflict between policy
autonomy and system stability, we propose a distributed
mechanism that enforces a preference ordering only when
disputes resulting in oscillations exist. This preserves policy
freedom when possible, and imposes stability when required.

I. INTRODUCTION

The Border Gateway Protocol (BGP) [12] establishes

connectivity between the independent networks, called au-
tonomous systems (ASes), that together form the Inter-

net. BGP computes routes by a series of local decisions

based on each ASes’ individual routing policies. These

policies are semantically rich in order to accommodate

the complex rules that govern route choices in today’s

commercial Internet, such as business relationships and

traffic engineering. However, this expressiveness in routing-

policy configuration, coupled with ASes’ freedom in imple-

menting their policies autonomously, can cause instability

in interdomain routing manifesting in the form of persistent

route oscillations [17].

The problem of understanding and preventing policy-

induced routing anomalies has been the subject of much

recent study. While some work characterized these anoma-

lies using global models [7], [8], [14], other research proved

that global and local constraints on policies could guarantee

routing stability. The good and bad news from this literature

can be summarized as follows:

Good news: If the AS graph has an underlying business

hierarchy and local policies obey sensible constraints

arising from this hierarchy, then routing converges [5],

[10].

Bad news: If ASes have complete freedom to filter routes

(that is, exclude routes from consideration) then the

only policies that are a priori guaranteed to converge

are generalizations of shortest-path routing [2].

Thus, there are two choices: we can hope that natural

business arrangements provide a stabilizing hierarchy, or

we can remove all policy autonomy (but not filtering

autonomy) by imposing some generalized form of shortest-

path routing.

This paper advocates a “third way”. Rather than rely

on the vagaries of the marketplace to define a suitable

hierarchy, or eliminate policy autonomy because of its

potential to induce route oscillations, we propose a simple

extension to BGP that constrains policy choices only after

an oscillation is detected. Oscillations can be characterized

by the presence of dispute wheels in the network [8],

and our method provably finds and breaks dispute wheels,

including those involving non-strict preferences. We tag

each route advertisement with a precedence value, where

a lower value corresponds to higher precedence. This goes

at the top of the BGP decision process: available routes are

chosen first based on their advertised precedence, with ties

broken using the usual BGP decision process. The prece-

dence attribute changes only in the presence of a persistent

oscillation; if there is no oscillation, we effectively use only

the normal BGP decision process. Since configuration is not

constrained unless absolutely necessary, ASes’ freedom to

decide on local policies is preserved.

We first review related work in §II and then define and

discuss dispute wheels in §III. The precedence metric is

described next and its ability to prevent dispute wheels

proven in §IV. §V and VI describe how this theoretical

result can be put into practice. We evaluate the resulting

algorithm in §VII and discuss several issues in §VIII before

concluding in §IX.

II. RELATED WORK

Varadhan, Govindan, and Estrin [17] were the first to

discuss the possibility of persistent route oscillations in

BGP. The cause was not the policy configuration of one

AS alone; they occurred because of interaction between the

policies of several ASes. These anomalies occurred without

any misconfiguration and were difficult to diagnose and

resolve since ASes tend to keep routing policies private.

Griffin, Shepherd, and Wilfong [8] introduced the Stable

Paths Problem (SPP) as a formal model for BGP (and policy

routing with path-vector protocols, in general). Using their

framework, they were able to give a sufficient condition

for protocol convergence, namely, the absence of dispute
wheels. These structures characterize the conflicting poli-

cies of the nodes involved in a route oscillation (see the

formal definition in §IV). Unfortunately, the only known

method to check for dispute wheels requires examining all

the routing policies in a network, which is presently an

impractical task. In addition, Griffin et al. showed that the

problem of detecting whether stable routing exists, given

all the policies in the network, is NP-complete. Worse yet,

they showed that the existence of a stable solution does not

automatically imply that a routing protocol can find it.



Gao and Rexford [5] showed that Internet economics

could naturally guarantee route stability. A hierarchical

business structure underlying the AS graph, along with poli-

cies that matched the various business agreements between

ASes, is sufficient for protocol convergence. In this struc-

ture, it is assumed that relationships between ASes are ei-

ther customer-provider, i.e., one AS purchases connectivity

from another, or peer-peer, i.e., two ASes mutually agree to

transit traffic. No customer-provider cycles are allowed (i.e.,
no AS, through a chain of providers, is an indirect customer

of itself), and additional rules exist on how to set route

preferences and when routes can be shared with other ASes.

These assumptions capture the structure and economics of

today’s commercial Internet, although violations of these

assumptions due to complex agreements, business mergers,

or misconfigurations can still induce route oscillation. These

positive results were later confirmed by Gao, Griffin, and

Rexford in [4], in which the combination of an underlying

business structure and economically sensible policies was

shown to prevent occurrences of dispute wheels, even when

backup routing is allowed. Jaggard and Ramachandran [10]

generalized this result but still required some assumption

about the AS graph to prevent oscillations.

Dispute-wheel freeness and an AS business hierarchy are

examples of global constraints, because they require that

some condition is enforced involving the policies of many

ASes at once.1 However, policy autonomy is at the heart

of the philosophy that led to BGP, and ISPs will be loathe

to relinquish it. Accordingly, later research attempted to

find local constraints—conditions that could be checked

individually for each AS—that are sufficient for route

stability. Unfortunately, results here were mostly negative.

Sobrinho [14] and Griffin, Jaggard, and Ramachandran [7]

proved that any dispute-wheel-free routing configuration

is equivalent to a generalization of lowest-cost routing.

This means that many seemingly sensible policies — in

fact, all purely local policies not driven by some shared

metric — could lead to oscillations. For example, it was

shown that ASes risk oscillations if they use policies that

always prefer routes through one neighbor over another—

a type of policy commonly used today. Feamster, Johari,

and Balakrishnan [2] further strengthened this result by

showing that only generalizations of lowest-cost routing can

guarantee stability while preserving the ability of ASes to

filter routes (that is, to remove them from consideration).

Overall, the theme of these results is that the only way to a
priori guarantee stability is to essentially eliminate policy-

configuration autonomy.

Most of these results exclude policies with any possibility
of inducing routing anomalies, whether or not they actually

do in a particular network. (This is because determining

whether the network policies will result in oscillations is

1In this paper, as is standard for BGP discussions, the term global really
means “not purely local”. A global value, for instance, is not one that
necessarily all ASes share, but that applies to more than one AS.

too difficult.) In this paper, we present an extension to

BGP that detects oscillations and responds by breaking

the corresponding dispute wheel. Griffin and Wilfong also

presented such an algorithm, called SPVP, in [9]. Our

protocol differs in several ways. First, SPVP records the

changes in route choices due to the propagation of a route;

this reveals more private policy information than necessary.

Second, our protocol answers an open question left by [9],

in that we present a minimal-impact solution to resolving

disputes: our resolution algorithm is engaged only when

an oscillation is detected, and BGP is allowed to function

normally otherwise. Third, SPVP’s update-message size

grows with the number of nodes in an oscillation, while

additional fields used by our protocol scales with the

number of resolved disputes encountered along a path. This

is similar to that in [4], [10]; however, those solutions

still required a global constraint and preemptively excluded

some oscillation-free policy configurations that our solution

does not exclude.

