
Ripcord: A Modular Platform for Data Center
Networking

Martin Casado
David Erickson
Igor Anatolyevich Ganichev
Rean Griffith
Brandon Heller
Nick Mckeown
Daekyeong Moon
Teemu Koponen
Scott Shenker
Kyriakos Zarifis

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2010-93
http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-93.html

June 7, 2010



Copyright © 2010, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Ripcord: A Modular Platform for Data Center Networking

Martin Casado†, David Erickson‡, Igor Ganichev�,
Rean Griffith�, Brandon Heller‡, Nick Mckeown‡,

Daekyeong Moon�, Teemu Koponen†, Scott Shenker�,
Kyriakos Zarifis�

� - UC Berkeley, ‡ - Stanford University, † - Nicira Networks

ABSTRACT
Data centers present many interesting challenges, such as

extreme scalability, location independence of workload,

fault-tolerant operation, and server migration. While many

data center network architectures have been proposed, there

has been no systematic way to compare and evaluate them—

apples-to-apples—in a meaningful or realistic way. In

this paper, we present Ripcord, a platform for rapidly

prototyping, testing, and comparing different data center

networks. Ripcord provides a common infrastructure, and

a set of libraries to allow quick prototyping of new schemes.

We built a prototype of Ripcord and evaluated it in

software and running on a real network of commodity

switches. To evaluate Ripcord, we implemented and de-

ployed several schemes, including VL2 and PortLand. A

key feature of Ripcord is its ability to run multiple routing

applications, side-by-side on the same physical network.

Although our prototype implementation is not production

quality, we believe that Ripcord provides a framework for

both researchers and data center operators to implement,

evaluate, and (eventually) deploy new ideas.

1. INTRODUCTION
The meteoric growth of data centers over the past decade

has redefined how they are designed and built. Today, a large

data center may contain over one hundred thousand servers

and tens of thousands of individual networking components

(switches, routers or both). Data centers often host many ap-

plications with dynamic capacity requirements, and differing

service requirements. For example, it is not uncommon for

the same data center to host applications requiring terabytes

of internal bandwidth, and others requiring low-latency

streaming to the Internet.

Their sheer scale, coupled with application dynamics and

diversity, makes data centers unlike any systems that have

come before. And to construct and manage them, network

designers have had to rethink traditional methodologies. A

prevailing design principle is to use scale-out system design.

Scale-out systems are generally characterized by the use of

redundant commodity components. Managed workloads are

constructed so the system can gracefully tolerate component

failures. Capacity is increased by adding hardware without

requiring new configuration state or system software.

While scale-out design is well understood for building

compute services from commodity end-hosts, it is a rela-

tively new way to build out network capacity while retaining

a rich service model to applications. Other authors have

explained clearly [5,12] how traditional data center networks

stood in the way of supporting highly dynamic applications,

scale-out bandwidth, and the commodity cost model such

systems are suited for.

Due to these limitations, the research community, and the

largest data center operators – those with the deepest pockets

– innovate fast, moving towards new schemes that allow

them to construct systems with the requisite properties for

their operations.

While many schemes remain proprietary and unpublished,

some notable data center network designs have been de-

scribed. VL2 [5] uses Valiant load balancing and IP-in-IP

encapsulation to spread traffic over a network of unmodified

switches. On the other hand, PortLand [12] modifies the

switches to route based on a pseudo-MAC header, and

aims to eliminate switch configuration. Other researchers

have proposed Monsoon [7] and FatTree [1]; Trill [17] and

DCE [4] have been proposed as standards.

Each proposal holds a unique point in the design space,

and subtle differences can have large ramifications on cost

and performance, raising the question: How can we evaluate
which scheme is best for a given data center, or for a given
service? And how can we build on the work of others,

modifying an existing scheme to suit our needs?

In this paper we set out to answer these questions. Specif-

ically, we developed and describe a new platform, called

Ripcord, that is designed so that researchers can quickly pro-

totype new data center network solutions, and then compare

multiple schemes - side by side, apples to apples. Ripcord

includes a collection of library components to facilitate rapid

prototyping (e.g. multi-path routing protocols, topology

mappers, ...). But perhaps most interestingly, Ripcord allows

several data center network schemes to run simultaneously

on the same physical network. We illustrate this later by

running VL2 and Portland at the same time. A researcher

may use this capability to evaluate two schemes side by side;

an experimental data center can host multiple researchers at
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the same time; a multi-tenant hosting service may provide

different customers with different networks; and a multi-

service data center may use schemes optimized for different

services (e.g. one scheme for map-reduce, alongside another

for video streaming).

We evaluate the generality of Ripcord by implementing

multiple data center proposals and running them in tandem

in software, and individually in both software and on a test

data center made from commercial hardware. We present

our results in Section 5.

Contributions: In summary, we believe Ripcord makes

the following contributions:

1. It allows different data center networking schemes to

be compared side by side in the same network.

2. It allows multiple schemes to be run simultaneously in

the same network.

3. It allows a researcher to build and deploy a new data

center network scheme in a few hours; or download

and modify an existing one.

The rest of the paper is arranged as follows: In Section 3

we describe the architecture of Ripcord in detail, and then

in Section 4 we describe our first prototype. Our first

experiences with Ripcord suggest that by reusing existing

technologies, it is possible to meet our goals with a relatively

simple system. In Section 4.8 we describe how we imple-

mented three different schemes on Ripcord: VL2, Portland,

and VL2 with middlebox traversal [10], and compare their

performance in Section 5.

2. OVERVIEW OF RIPCORD
Ripcord’s design follows directly from four high-level

design requirements: The system must allow researchers

to prototype quickly, with minimum interference from the

platform itself. Ripcord must allow experimenters to evalu-
ate a new scheme, and compare it side-by-side with others.

Finally, it must be easy to transfer and deploy a new scheme

to physical hardware.

To help researchers prototype quickly, and to encourage

code re-use, Ripcord is modular and extensible. We chose

a logically centralized design, allowing the experimenter to

create control logic for the entire data center without concern

for how decisions are distributed.

If we are to help experimenters evaluate and compare

different schemes, we need to understand the main criteria

they will use. Based on recent proposals (and the needs of

data centers) the most challenging criteria are:

Scalability.
Large data centers scale to many thousands of servers or

millions of virtual machines (VMs). The experimenter will

need ways to compare topologies, routing and addressing

schemes and their consequences on forwarding tables and

broadcasts. Ripcord’s scalability is discussed in Section 6.

Location Independence.
Dynamic resource provisioning in data centers is much

more efficient if resources can be assigned in a location-

agnostic manner and VMs can migrate without service-

interruption. Ripcord must support routing that operates at

different layers, and novel addressing schemes.

Failure Management.
Scale-out data centers are designed to tolerate network

failures. Ripcord must provide a means to inject failures to

links and switches, to explore how different schemes react.

Load balancing.
Data centers commonly spread load to avoid hotspots.

Ripcord must enable randomized, deterministic and pre-

defined load-balancing schemes.

Isolation and Resource Management.
If multiple experiments are to run simultaneously - just

as multiple services run concurrently in a real data center -

Ripcord must isolate one from another.

The requirements above led to the following high-level

approach. In the next section, we describe the design in

greater detail.

Logically centralized control.
At the heart of Ripcord is a logically centralized control

platform. Ripcord’s centralized approach reflects a common

trend in recent proposals (e.g., VL2’s directory service,

PortLand’s fabric manager). While logically centralized,

Ripcord can scale by running several controllers in parallel.

Multi-tenant.
In Ripcord, each tenant manages a portion of the data

center and controls routing. A tenant can be an experiment

(e.g. PortLand and VL2). Alternatively, in a production

data center, the tenant is a management and routing scheme

tailored to support a service (e.g. MapReduce or content

delivery). Ripcord supports multiple tenants concurrently

by managing the resources they use in the network.

Modular.
The central platform is modular. It maintains a shared

current view of the topology and the state of each switch;

it enforces isolation between tenants (i.e. controls which

resources they are allowed to view and control). Tenants

can select among a variety of routing schemes, arranged as

modules connected in a pipeline.