Another class of runtime solution involves diffused com-

putation [1], which uses the observation that, as long as a

change in path results in reception of another with a local

preference value at least as high as that of its current path,

then stability is guaranteed. In this case, an AS is required

to ask any other AS whose path currently traverses it if a

change in path is acceptable. Such a solution would restrict

a provider’s route choices based on inputs from customers,

which is typically not the case in practice.

Finally, we allow ASes to exercise full autonomy unless
the particular set of policies and topology results in an

oscillation, and in that case, and only in that case, AS

autonomy is revoked. What distinguishes this from much

of the previous literature is that it does not place a priori
restrictions on ASes, only post hoc restrictions. This enables

a far greater degree of freedom, and we believe that ASes

might be willing to accept the limitations as the price to

pay for stability.

III. DISPUTE WHEELS

We begin by describing the notation used in this paper.

The network is represented as the AS graph G = (V,E),
where each node v ∈ V corresponds to one AS, and each

edge {u, v} ∈ E corresponds to a BGP session between

ASes u and v, meaning that these ASes are physically

connected and share route advertisements. We assume that

links between ASes are reliable FIFO message queues with

arbitrary delays; this accounts for network asynchrony. At

most one link is assumed to exist between ASes, and all

the internal and border routers of an AS are condensed into

one node (or one point of routing-policy control).

A path P is a sequence of nodes v1v2 · · · vk such that

{vi, vi+1} ∈ E; we write v ∈ P if path P traverses node

v. Paths can be concatenated with other nodes or paths;

e.g., if P = u · · · v, Q = v · · ·w, and {w, d} ∈ E, we

may write PQd to represent the path starting at node u,

following P to node v, then following Q to node w, and

2



spoke paths

destination

rim nodes

pivot nodes

direction of route preference

Fig. 1. Example of a dispute wheel: elements of the wheel include the
spoke paths, pivot nodes, and rim nodes.

finally traversing the edge (w, d). We assume that paths are

directed from source to destination.

BGP, at a schematic level, computes routes using the fol-

lowing iterative process: (1) Nodes receive route advertise-
ments from their neighbors, indicating which destinations

are reachable and by what routes; (2) for each destination, a

node chooses the best route from those available, based on

local policy; (3) if the current route to a given destination

has changed, an advertisement is sent to neighboring nodes.

The content of advertisements, or update messages, is also

governed by routing policy; nodes are not required to share

or consider all available routes, i.e. routes may be filtered.

The process begins when a destination advertises itself to its

neighboring ASes; routes to that destination then propagate

through the network as transit nodes choose routes and send

updates. Because route choices are computed independently

for each destination, we will focus our attention on, without

loss of generality, on a single destination node d ∈ V .

We say the network has converged when each AS v ∈ V
is assigned a path π(v) to the destination, such that the

assignment is stable, consistent and safe. By consistent,

we mean that the paths form a forwarding tree to the

destination; if π(v) = vuP , then π(u) = uP . By stable,

we mean that π(v) is the “best” available route for each

node v, given the other nodes’ path assignments, where

“best” is determined by node v’s routing policy; that is, if

π(v) = vπ(u), there is no other node w such that the path

vπ(w) is more preferred at v than π(v).
Safety is slightly more subtle. By unsafe, we meant that

there is some sequence of route updates that does not

converge, in which every node gets a chance to update

infinitely often. Because there are only a finite set of route

choices, such a sequence must be a route oscillation. The

sequence may or may not be dependent on particular delays

in receiving route updates. A configuration is safe if any

sequence of route updates, in which no node is shut out,

converges.

Griffin, Shepherd, and Wilfong [8] showed that any such

oscillation can be characterized by a dispute wheel in the

network, shown in Figure 1. The dispute wheel captures the

[BD]
[D]

[AD]
[D]

[CD]
[D] B C

D

A

Fig. 2. A simple dispute wheel: node D is the destination. Shaded boxes
show route choices in order of preference.
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[D][D]

[AD]

[CD]

[BD] [BCD] [ABD]

[CAD]

Fig. 3. Simple example of dispute wheel oscillation: The simple local
policy enforced at each node is the import filtering of routes with more
than 2 hops. Routing oscillates between (iii) and (iv).

interaction amongst the routing policies of a set of nodes

that are involved in a route oscillation. Formally, we have

the following.

Definition 3.1: A dispute wheel is a set of nodes

p0, p1, . . . , pk−1 (assume all subscripts are modulo k) called

pivots, such that

1) at each pivot pi, there exists a spoke path Qi from pi

to the destination;

2) at each pivot pi, there exists a rim path Ri+1 to the

next pivot pi+1;

3) each pivot prefers the path piRi+1pi+1Qi+1d over the

path piQid.

Note that the rim and spoke paths are not necessarily

disjoint. We refer to non-pivot nodes along the rim paths

Ri as rim nodes.

Since dispute wheels lie at the heart of BGP policy

instabilities, we now walk through an example of BGP

dynamics in the presence of a dispute wheel. Consider the

four-node network shown in Figure 2. In the figure, paths

considered by a node are listed in the shaded box next to

that node in decreasing order of preference. The oscillation

is shown in Figure 3. (i) Assume that the destination

node D sends an initial advertisement to nodes A, B, and

C. (ii) Nodes A, B, and C then choose the direct paths

to D and advertise their choices to nodes C, A, and B,
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respectively.(iii) Upon receiving this advertisement, each

node prefers the route through its neighbor, rather than

the direct path to D, and chooses it. Doing so requires

advertisement of these new paths; with the longer paths

selected, the direct paths to D are no longer advertised. (iv)

When node A learns that node B has selected BCD, its

preferred choice of ABD is no longer available; so node A

reverts to choosing the direct path to D. By symmetry, this

occurs at nodes B and C as well. This state is identical to

(ii); therefore, the sequence of route updates repeats, and

nodes A, B, and C oscillate forever between their two route

choices.

Any policy-induced oscillation can be characterized by a

dispute wheel; thus, the absence of dispute wheels is suf-

ficient to guarantee that BGP is always safe. However, the

presence of a dispute wheel does not necessarily guarantee

an oscillation; even if there are some initial conditions that

will lead to an oscillation, BGP could non-deterministically

converge.2 Rather than exclude all potentially troublesome

policy relationships a priori, the method we describe in

the next section triggers a mechanism to resolve the corre-

sponding dispute wheel whenever an oscillation is detected.

IV. THE PRECEDENCE METRIC

We begin by augmenting BGP’s decision process,

prepending it with an additional step that utilizes a new

metric which we call the precedence metric. We describe

this metric below, and show that it eliminates route oscil-

lations due to dispute wheels.

Each route advertisement is tagged with a global3 prece-
dence value that is non-negative: a numerically greater

value translates to a lower precedence. We denote the prece-

dence value, say v, associated with path P by (P :v). Each

AS maintains a history of observed route advertisements

from its immediate neighbors. In this history, we associate

every route with a local precedence value starting from

0. This local precedence value is obtained from the route’s

rank, and is determined via the usual BGP decision process.

Thus the route ranked ith has a local precedence of i-1 and

is preferred over all routes with local precedence greater

than that. Strict ranking is performed, such that no two

routes of equal local precedence exist.

Suppose the selected route has an incoming global prece-

dence of t, and a local precedence value of j. Then, the

outgoing route advertisement is tagged with t+j. Thus, a

route that is most preferred for all ASes along its path is

tagged with 0 at all hops. Figure 4 gives an example of

this update process. Without loss of generality, we assume

for the rest of this paper that the destination AS advertises

routes with global precedence value of 0. We next show that

2For instance, a four node dispute wheel can converge into one of two
stable configurations.

3Again, the term global only means that this precedence value has
meaning across more than one AS, not that all ASes share this precedence
value.

[P2A]
[A]

(a) (b)

A B C A B

[A]

C

[P1A]
[P2A]

[P1A]

Fig. 4. (a) AS B’s preference for a direct route to destination AS A is
ranked third. Propagation of this route to AS C will result in a lowering
of its global precedence by 2. (b) AS B now considers the direct route to
AS A to have the highest precedence. Route propagation to AS C will not
alter the precedence value.

(Q1 : β1)

d

p1

(R1 : α1)

pk−1

(Q0 : β0)

(Qi : βi)

pi

p0

(Ri : αi)

(Rk−1 : αk−1) (R0 : α0)

(Qk−1 : βk−1)

Fig. 5. Dispute wheel illustration and notation used in our proof.

this precedence metric prevents the formation of dispute

wheels.

A. Dispute Wheel Elimination

Proposition 4.1: If routes encountered during previous

policy-induced oscillations are stored and the precedence

metric is used, then no further policy-induced oscillations

can occur.

Proof: It is proven in [8] that the absence of dispute

wheels is sufficient for safety, and hence it suffices to show

that the precedence mechanism precludes dispute wheels.

Using proof by contradiction, we begin by assuming that a

dispute wheel exists.

Figure 5 is used to illustrate our proof, in which we

consider a single destination d. Nodes p0, p1, . . . , pk−1 are

the subset of nodes that are in the dispute wheel and have

stable paths to the destination, that is, these are the pivot

nodes. (Qi:βi) is the tuple consisting of Qi, the spoke path

from source pi to destination d, and βi, the precedence

value associated with path Qi. The tuple (Ri:αi) on the

other hand consists of the rim path Ri, which leads from

pi+1 to pi, and αi, the change in precedence along Ri,

including node pi+1. In other words, if γ is the precedence

value for path Ripi+1Qi+1d, then γ=βi+1+αi.

Suppose p0, p1, . . . , pk−1 each receive route

advertisements from their immediate next hops along

Q0, Q1, . . . , Qk−1 with global precedence values
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β0, β1, . . . , βk−1, respectively. Node pi then selects

the route Qi, updates the value, and advertises that.

We next assume that the dispute occurs: node pi prefers

path (Ripi+1Qi+1d:βi+1+αi), over route (Qid:βi). In Fig-

ure 5, this corresponds to each node picking its immediate

neighbor, in the clockwise direction, as the next hop. In

this proof, we assume that the route advertisements received

and stored as part of the history include those encountered

during oscillations.4 Note that we do not need all routes

encountered during one oscillation period to be stored,

merely one that has higher local precedence than the stable

spoke route. Then, the dispute wheel implies

β1 + α0 ≤ β0

β2 + α1 ≤ β1

...

β0 + αk−1 ≤ βk−1

Summing, we obtain

k−1∑

i=0

βi +
k−1∑

i=0

αi ≤
k−1∑

i=0

βi

or

k−1∑

i=0

αi ≤ 0

Since, by definition, α0, α1, . . . , αk−1 are non-negative,

we have

αi = 0 ∀ i

which implies that all nodes p0, p1, . . . , pk−1 locally prefer

routes through Q0, Q1, . . . , Qk−1 respectively. This means

that if the dispute wheel exists and each Ripi+1Qi+1 is

chosen over Qi, it must be because of the global precedence

values.

Thus, for the dispute wheel to form, we will require

βi + αi−1 < βi−1 ∀ i

or βk−1 < βk−2 < · · · < β0 < βk−1

which is not possible. Therefore, by contradiction, no

dispute wheel can exist.

Proposition 4.2: If there are non-zero precedence values

advertised once the protocol converges, this must mean that

dispute wheels exist.

Proof: Assume that the destination node advertises

routes with precedence value 0, and that the network has

converged. Thus, a non-zero value advertised somewhere

means that there exists some node v with an incoming set S
of routes of precedence value 0, |S| > 0, and an advertised

route vP , P∈S, with positive precedence value. If this

happens, then P must not be the most locally preferred

4Other routes will at most merely increase the precedence value, and
not affect the correctness of the proof.

(Ra0 : αa0)

(Qa : βa) (Qb : βb)

(Ram : αam)

d

a b

Fig. 6. Multiple paths advertised by neighboring nodes can cause the
global precedence value of a route to increase by more than 1.

TABLE I

HISTORY OF NODE b IN FIGURE 6

Route Global Precedence Local Precedence
Ra0aQad αa0 + βa 0
Ra1aQad αa1 + βa 1

· · · · · · · · ·
RamaQad αam + βa m

Qbd βb m + 1

route; suppose that route is Q. The precedence value of Q
must be positive, otherwise v would have chosen it. This

means there must be some node w along Q that increases

its precedence value; w is similar to v, in that it must

have some other path Q′ with positive global precedence,

causing it to choose Q. Thus, we can repeat this process at

w and subsequent similar nodes. As the destination node is

never encountered, because it always advertises routes with

precedence value 0, we must ultimately encounter a node

already traversed. The resulting cycle of nodes naturally

form a dispute wheel that has been resolved using the

precedence mechanism.

Corollary 4.3: From Propositions 4.1 and 4.2, global

precedence values greater than that advertised by the desti-

nation exist when routing converges if and only if dispute

wheels causing oscillations exist.

Corollary 4.4: A route traversing resolved disputes can-

not advertise the same global precedence at all hops.

Proof: Assume that such a route exists. Since the

precedence value advertised by all hops are the same, this

implies that the route selected by each node is its most

preferred. This in turn implies that the destination node

must be part of the dispute wheel, which is a contradiction.

B. Autonomy Loss in Presence of Disputes

Corollary 4.3 showed that only the presence of dispute

wheels can cause positive global precedence values to exist

after routing converges. The increased value advertised by

the pivot nodes depends on the number of paths advertised

in parallel by immediate neighboring pivot nodes.

We use Figure 6 to explain this. Here, node b has a

spoke path Qb to destination d. Assuming that b locally

prefers routes advertised by neighboring pivot node a along

Ra0 , Ra1 , . . . , Ram
compared to Qb, we have the history

5



A
B

C

Fig. 7. Region A is encompassed by nodes involved in a dispute wheel.
Routes advertised in the external region B have global precedence values
one higher than those in A. Similarly, if the nodes around the edges of B
are in dispute, the global values in C will be one higher than those in B.

state shown in Table I. Clearly, if the spoke path is selected,

it will be advertised as (bQbd:βb+m+1).

A non-uniform increase in global precedence values

around the dispute wheel causes the rest of the network,

i.e. nodes not in dispute and not along spoke paths, to lose

autonomy. To correct this, instead of increasing the selected

route’s value by its local precedence, we bound the increase

by 1. We call this the precedence+ metric.

Proposition 4.5: Usage of the precedence+ metric elim-

inates oscillations caused by dispute wheels.