2.1 Our Prototype
Our Ripcord prototype builds upon and replaces the de-

fault applications of NOX [8]. NOX is a logically cen-

tralized platform for controlling network switches via the

OpenFlow [11] control protocol. We summarize NOX

and OpenFlow briefly in the appendix. We chose these
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Events Semantics
SWITCH JOIN Switch joined network.

SWITCH LEAVE Switch left network.

PACKET IN Packet without matching flows came in.

STATS REPLY Flow stats are available.

Table 1: Network events expected from switch.

Commands Semantics
FLOW MOD Installs/removes flows.

PACKET OUT Sends out a given packet.

STATS REQUEST Polls flow stats.

Table 2: Expected switch commands.

technologies because they provide a clean vendor-agnostic

abstraction of the underlying network, and NOX provides

a well-defined API to control the network as a whole. Our

prototype could, in principle, be built on any network control

abstraction offering the set of events and commands listed in

Table 1 and Table 2.

3. DESIGN
To help orient the reader we use an example walkthrough

as a a high-level introduction to key components in the

system. The following steps describe how Ripcord handles

incoming flows by passing them to the correct tenant for

routing and setup in the network.

Physical
DC Network Programmable Switches

Authenticator &
Demultiplexer

App Engine

Tenants

Monitor

Topology Engine

Raw
Topo DB

Logical
TopoViews

Routing Engine

Routing Pipelines

Flow
Installer

Flow In

Flow In

Flow Out

SWITCH_JOIN
SWITCH_LEAVE

PACKET_IN

SWITCH_JOIN
SWITCH_LEAVE

STATS_REQ
STATS_REP

Event flow
Command

FLOW_MOD
PACKET_OUT

Config &
Policy 

DB

Figure 1: Ripcord architecture and event flow diagram

3.1 Example Walkthrough

Configuration.
The first step in the deployment of a Ripcord data center

is to provide the Configuration and Policy Database with

the particulars of the network. This includes topology

characteristics (FatTree/Clos/etc), the tenants, and a map-

ping from the tenants to the available routing applications

(PortLand/VL2/etc).

Startup.
The App, Routing and Topology Engines are instantiated

based on administrative information fed to the Configuration

and Policy Database. At this point, optional network

bootstrap operations (e.g. proactive installation of flows)

are carried out. In addition, the Routing Engine and the

App Engine register to receive notification on each incoming

flow.

Running.
In this state, Ripcord listens for incoming routing re-

quests. These requests are generated as events by switches

each time they receive a packet for which there is no

existing flow table entry. When Ripcord receives the routing

request it makes sure that the packet is either processed by

a responsible (per-tenant) Management App and its routing

pipeline or discarded. The sequence of steps for handling

routing requests is outlined below:

1. When a switch receives a packet for which there is no

matching flow-table entry it creates a routing request

containing the packet and notifies the Authenticator-
Demultiplexer.

2. The Authenticator-Demultiplexer, receives the rout-

ing request, tags it with the identifier of the tenant

that should handle it, and, if the routing request is

legitimate, notifies the App Engine. If the routing

request is not legitimate, e.g., it would result in traffic

between isolated networking domains, it is denied and

the packet is discarded.

3. The App Engine dispatches routing requests to the

point of contact associated with each tenant – its

Management App. The Management App determines

whether it should discard the incoming packet, process

it, e.g. to handle control requests like ARP, or propa-

gate the request to the Routing Engine.

4. When the Routing Engine receives the routing request

it invokes the tenant’s predefined routing pipeline,

which computes a route and then the Routing Engine

informs the Flow Installer.

5. Finally, the Flow Installer sends out commands to

select switches, along the path inserting flow entries

in their tables thus establishing the new flow on the

selected path.

Monitoring.
Under normal operation, the Monitoring module tracks

switches as they join or leave the network. With “always-

on” passive monitoring, the network is constantly supervised
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for abnormalities. If an aberrant behavior is detected, the

operator can invoke active monitoring commands to delve

into the problem and troubleshoot.

3.2 Components
Figure 1 depicts Ripcord’s high-level architecture. It

consists of the following seven components:

1. Config & Policy DB: is a simple storage for platform-

level configuration and data center policy information.

Administrators configure the Database with global

network characteristics as well as tenant-specific poli-

cies. This centralized configuration provides ease of

management. As this module merely stores the config-

uration, the actual policy enforcement is delegated to

other components.