Proof: The following constraint is added to the proof

of Proposition 4.1:

αi ≤ ri ∀ i

where ri is the total number of nodes along Ri, including

pi+1 and excluding pi. The rest of the proof follows.

Proposition 4.6: Usage of the precedence+ metric results

in an increment in global precedence value at steady state

only in the presence of dispute wheels that result in route

oscillations.

Proof: Same as that for Proposition 4.2.

Corollary 4.7: From Propositions 4.5 and 4.6, the global

precedence value increases by one if and only if a dispute

wheel exists and causes routes to oscillate.

Precedence values can take on multiple non-negative

values as opposed to just binary 0 or 1 values. With

reference to Figure 7, the presence of a dispute wheel causes

routes beyond the nodes in and within the wheel, that is,

nodes in region B and not A, to be advertised with the same

incremented value. Nodes in region B can still be in dispute,

in which case the global precedence will be incremented

again.

Corollary 4.8: Only nodes that prefer routes through

nodes in dispute may lose autonomy.

Proof: Trivial.

For the rest of this paper, we focus solely on the

precedence+ metric.

C. Accounting for Non-Strict Preferences

The precedence+ metric is proven to eliminate dispute-

based oscillations for strict preferences; that is, routes can

be ranked independent of others. In general, preferences

are non-strict, and are encountered for instance in BGP’s

Multi-Exit Discriminators (MEDs). In this subsection we

propose a minor extension to account for this.

The primary effect of having non-strict preferences is that

an incoming route Ri causes route Rcs to be selected, where

Ri �=Rcs and Rcs is not the previous route selected (Rps).

This is an Independent Route Ranking (IRR) violation [11].

In terms of strict preferences, it appears as though the

existence of Ri results in the disappearance of Rps from

the most locally preferred rank. Thus, to capture this as

part of the history of routes encountered, we associate a

logical route R′
ps with Ri, and comparison of R′

ps with

any other route should ignore the presence of Ri. This slight

tweak is necessary for computing the local preference of the

selected route. Since the goal is to determine if the global

precedence should be incremented, we will be comparing

R′
ps with Rcs, ignoring Ri. Since Ri �=Rcs, we will not

encounter the scenario when the two will be compared. In

the case where Rcs becomes unavailable in the future and

is replaced by Ri, we evict R′
ps.

V. FROM THEORY TO PRACTICE

In §IV, we showed that usage of the precedence+ metric,

coupled with the knowledge of routes encountered during

oscillations, can cause the network to converge. The pri-

mary difficulty in implementing the solution is knowing

precisely the relevant set of routes encountered during

oscillations and not others. In this section we describe how

this is achieved in practice. We begin by defining our goals:

One: We distinguish between transient and permanent os-

cillations, where the former disappear with the convergence

of the network. The association of routes with disputes

should be removed if the latter is found to be transient.

Further, changes in network topology affecting resolved

disputes should cause the removal of stored state associated

with those disputes.

Two: The solution should not reveal any ISP policies.

Three: Only local information associated with incoming

advertised routes is necessary; no global knowledge is

required.

Four: Knowledge of potential pivot nodes should be pro-

vided as feedback by the protocol. The presence of resolved

disputes causes precedence values to increase, thereby pos-

sibly restricting the choices of routes. In general we believe

it is preferable to react by altering the local preferences at a

subset of the pivot nodes so that disputes do not arise in the

first place and route choices become unconstrained. Since

access to the global view is not assumed and is probably

unattainable, we seek an alternative means of identifying

the potential pivots.

Our complete Precedence Solution consists of two main

phases: detection and storage. We detect routes involved

in oscillations, then store and maintain their associated

information so that previously encountered disputes remain

resolved and corresponding oscillations do not reoccur. As
discussed later in §VIII, if AS policies are based solely on
next hop neighbors, then only the first phase, detection, is
required, and the overall solution is simplified.
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CD:0:{}
[D:0:{}]
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[BD:1:{B.1}]

[AD:0:{A.1}][D:0:{}]

[D:0:{}]

[BD:1:{B.1}][BCD:0:{}]

[D:0:{}][D:0:{}] CD:0:{}
D:0:{}

CD:1:{C.1}

[D:0:{}] [ABD:0:{}]

[CAD:0:{}]
CD:0:{}
D:0:{}[CD:0:{}] {-.-}→{B.1} {C.1}→{B.1}

[D:0:{}]

D:0:{}

Fig. 8. Dispute wheel formation and elimination: the simple local policy enforced at each node is the import filtering of routes with more than 2 hops.
The history table entries are ordered according to local preference. Since the network is symmetrical, only the history and cause tables for node B are
shown. In phase 1, detection of disputes takes place, with -.- in (iii) indicating an increase in advertised route’s precedence due to an expiring, more
preferred route (as opposed to a feasible one). The route number B.1 represents route BD:1. In phase 2, incoming feasible routes cause outgoing ones to
have increased values, and the cause tables are updated accordingly.

A. Detection & Short-Term Memory
In the detection phase, short-term memory of more

preferred routes that are infeasible, result in less preferred

but more stable routes being advertised with larger global

precedence values. This mechanism determines if a possible

dispute exists and operates locally, without requiring infor-

mation beyond the routes received. Short term memories

need only exist until it can be confirmed whether disputes

resulting in permanent oscillations exist. This ensures that

transient oscillations do not cause unnecessary suppression

of routes. In general this amount of time is determined

by the number of rim nodes between neighboring pivots,

since rim nodes can be thought of as delaying route

advertisements. As the number of rim nodes is difficult to

obtain in practice, we can upper-bound it by using routes’

path lengths. We store short term memory in a history table.

B. Storage & Long-Term Memory
Subsequently in the storage phase, incoming routes with

larger global precedence values result in more stable ones

being advertised. In this phase, short-term memories of the

last unavailable routes are no longer required, but, as we

shall show shortly, long-term memories are needed instead.

Thus, the main difference between the two phases is the

global precedence value of incoming routes: the first phase

has incoming routes of the same value, whereas the latter

has less preferred routes having smaller values. The two

different types of memories together make up the required

history mentioned earlier in §IV.
An incoming, more preferred route causing a less pre-

ferred one to be advertised with increased global precedence

is stored in long term memory by being pinned. At the time

of pinning, these incoming routes must either be feasible,

i.e. currently being advertised by the neighbors, or their

ignore list (containing the route demoting the current one’s

local rank in the presence of IRR violations) must be non-

empty. Pinned routes are never evicted automatically from

long term memory, and may only be considered when

selecting routes if they are currently being advertised by

neighbors. Also, pinned routes are unpinned only when the

causes of their increased value have been eliminated, or a

more preferred route is received and selected, or, in the case

of IRR violations, a more preferred route (in the absence

of the ignored route) is received. Thus, this implies that

only routes associated with some number of causes can be

pinned.

A cause of an increase in the selected route’s value refers

to a more preferred route that is currently advertised by a

neighbor. It can be thought of as a pointer to a route, thus

using it in place of the referred route reduces storage and

communication overhead. We use a unique route number
to represent a particular cause, obtaining a globally distinct

number by concatenating the router’s IP (say A) with

a locally generated sequence number (say 24) giving us

A.24. Rather than propagate route numbers all around the

wheel, we instead maintain cause mappings in the cause
table: when a new route is advertised with increased global

precedence, we assign it a new route number, and associate

with that the corresponding causes. Thus, an outgoing route

number is no longer valid once all its incoming causes are

removed. Long term memory consists of pinned routes and

the cause mappings, which is stored in the cause table.

C. A Simple Example

We next use a simple example (Figure 8) to illustrate

the resolution process. We denote a route using the 3-

tuple P:V:L, where P refers to the AS path, V the global

precedence value and L the list of route numbers. We

assume strict preferences in this example and disregard the

ignore list for now. We also assume that routes longer than

two hops are filtered. Since the network and policies are

symmetrical, we focus on a single node B. We begin with

dispute detection; in (iii), the expiring of route CD:0:{}
causes the less preferred route from D to be advertised
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with precedence value 1. Since route CD:0:{} is expiring

and there is an absence of more preferred, feasible routes,

we denote the cause by {-.-}, which we call the null route

number. Note that the expiring route CD:0:{} is not pinned

since its route number list is empty. In (iv), incoming

route CD:1:{C.1} causes route BD to be advertised with

precedence 1, and the cause table is updated accordingly.

In this case, CD:1:{C.1} is pinned.

The astute reader will notice that in this example, long

term memory, in the form of the cause table and pinned

routes, is unnecessary to ensure convergence, since incom-

ing routes with value 1 are always feasible. As described

later in §VIII, if AS policies are based solely on next hops,

the solution as described in this simple example would be

sufficient. We motivate the necessity of long term memory

in the next example.

D. A Complex Example

Figure 9 shows a scenario where multiple dispute wheels

intersect at node X, where RA denotes a route to destination

with A as the last hop node. Again we assume strict

preferences in this example. In (i), we assume that the first

dispute, involving nodes A, B, X and C, has been resolved,

with X selecting the less preferred route via Z. Subsequently

in (ii), we have the converged network after the second

dispute, involving nodes Y, X and Z, has been resolved. We

note that:

1) Pinned routes ensure that previously encountered dis-

putes that should still be resolved remain so. At pivot

A, the absence of pinned route BXRZ :1:{X.1} will

result in the selected route RD:0:{} being advertised

with global precedence value of 0, which eventually

un-resolves the first dispute.

2) Route numbers associated with selected routes are

propagated unchanged. For instance, rim node B ad-

vertises numbers X.1 and X.2, ensuring that the next

pivot (A) keeps route BXRZ :1:{X.1} pinned.

3) The new route advertised by X is associated with a

different route number X.2. In this case, since the

routes of E.1 and V.1 are more preferred than RW :0:{},

they are deemed to be causes of the latter route’s

increase in global precedence. Note that the cause table

entries for previous route numbers, for instance X.1,

are no longer updated.

4) At A, since received route BXRW :1:{X .1,X .2} is the

least preferred, X.2 does not become a cause of A.1.

5) Changes in network topology is taken into account.

For instance, breakage of link XC will, at X, eliminate

E.1, which in turn removes the corresponding entry

in X’s cause table and thus X.1, and thereafter unpin

(and remove expired) route BXRZ :1:{X.1} at A, and so

forth. This corresponds to the elimination of the first

dispute wheel.

1
AS 1

4

2

(0)

(1)
1

A

E

C

D

3

0

2

B

Fig. 10. The MED-EVIL example from [6].

TABLE II

MED OSCILLATION IN FIGURE 10

A B
Step Available Advertised Available Advertised

1 D30, C20 AD30 E30 BE30
2 BE30, D30, C20 AC20 E30, D30 BE30
3 BE30, D30, C20 AC20 E30, AC20 BAC20
4 D30, C20 AD30 E30, AC20 BAC20
5 D30, C20 AD30 E30, D30 BE30

Repeat from step 2.

E. A MED Example

A significant problem in BGP today is the occurrence of

oscillations due to MED. MED selection rules are different

from local preferences, AS path lengths etc. because they

result in non-strict preferences. Figure 10 shows an example

from [6]. Here, link weights in brackets denote MED values

assigned to links from external ASes, whereas weights

within AS 1 indicate the link’s iBGP cost. Table II shows

the sequence of routes advertised during an oscillation

period.

We observe from Table II that the primary issue is the

change in the most preferred route, from D30 to C20, with

the reception of BE30. That is, the cause of D30 being

demoted in rank is brought about by BE30. In order for

the dispute detection to be effective, we create a logically

different, expiring route D30′ that is still the most preferred

(in the absence of BE30). BE30 is associated with D30′,
the former is ignored when comparing the latter with other

routes (for instance when determining whether other routes

are more preferred). Subsequently, the selected route AC20
will be advertised with increased precedence. Pinning of

the logical route D30′ at A (via incoming route BE30)

and route AC20 at B takes place (long term memory), and

the dispute is resolved. For the logical route D30′ to be

unpinned, there must be an incoming route that is more

preferred than it in the absence of BE30. As before, we

note that no additional policies are revealed.

Denoting a stored route by the 4-tuple P :V :L:I , where

I refers to the list of incoming routes to be ignored, or the

ignore list, when computing this route’s local precedence,

the sequence of route updates is shown in Table III. Note

that the ignore list is not sent to neighboring nodes.

F. Convergence Proof

We now show that the correct routes are pinned so that

disputes are resolved and remain so. The proof focuses on

individual pivot nodes.

8



Key

Pinned route Active route

{E.1} → {X.1}{X.1} → {A.1}

(ii)

{E.1, V.1} → {X.2}
{E.1} → {X.1}

(i)

{X.1} → {A.1}

RD:0:{}
BXRZ :1:{X.1} RE :1:{E.1}

RW :0:{}
ZRV :1:{V.1}RD:0:{}

ZRV :0:{}
A

B

X

Z

CB

X

Z

C

Y

W

A

RE :1:{E.1}[RD:0:{}]

[RE :1:{E.1}]

[RV :0:{}]

[CRE :1:{E.1}]

[RD:0:{}]

[XRW :1:{X.1, X.2}]

[XRW :1:{X.1, X.2}]

[RW :0:{}]

[ZRV :1:{V.1}]

[XRZ :1:{X.1}]

[RV :1:{V.1}]

[ARD:1:{A.1}]
BXRZ :1:{X.1}

[BXRW :1:{X.1, X.2}]

[ZRV :0:{}]

[CRE :1:{E.1}]

[ARD:1:{A.1}]

[BXRW :1:{X.1, X.2}][BXRZ :1:{X.1}]
[RE :1:{E.1}]

Fig. 9. RA denotes a route with A being the last hop node. (i) A simple dispute wheel is first resolved, with nodes A and X being the pivots, B and C
the rim nodes, and Z is the last node along the least preferred route. (ii) Node X is involved in a second dispute, where pinned routes ensure that the first
dispute remains resolved.