2. Topology Engine: maintains a global topology view

by tracking SWITCH JOIN as well as SWITCH LEAVE
events. This allows for real-time network visual-

ization, expedites fault-detection and simplifies trou-

bleshooting. The component also builds per-tenant

logical topology views which are used by App and

Routing Engines when serving a specific tenant.

3. Authenticator-Demultiplexer: performs admission

control and demultiplexes to the correct application.

Upon receipt of a PACKET IN event, it invokes the

Configuration/Policy Database and resolves the tenant

in charge of the packet. If the packet is not legitimate,

the component drops it. Otherwise, it passes on the

routing request to the App and Routing Engines, as

a FLOW IN event tagged with the packet and tenant

information.

4. App Engine: each tenant can have its own manage-

ment app. Hence, the Management App can be seen as

a centralized controller for a particular tenant. This

component typically inspects incoming packets in a

FLOW IN event and updates its internal state. For ex-

ample, PortLand’s fabric manager can be implemented

as a management app on Ripcord. On receipt of a

FLOW IN event, the App Engine dispatches the event

to a proper app based on tenant information associated

with the event.

5. Routing Engine: this module calculates routes through

a multi-stage process: starting as a loose source route

between the source-destination pair, a path is gradually

filled through each of the routing pipeline stages. One

pipeline stage may consist of zero or more routing

modules. Ripcord does not limit the size of routing

pipeline. It does, however, enforce the order of stages

so as to help verify routing modules’ composability.

Table 3 describes these stages.

This small routing module is far easier to verify and

manage than a larger, all-in-one routing algorithm

package. At the same time, it gives great flexibility as

the routing algorithm is not predetermined, but defined

by the arrangement of the routing modules. Hence,

new routing algorithms can be easily deployed as long

as the underlying topology supports them. One can,

for instance, shift from shortest-path to policy-based

routing merely by replacing one of its routing modules

in the ComputeRoute stage. The routing pipeline for

each Ripcord tenant is configured in the Config/Policy

Database as a list of routing modules. We envision

that open source developers will contribute routing

modules and datacenter administrators will evaluate

new routing algorithms on Ripcord.

6. Flow Installer: is in charge of translating FLOW OUT
event into hardware-dependent control message to mod-

ify the switch flow table. We introduce this indirection

layer to make Ripcord independent of a particular

switch control technology.

7. Monitor: provides support for passive and active
statistics collection from network elements. Passive

collection periodically polls switches for aggregate

statistics, while active collection is targeted to probe

a particular flow in the network.

When a switch joins the network, the component

records its capabilities (e.g., port speeds supported)

and then maintains a limited history of its statistics

snapshots. Snapshots contain aggregate flow statistics

(e.g., flow, packet and byte counts for a switch), sum-

mary table statistics (e.g., number of active flow entries

and entry hit-rates), port statistics (e.g., bytes/packets

received, transmitted or dropped) and their changes

since the last collection.

4. IMPLEMENTATION
Our Ripcord prototype consists of a technology-independent

core library (implementing the seven components explained

in Section 3), and NOX-dependent wrapper code. It totals

6,988 lines of Python code plus NOX’s standard library.

4.1 Configuration & Policy Database
When Ripcord starts, this module reads a directory of

configuration files describing the configuration and policy,

expressed as key-value pairs. The configuration language is

described in JSON because of its ability to richly express

dictionary and array types. New configurations can be

loaded dynamically via command line arguments, for exam-

ple to instantiate a new tenant or debug a running system.

The policy database needs to be quite general: For example,

an administrator might set a policy such as ‘Packets sent from
the host with MAC address A to the host with IP address B
should be routed by tenant Y’. The policy may be based on

any combination of the following fields: the unique ID of

the switch the packet was received at, the incoming port on

4



Stage Description
TweakSrcDst The source/destination information is altered at this stage.

This is usually for the purpose of loadbalancing among hosts.

InsertWayPoints This stage inserts particular switches or middleboxes to traverse (e.g. for security reasons)

Loadbalance This stage can alter a loose source route computed so far to loadbalance among switches and links.

ComputeRoute This stage completes route(s). If previous stages generated multiple routes, this stage selects a final one.

TriggerFlowOut This stage triggers Flow Out event with the computed route.

Table 3: Ripcord’s routing pipeline stages. Earlier stages in the table cannot appear later in routing pipeline. Each routing

module should be in one of these stages.

that switch, source MAC and IP addresses, and destination

MAC and IP addresses.

4.2 Topology
When Ripcord starts, this module loads the topology from

a configuration file. We assume the topology is known in

advance, has a regular layered structure (e.g. tree, multi-root

tree, fat-tree, Clos, . . . ), and is relatively static. Each layer is

assumed to consist of identical switches; but the number of

layers, ports and link speeds may vary. The regular structure

makes it quick and easy for the routing engines to traverse

the topology. Routing engines may view the entire topology,

or be restricted t o view only the part of the topology they

control. The module has APIs to filter by layer or power

status, or return the physical port numbers connecting two

switches. See Figure 4 and Figure 5 below for examples of

pre-existing Ripcord topologies.

4.3 Authenticator-Demultiplexer
When Ripcord starts, this module builds a lookup table

from the configuration and policy database, to map incoming

traffic to the correct tenants. The process is triggered by

a new PACKET IN event when a switch doesn’t recog-

nize a flow. The Authenticator-Demultiplexer generates a

FLOW IN event and hands the App Engine an ID identifying

which tenant(s) to alert.

4.4 App Engine and Management Apps
When Ripcord starts this module instantiates the manage-

ment application for each tenant; Figure 2 shows how a man-

agement application is configured. In the example, the App

Engine instantiates a Python class ripcord.apps.PortLand
and assigns it AppID 1. AppID is the demultiplexing key

sent by the Authenticator-Demultiplexer module.

The App Engine is responsible for dispatching FLOW IN
events to the correct tenant management application. The

App Engine instantiates applications without knowing their

internal implementation, and so is independent of the details

of each tenant. A management application is free to imple-

ment whatever it chooses, so long as it provides an event

handler for FLOW IN.

For example, in our implementation of PortLand, the

management application performs ARPs and maintains the

AMAC-PMAC mapping table. A management application

” apps ” : [
{” i d ” : 1 ,

”name ” : ” r i p c o r d . apps . Por tLand ” ,
” param ” : [ ” f i r e w a l l = f a l s e ” , ” v e r b o s i t y =debug ” ] ,
” r o u t i n g ” : {

” modules ” : [
{”name ” : ” r i p c o r d . r o u t i n g . PLComputeRoutes ” ,

” param ” : [ ” m a x s e l e c t i o n =4” ]} ,
{”name ” : ” r i p c o r d . r o u t i n g . PLPickRoute ” ,

” param ” : [ ” s e l e c t i o n c r i t e r i a =random ” ]} ,
{”name ” : ” r i p c o r d . r o u t i n g . PLOpenFlowTrigger ” ,

” param ” : [ ]}
]}

} ]

Figure 2: App configuration example (PortLand). Each app

is assigned a unique app identifier. It also specifies a name in

the form of a path to Python class and routing pipeline in the

form of a list of routing modules.

” d e f a u l t ” : {
” r o u t i n g ” : {

” e x p a n d a b l e ” : t r u e ,
” modules ” : [
{”name ” : ” r i p c o r d . r o u t i n g . F i x S w i t c h ” ,

” param ” : [ ]} ,
{”name ” : ” r i p c o r d . r o u t i n g . Inser tMB ” ,

” param ” : [ ’ 1 0 . 0 . 0 . 2 ’ , ’ 1 0 . 0 . 0 . 3 ’ ] }
]}

}}

Figure 3: Routing policy example.

may tag an event with additional information for its routing

modules; by default the event is propagated to the routing en-

gine when the management application returns CONTINUE.

4.5 Routing Engine and Per-tenant Routing
Pipeline

The Routing Engine is responsible — for each tenant

— for passing FLOW IN events to the correct sequence of

routing modules (based on the AppID). When Ripcord starts,

the module generates a pipeline for each tenant from the

configuration database. For example, Figure 2 shows how

a pipeline of three routing modules is defined for PortLand.

The name of each routing module is its Python class name

so that the routing engine can correctly locate the module.