TABLE III

MED OSCILLATION ELIMINATION

Step A B

1

Available Available
D30:0:{}:{}

E30:0:{}:{}
C20:0:{}:{}
Advertised Advertised
AD30:0:{} BE30:0:{}

2

Available Available
D30’:0:{}:{BE30}

BE30:0:{}:{} AD30:0:{}:{}
C20:0:{}:{} E30:0:{}:{}
D30:0:{}:{}
Advertised Advertised

AC20:1:{A.1} BE30:0:{}

3

Available Available
D30’:0:{}:{BE30} AD30:0:{}:{}

BE30:0:{}:{} E30:0:{}:{}
C20:0:{}:{} AC20:1:{A.1}:{} - pinned
D30:0:{}:{}
Advertised Advertised

AC20:1:{A.1} BE30:1:{B.1}

4

Available Available
D30’:0:{}:{BE30} - pinned

BE30:1:{B.1}:{} E30:0:{}:{}
C20:0:{}:{} AC20:1:{A.1}:{} - pinned
D30:0:{}:{}
Advertised Advertised

AC20:1:{A.1} BE30:1:{B.1}

Proposition 5.1: With long term memory, the network

eventually converges.

Proof: Let the new available route be Rn, the previous

selected route be Rw, and the set of non-empty routes

(including pinned routes) more preferred than Rw be Rp.

Suppose Rn is not selected. This implies that Rn’s global

precedence is at least as low as Rw’s. If Rn is less preferred

than Rw, then there is no further effect. Otherwise Rn

becomes one of the causes of the increase in global of

Rw. In either case, no oscillations are introduced as the

advertised route’s AS path and global precedence remains

unchanged.

On the other hand suppose Rn is selected and advertised.

Case 1: If Rn is more preferred than Rw, then its

precedence is at most as high as Rw’s, and we unpin (and

remove expired) pinned routes less preferred than Rn, as

well as remove their corresponding outgoing route num-

bers. Previous dispute-induced oscillations associated with

the unpinned routes cannot reappear due to the presence

of Rn, that is, we will not again encounter exactly the

same routes advertised during previous oscillations. Since

more preferred, pinned routes are not unpinned, and the

maximum number of these routes is bounded, this scenario

cannot occur indefinitely.

Case 2: If Rn is less preferred than Rw, then its

precedence value must be strictly lower than Rw’s. Since

all pinned routes less preferred than Rw must have been

unpinned before, none less preferred than Rn will exist. In

other words, disputes previously resolved remain so.

G. Achievement of Goals

Based on the Precedence Solution proposed earlier, we

next describe how our goals are met.

Handling transient and permanent oscillations: An oscil-

lation that is eliminated is said to be permanent if the route

numbers associated with outgoing, increased precedence

value routes at each pivot are always advertised. In the

case of transient oscillations, the expiration of more pre-

ferred routes eliminates the corresponding outgoing route

numbers, thereby unpinning upstream routes. Alternatively,

more preferred routes can be encountered later, in which

case those less preferred and pinned will be unpinned and

also removed if expired.

If instead network topology changes, such as link break-

age, occur, incoming route numbers via that link is re-

moved, the cause table is updated accordingly and its effect

is subsequently propagated around the wheel. Similarly, the

cause and history tables can be flushed whenever policy

changes occur. Thus, the Precedence Solution allows for

both transient oscillations and changes in network topology,

and does not permanently suppress any routes.

Minimal revealing of policies: If the input routes of a

router are known, the global precedence of the advertised
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route indicates whether the chosen route is the most pre-

ferred: if it is not, then its value increases. This is not much

different from today’s network: given the inputs, a route is

not the most preferred if it is not advertised.

For routes stored in the history table, all have been

previously advertised before and have been intended to be

used for routing, none have been explicitly propagated for

purposes of eliminating oscillations. Route numbers have

been explicitly associated with these routes, and do not

contain any additional information. Thus, we do not expose

any additional AS policies.

No requirement for global knowledge: Both the detection

and storage mechanisms operate solely on route advertise-

ments received from neighbors, and are fully decentralized.

No third party is required to gather and compute optimal

routes for all ASes. The route numbers are propagated

upstream only for the purposes of ensuring that disputes re-

main resolved, and do not affect nodes elsewhere, including

other parts of the wheel.

Identification of potential pivot nodes: Although it is

possible to use some other unique number as the route

number, we believe that inclusion of the router IP gives

the right amount of visibility to assist in network trou-

bleshooting. If a node is forced to select a less preferred

route, the cause table maps incoming route numbers to an

outgoing one, appended to those already associated with

the selected route. Otherwise the numbers associated with

a selected route is propagated unchanged. Thus, the set of

nodes identified by the list of numbers includes all potential

pivots encountered downstream. Although not all pivots

along the wheel can be identified from a single viewpoint,

adjustment of just one such node’s preferences is sufficient

to break the dispute, reducing global precedence values and

relaxing constraints on route selection.

VI. ROUTER CHANGES

In this section we describe extensions to a BGP router

necessary to implement the Precedence Solution. The two

main additions are the history and cause tables.

A. History Table

The history table stores routes received from neighbors,

as well as information relevant to short and long term mem-

ories necessary for dispute detection and storage. Memory

used to store routes may be shared amongst the different

data structures, and is dependent on actual implementation.

Thus, the history table can be thought of as an extension

to other structures.

A route that is currently being advertised is feasible.

Infeasible routes that are not pinned are removed, and only

feasible routes can be considered for selection and pinning.

A route is unpinned if there exists a selected route that is

more preferred (or if no route is selected). Pinning of a

route occurs when it has a non-empty route number list

and it causes a less preferred route to be advertised with

increased global precedence value.
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true

true

...
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...

true
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false true
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1
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(b)

Feasible

Pinned

false

...

false

false false

true

true true

true true

Fig. 11. (a) Before and (b) after a history table is updated.

Figure 11 shows an example of a history table being

updated, and Figure 12 provides the pseudo-code. Entries

in the table are arranged in order of local precedence, that

is, the ordering is determined using the same rules as the

decision process in use today. This ordering provides the

local precedence value: the most locally preferred has value

0, the next 1, and so forth.

B. Cause Table

The cause table contains entries that map incoming

causes’ route numbers to outgoing ones. To recapitulate,

the route number of a cause consists of a router inter-

face’s IP address and a locally unique sequence number.

Figure 13 shows an example of a cause table being updated

corresponding to the update in Figure 11, with Figure 14

providing the pseudo-code. An entry exists until all its

incoming causes cease to be received. In the figure, the

cause entry for X.1 will be evicted if both A.1 and B.2

are no longer advertised by the neighbors. A new route

number X.2 is created with a change in the selected route.

Only current causes, that is, those using the most recent

sequence numbers, are updated based on received routes.

Thus in Figure 13 new incoming causes will be added to

the entry for X.2, but not for X.1.

C. Adaptive Convergence Window

As elaborated in §V, we require the use of short term

memory to detect disputes. The convergence window is the

period of time during which received routes are kept in

memory. Assuming that one-hop route propagation delay

W is similar to the Minimum Route Advertisement Interval

(MRAI), the rim nodes (say there are r of them) can

be thought of as delaying route advertisements from one

pivot to another by rW , thus the window size should be

proportional to this number.
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1: if local routing has converged (no routing changes) then
2: for each entry in history table do
3: if not feasible and not pinned then
4: remove entry
5: for each route R received do
6: if route from neighbor N is filtered then
7: set previous feasible route Rp from N infeasible
8: else if different route received from neighbor N then
9: set previous route Rp from N infeasible

10: compute R’s local precedence
11: insert R into history table, set feasible
12: else if same route received from neighbor then
13: if previous feasible route Rp �= R then
14: set Rp infeasible
15: else
16: update R’s global precedence value and route numbers
17: set R feasible
18: else if first route R is received from neighbor then
19: compute R’s local precedence
20: insert R into history table, set feasible
21: select set S of eligible routes
22: select set S′ with lowest global precedence, S′ ⊂ S
23: select route R with lowest local precedence, R ∈ S′
24: for each entry in history table do
25: if route Rmp more preferred than R, feasible, has non-null route

number list then
26: pin Rmp

27: else if route Rlp less preferred than R and pinned then
28: unpin Rlp

29: return R

Fig. 12. Pseudo-code for updating history table and determination of the
selected route for each destination.