The routing pipeline can be of any length, although each

routing module must be in one of the routing stages in
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Table 3 and follows the order of routing stages as described

in Section 3. Each stage invokes associated routing modules

to progressively complete a source route. The last stage

triggers FLOW OUT to convert the computed source route

into a series of flow entries and to program switches.

In addition to per-tenant routing pipelines, the data center

operator may want to impose global routing constraints.

For example, traffic for all tenants may be forced to pass

through a firewall; or, each tenant may be required to run

on isolated paths. Ripcord represents these constraints by a

global routing policy. For instance, the policy represented

in Table 3 means an application can define its own routing

pipeline (i.e., expandable), but is subject to two manda-

tory routing modules.

4.6 Monitoring Implementation
The Monitoring module maintains a snapshot of the state

of switches and flows (see Table 4). The module listens for

switch join/leave events, and periodically collects switch-

level aggregate statistics, flow table statistics, and port

statistics.

Fields Semantics
dpid switch id

collection epoch collection cycle

epoch delta distance from previous cycle

collection timestamp time captured

ports active number of active ports

number of flows flows currently active

bytes in flows size of active flows

packets in flows packets in active flows

total rx bytes total bytes received

total tx bytes total bytes transmitted

total rx packets dropped receive drops

total tx packets dropped transmit drops

total rx errors receive errors (frame,crc)

total tx errors transmit errors

delta rx bytes change in bytes received

delta tx bytes change in bytes transmitted

delta rx packets dropped change in receive drops

delta tx packets dropped change in transmit drops

delta rx errors change in receive errors

delta tx errors change in transmit errors

Table 4: Information included in a monitoring snapshot.

The module keeps snapshot histories - the configuration

file determines the size of the history, the collection fre-

quency, and where old snapshots should be stored. The

module also provides an API for active statistics collection

(Table 5), for detailed metrics of switch and flow perfor-

mance. Hence, it can be used to build high-level modules

to visualize the entire network or for troubleshooting.

4.7 Flow Installer
When the route has been decided, the switches need to

Functions Roles
get all switch stats(swid) returns all snapshots for a switch
get latest switch stats(swid) returns last snapshot for a switch
get all port capabilities(swid) returns the port capability map for SW
get port capabilities(swid,port id) returns capabilities of a specific port
get flow stats(swid, flow spec) returns specific flow statistics

Table 5: API exposed by the monitoring module for active

statistics collection.

be updated. The Flow Installer module takes FLOW OUT
events, and generates binary OpenFlow control packet(s)

which are passed to NOX for delivery to the correct switches.

The FLOW OUT event includes the <header match, action>

pair for each switch the flow traverses.

4.8 Case studies
To illustrate further, we describe how we implemented

three routing engines in Ripcord: Proactive, VL2 and Port-

Land. As a metric of complexity, Table 6 reports the lines of

code needed for each implementation.1

Implementation Lines of code
Proactive 200

VL2 576

VL2 w/ middlebox traversal 616

PortLand 627

Table 6: Lines of code of sample routing implementation

Proactive.
This is the simplest base design. Host addresses and

locations are loaded from the topology database, paths

are chosen using spanning-tree, hashes, or random selec-

tion, and corresponding flow entries are installed into the

switches. This eliminates flow setup time for applications

which cannot tolerate reactive flow installation, at the ex-

pense of more entries in the flow table. As an extension—

although really as a baseline—Ripcord can also learn MAC

addresses, and reactively install flows using the listed path

selection methods, similar to today’s traditional layer-2

networks.

VL2.
Our VL2 routing engine uses a pipeline with three routing

modules. The first module VL2LoadBalancer is in the

Loadbalance stage, and implements the Valiant load

balancing. It picks a random intermediate core router (from

the set that are up), creating a partial route with the source,

intermediary and destination (and optionally other nodes

such as middle boxes, or switches added for QoS). We add

the optional optimization to route flows directly when the

source and destination share a common ToR switch.

1Because we do not have the source code from the authors’
implementations, our versions are from our own implementations
of their schemes.
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Switch and Direction Match Action
ToR, Up in port, src mac, dst mac replace dst ip with destination’s ToR IP addr

insert coreID into the highest order byte of src ip

ToR, Down in port, src mac, dst mac restore original dst ip and src ip

Aggregation, Up in port, highest order byte of src ip forward to a port

Aggregation, Down in port, dst ip forward to a port

Core, Down dst ip forward to a port

Table 7: OpenFlow entries realizing compact VL2 routing.

Next, in the ComputeRoute stage, the

VL2ComputeRoute module completes the route by iden-

tifying the shortest path from source to intermediary, and

intermediary to destination. If there are multiple shortest

paths, one is chosen at random (but only if the switches are

up). If a switch is marked down (e.g. for maintenance) it is

not used.

Finally, VL2Open-FlowTrigger, calculates the flow

entries to realize the chosen route. We use the design

described in [16] because it is simple, and supports middle-

box traversal (see Table 7).

Comparing VL2 as defined by its authors with VL2

implemented on Ripcord, we make the following obser-

vations. VL2 uses double IP-in-IP encapsulation to route

packets from the source to the core switch (anycast and

ECMP), and then onto the destination ToR. In Ripcord,

our implementation simply overwrites the destination IP

address with the IP address of the destination’s top-of-rack

switch (ToR), and explicitly routes it via a randomly chosen

core switch. In VL2, the destination’s ToR decapsulates

the packet to restore its original form, whereas we directly

instruct the destination’s ToR to overwrite the IP addresses

with original values. The implementation is different, but

the outcome is identical.

Just as in VL2, ARP packets are not broadcast to the

whole network, but are forwarded to the controller; the

management application handles them and replies directly

to the source host. Unknown broadcast types can be rate

limited, or sent to a host to be satisfied.

PortLand.
PortLand routes traffic by replacing the usual flat MAC

destination address (AMAC) with a source-routed pseudo-

MAC (PMAC). The PMAC encodes the location of the

destination. The source server is “tricked” into using the

PMAC when it sends an ARP — a special fabric manager

replies to the ARP with the PMAC instead of the AMAC.

The egress ToR switch converts the PMAC back into the

correct AMAC to preserve the illusion of transparency for

the unmodified end host.

Portland’s fabric manager is centralized, and is naturally

implemented as a Ripcord management application. The

application assigns each AMAC a PMAC based on its ToR

switch. Like in PortLand, ARP requests are intercepted

and the management application replies (without routing the

ARP request).

PortLand routes flows with a pipeline of three rout-

ing modules: PLComputeRoutes, PLPickRoute and

PLOpenFlowTrigger. Although the modules are suffi-

cient to implement the PortLand’s routing, we allow it to

be extended with other routing modules (e.g., middlebox

interposition module or load balancer). Hence,

PLComputeRoutes, which belongs to the ComputeRoute
stage, first examines loose source routes computed by the

previous routing stages. If no route is given, it takes

a pair of ingress switch and the ToR switch of desti-

nation address as a loose source route. Then, it com-

pletes each loose source route by computing a shortest

path between each two consecutive hops in the source

route. Hence, this routing module results in a list of

complete source routes. PLPickRoute is also in the

ComputeRoute stage and it randomly selects a route

among those computed by PLComputeRoutes. Finally,

PLOpenFlowTrigger converts the selected route into a

sequence of flow entries to be installed in switches along the

path.

The ingress ToR replaces the source AMAC with the

source PMAC for the return journey. Aggregate switches

and core switches route solely based on the destination

PMAC. Because our OpenFlow implementation does not

support longest prefix matching on MAC addresses, we

currently match full destination address. A flow entry in the

egress ToR switch is to restore the destination PMAC back

to AMAC.

4.9 Additional Capabilities
Because of its fine-grained control over routing, Ripcord

can do many things a current data center network cannot.

We describe some examples below.

Middle-box Traversal..
Flows can easily be routed through arbitrary middle-boxes

by inserting a waypoint in a loose source route (in the

InsertWayPoints routing stage). In the ComputeRoute
stage, the complete path is calculated to traverse the way-

points. As an experiment, we implemented a routing module

VL2MiddleBoxInserter to insert a random middle-

box (specified in a configuration file) into the VL2 routing

pipeline. Thus, the complete VL pipeline becomes:

If the middle box doesn’t modify the packet header,
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VL2MiddleBoxInserter
=⇒VL2LoadBalancer

=⇒VL2ComputeRoute
=⇒VL2OpenFlowTrigger

our implementation handles an arbitrary number of middle-

boxes per path. If the packet header is changed, the portion

of the route after the middle-box needs to be recomputed.