A.1, B.2

Causes
Outgoing

Causes
OutgoingIncoming

Causes
Incoming
Causes

(a)

X.1A.1, B.2

(b)

A.1, B.2, D.4, E.2 X.2

X.1

Fig. 13. Updating of cause table corresponding to history table update
in Figure 11. A change in selected route triggers the generation of a new
sequence number, and only most recent outgoing causes are updated.

1: create empty route number set Sr

2: let selected route be Rs

3: for each entry in history table do
4: if route R more preferred than Rs and feasible then
5: pin R
6: else if Rs more preferred than R then
7: unpin R
8: if route R is pinned then
9: add R’s route numbers to Sr

10: for each entry in history table do
11: if route R is pinned and none of R’s route numbers ∈ Sr then
12: unpin R
13: if Rs is different from previous then
14: create new route number
15: if Sr ≡ ∅ and Rs is not most preferred and feasible then
16: add null route number to Sr

17: set current outgoing cause’s incoming route numbers to Sr

18: for each entry in cause table do
19: if no incoming route numbers are present in Sr then
20: remove cause entry

Fig. 14. Pseudo-code for updating cause table for each destination prefix.

1: for each adj-RIB-in do
2: process incoming routes, update route table
3: update history table
4: update cause table
5: for each adj-RIB-out do
6: update new routes’ route number list
7: advertise route to peer

Fig. 15. Primary steps in router batch updates.

The convergence window begins with a short duration

(one MRAI), so that networks not containing disputes can

converge relatively quickly. We double its duration when

convergence does not occur after some time, so that disputes

involving large numbers of rim nodes can be resolved

quickly. An upper bound can be determined using the

maximum observed path length during this period. Lastly,

its duration is reset after the network stabilizes to remove

effects of transient convergence.

VII. EVALUATION

A. Simulator

We built an event-based, packet-level and asynchronous

simulator. Route updates are batched, and take place every

Minimum Route Advertisement Interval (MRAI). Figure 15

shows the main steps of the batch update process, whereas

Figures 12 and 14 describe maintenance of the history and

cause tables respectively. We set MRAI to 30 seconds,

processing delay jitter to 1 second, and link propagation

delay to 10 milliseconds.

B. Metholodgy

To better understand the basic performance of our solu-

tion, we use simple graphs, which consist only of rim, pivot

and destination nodes. Figure 8 shows an example. Whilst

these graphs are not representative of a real network in

general, they are still useful in determining properties of a

dispute wheel.

To evaluate the effectiveness of the Precedence Solution

in practice, we use an AS-level network topology con-

structed using routing table dumps from RouteViews [13].

Route dumps from January 3rd 2007 were used to construct

an AS-level network which consists of 24307 ASes and

56914 inter-AS links. Since complete policy information

is impossible to obtain [3], [15], we sought an alternative

method of generating local preferences. Restricting our-

selves to next hop preferences, we note that a dispute-

free configuration can be obtained as long as the most

preferred neighbor lies along a cycle-free path to the

destination. Thus, a shortest-path algorithm will generate

local preferences that can guarantee convergence.

However, inter-domain routing typically does not result

in shortest paths [16], and as we show later, the network

convergence time as well as the degree of route exploration

(and hence the number of routes encountered) are dependent

on the ratio of actual versus shortest path lengths (i.e.
route inflation). Thus, we focus on routing algorithms that

provide approximately the same route inflation. We use a
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Fig. 16. Simple graphs: 3-pivot network’s convergence time against rim-
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Fig. 17. An increase in the maximum depth of constrained depth-first
routing results in more inflated routes. For constrained depth (c.d.) of 6,
we obtain paths with inflation close to that in practice [16].

combination of depth-limited and breadth-first searches to

obtain routing trees: depth-limited search is used whilst

within the limit at each stage, otherwise BFS is used. In

general, increasing the maximum depth at each stage results

in greater route path inflation. The remaining neighbors’

preferences are set in a random fashion. Finally, we simu-

lated misconfigurations by selecting a subset of routers and

randomly assigning local preferences.

C. Metrics

We use convergence time and memory requirement as

metrics. We say that a node has converged at a certain

time if its routing table no longer changes thereafter. As

for memory requirements, we look at the ratio of routes

stored when using our solution against normal BGP. This

allows comparison across the entire network, taking into

account routers with varying numbers of neighbors.

D. Results

Simple graphs: Using simple graphs, we determined

that the convergence time is dependent on the rim-to-

pivot ratio and not the total size of the network. We show

representative results in Figure 16, where the number of

pivot nodes is 3. Each data point in the figure is obtained

from 20 samples; we see that the mean convergence time

increases with this ratio, and there is little deviation in all

cases. In all experiments the networks converged.
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Fig. 18. As path lengths deviate away from shortest, the exploration
of more paths before convergence results in more routes being stored for
Precedence+.
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Fig. 19. Inflated paths result in an increase in convergence times.
Precedence+ does not delay convergence, even in the presence of mis-
configurations.

RouteView graph: We varied the maximum depth of

each constrained depth-first iteration, obtaining the mean

route length inflation ratios shown in Figure 17. A maxi-

mum depth of 6 results in route inflation that most closely

match that in the Internet today [16].

Next, we investigated the impact of additional memory

requirements for Precedence+ by varying route inflation. In

all cases, we verified that usage of Precedence+ in networks

with no disputes resulted in all nodes selecting their most

preferred next hops: Precedence+ does not unnecessarily

suppress routes. For normal BGP, the amount of memory

required at a router is proportional to the number of its

neighbors. From Figure 18, we observed that deviation from

the shortest path results in more routes being explored and

hence more being stored before convergence in the case of

Precedence+. On average, Precedence+ requires 50% more

memory for each destination prefix, which can be amortized

across the network by jittering initial prefix advertisements.

Furthermore, actual route exploration in the Internet may

be to a lesser extent since route advertisement will be

constrained by economic policies.

To investigate policy disputes, we randomly assigned

next hop preferences to 10% of the nodes. We verified that

dispute wheels do exist (normal BGP does not converge),

and that the networks converged when Precedence+ is used.

As shown in Figure 18, we required approximately the same
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APx:v:{...}
P2:1:{...}

P1:0:{...}
A

Fig. 20. Basic scenario used to describe misbehavior: node A receives
two routes and advertises one. Detection of misbehavior can be performed
by observing incoming and outgoing routes.

amount of memory as before.

Finally, we looked at the network convergence times

(Figure 19). As we expected, local preferences assigned

based on shortest-paths results in faster convergence. More

importantly, convergence time is not significantly affected

by usage of Precedence+, nor by the presence of miscon-

figurations (disputes) in the network.

VIII. DISCUSSION

In this section we discuss two issues encountered in

practice, namely constrained policies and misbehavior.

A. Constrained Policies

If the local precedence value of a route is determined

first by the last hop, that is, if the first step of the BGP

decision process selects routes based on next-hop ASes,

then the Precedence Solution can be significantly simplified.

In Figure 9(ii) at node A, if neighbor B’s routes are

more preferred than D’s, then route BXRW :1:{X .1,X .2}
will be ranked higher than RD:0:{}, thus the eviction

of BXRZ :1:{X .1} will not un-resolve the first dispute.

In other words, pinning of routes and long-term storage,

including cause tables and route numbers, are unnecessary.

Communication overhead is reduced as well, since only the

global precedence value need to be carried with each route

advertisement.

B. Misbehavior

Since the global precedence metric can in general restrict

the autonomy of an AS, there may be incentives for not

adhering to the general rule. We discuss various ways

whereby ASes can misbehave, and detection methods that

rely on the ability to observe the incoming and outgoing

routes. Clearly, one type of misbehavior is the selection

of an available route with the highest local precedence

regardless of its global value. We describe several scenarios

using Figure 20, focusing on the routes advertised from A.

P2:0:{...}: there is definite misconduct, since the out-

going route’s global precedence is less than its incoming’s.

This is true even if A filters P1:0:{...}.

P2:1:{...}: there is no misconduct only if A perma-

nently filters route P1:0:{...}. In this case, route P2:1:{...} is

the only incoming route and therefore also the most locally

preferred. Thus, the outgoing route’s global precedence is

not incremented.

(b.i) (b.iii)

(a.iii)(a.ii)(a.i)

(b.ii)
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Fig. 21. A misbehaving AS, represented by node M , can have differing
effects on the network. (a) For a dispute wheel with an odd number of
nodes, M eventually lacks a route if it initially filters the spoke one. (b)
For a wheel with an even number of nodes, M does not destabilize the
network.

Px:v:{...}: where v>2 for x=1 and x=2. In this case,

node A is artificially increasing the outgoing precedence

value. This has the effect of not allowing upstream ASes to

select a route traversing this AS. While some may construe

this as misbehavior, it may be used as a means of indicating

that certain links are used as backup. For instance, the

destination node can advertise a global precedence value

of 1 on backup links, and 0 on normal links.

From this simple example, we can determine that an AS

is misbehaving if one of these two conditions are satisfied:

(1) an outgoing route has a global precedence value that

is less than its corresponding incoming route, or (2) an

outgoing route has a global precedence value that is greater

than its corresponding incoming route by more than one.

C. Adaptive Filtering

Misbehavior that is more difficult to detect involves

adaptive filtering, which we now describe. Let M be the

node representing a misbehaving AS. Clearly, if M is

always filtering its spoke path, it will never become a pivot

node, and thus cannot influence the convergence process.

However, M involved in a dispute can initially accept routes

from neighbors along the spoke and rim. When routing

stabilizes and the precedence+ metric forces selection of

the spoke path, M can subsequently decide to effectively

filter that in order to select the locally preferred path along

the rim.

In this case, two scenarios can occur as illustrated in

Figure 21. In part (a), the total number of pivot nodes in

dispute is an odd number. The selection of a next hop

that is more locally preferred but having a higher global

precedence value eventually results in M not having a valid

route. Subsequent removal of the filter causes the system

to oscillate again.

In part (b), an even number of pivot nodes can cause the

system to settle in a stable state even if M misbehaves. In

this case, M is able to use the path it locally prefers.

In general it is difficult to determine the number of

pivot nodes in dispute, and therefore hard to know if the
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(ii)

B’s history table A’s history table
(i)

B’s history table A’s history table

B

AB

A

[R2:1:{...}]

[R0:0:{...}]
[R1:1:{...}]

[R0:0:{...}][AR0:1:{...}]

[R1:1:{...}]

[R2:1:{...}]

[BR2:1:{...}]

[R1:1:{...}]
[R0:0:{...}]

[R1:1:{...}]

[R0:0:{...}][AR0:0,1:{...}][BAR0:1:{...}]

[R2:1:{...}]

[R2:1:{...}]

[AR0:0,1:{...}]

[AR0:1:{...}]

Fig. 22. (i) With multiple routers within an AS, indicated by the shaded
region, external input and output routers can appear to indicate misbehavior
even if they are operating according to protocol. (ii) By tagging the route
with both ingress and egress precedence values, an AS’ behavior becomes
similar to that of a single router.

implementation of adaptive filtering in M can result in os-

cillations (which ultimately does not benefit M ). To provide

better control of the situation, we next propose a method to

detect the various types of misbehaviors discussed above.

D. Misbehavior Detection

Most ASes are comprised of multiple routers, and are

unlikely to provide access to the internal network. Thus, the

usual assumption that an AS can be modeled by a single

router does not hold. For instance, in Figure 22(i), router

A selects, as it should, the less preferred route R0:0:{...}
and advertises AR0:1:{...} to B. B subsequently chooses

R2:1:{...}. If we logically collapse A and B into a single

node and aggregate their inputs, we see that even though

the routers are behaving correctly, the output should have

been ...R0:1:{...} instead.

We propose a slight tweak to the protocol only within

an AS: when an ingress router (i.e. A in the example)

advertises a route to an internal peer, it appends the route’s

global precedence when received (the ingress value) and

after updates (the egress value). Upon reception of that

route, B uses the ingress value to determine the selected

route. The egress value is then updated, and is lower-

bounded by the previous egress value. Advertisements to

neighboring ASes carry only the egress value.

Figure 22(ii) shows the same network with the tweaked

protocol. Here, correct behavior will cause A to advertise

AR0:0,1:{...}, and B to advertise BAR0:1:{...}. On the

other hand, if A misbehaves and selects R1:1:{...}, the

output will clearly be incorrect.

With the slightly modified protocol, the conditions de-

scribed in §VIII-B can be used to detect the occurrence of

adaptive filtering. For a dispute to occur, a less preferred

route (say Rlp) must have been advertised before the more

preferred one is selected. Thus, Rlp must have been ob-

served before, but not thereafter. A monitoring mechanism

can be designed based on this as follows: we detect routes

that should have been selected but aren’t. These are then

hashed and stored. Since the monitor is maintained by a

third-party, hashing of the inputs provide anonymity. Output

of any of the stored routes in the future signals reuse of

those routes, and therefore adaptive filtering.

IX. CONCLUSION

This paper tries to reconcile two desirable, but seemingly

incompatible, goals. On the one hand, it is a business

reality that ASes would like to set policies according to

their own specialized needs — whether these arise out

of business, or traffic engineering, or other concerns —

and they would like to keep these policies private. On

the other hand, every AS would like to have a stable

Internet, where routes didn’t oscillate. Unfortunately, recent

theoretical results make clear that to ensure a priori, without

knowing the policies beforehand or relying on assumptions

about the structure of business relationships, that routing

will be stable, ASes must be deprived of essentially all

policy autonomy. In this paper we no longer require an a
priori guarantee, but instead seek to remove policy-induced

oscillations when they arise. This allows us to preserve

policy freedom when possible, and impose stability when

required.
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