Alternatively, we could define a model for each middle-box

class. While out of the scope of this paper, [10] indicates

that this approach has potential.

Seamless fail-over..
Topology changes are detected by the Topology Database

and any management application affected by the change is

notified, so it can take remedial action.

4.10 Development Tools
Although Ripcord is designed to be easy to port to

physical hardware, a large scalable data center is beyond

the budget of most researchers. Scale limitations may only

expose themselves in larger topologies, therefore we need

tools to test designs at scale — if only functionally. The

development of Ripcord led to two new tools to address these

issues, which may have value outside of data center network

development.

4.10.1 Mininet
Emulating large networks is not easy. Existing solutions

for emulating OpenFlow networks typically uses one VM

per switch interconnected by Virtual Distributed Ethernet.

Each VM consumes a lot of memory (32MB for a re-

duced Debian kernel), and realistically only about fifty VMs

(switches) can be emulated per server. Added to the time to

reboot a VM, it is hard to emulate reasonably sized networks.

To help Ripcord users develop new tenants, we used

Mininet - a new tool for emulating large networks on a single

PC. Mininet can support thousands of OpenFlow switches

on a single Linux server (or VM), using a combination of

Linux network namespace virtualization and Linux virtual

ethernet pairs [15]. Each virtual host can have its own

IP and ethernet port, while each software switch can have

its own ethernet connections. Mininet builds this virtual

topology from a Ripcord topology description by creating

Ethernet pairs, then moves each endpoint into the correct

namespace. The standard OpenFlow Linux reference switch

supports multiple kernel datapaths, so packets sent across

multiple network hops remain in the kernel. As a result,

Mininet cross-section bandwidth exceeds 2 Gb/s on a well-

provisioned machine. Hosts and switches share the same

code, and so the incremental cost of an additional switch

or host is small. A new topology or routing engine can be

booted in seconds (rather than minutes). Mininet is available

for Ripcord users to develop new tenants. It also proved

invaluable for developing Ripcord itself.

Of course Mininet uses software-based switches and so

does not provide performance fidelity. For valid perfor-

mance results, you need hardware.

4.10.2 Virtual-to-Physical Mapping
When we have a working implementation (verified with

Mininet), we need to transfer it to hardware. Ideally, we

would have access to a huge network of switches each with

large numbers of ports. Given this is unlikely, we can slice

a physical switch into multiple “virtual” switches. Some

OpenFlow switches can be sliced by physical port. For

example, a k=4 three layer Fat Tree, which requires twenty

4-port virtual switches, can be emulated by two 48-port

physical switches and a number of physical loopback cables.

Unfortunately, not every OpenFlow switch supports slicing.

Instead, we chose to slice switches at the controller, by

implementing a virtual-to-physical mapping layer between

Ripcord components and the NOX API. Since in Ripcord

the base topology is known in advance, the mapping can be

statically defined. The result is that Ripcord routing engines

and applications use virtual addresses, while NOX sees

physical addresses. For example, when a switch connects,

it has an ID that must be translated from physical to virtual,

which may cause one physical switch join event to become

multiple virtual switch join events. Almost every OpenFlow

message type must undergo this virtual-physical translation

in both directions, including flow modifications, packet ins,

packet outs, and stats messages. In many ways the slicing

layer resembles FlowVisor [14] which also sits between the

switch and controller layers.

Ripcord’s slicing layer has been used to build k=4, 80-port

Fat Trees from a range of hardware configurations, including

two 48-port switches, one 48-port switch and two 24-port

switches, and even from eight 4-port switches combined

with a 48-port switch, for the testbed described in Section 5.

5. EVALUATION
We evaluate Ripcord against its intended purpose, to

evaluate and compare different approaches in a consistent

way. With this goal in mind, we demonstrate three routing

engines (All Pairs Shortest Path [APSP], PortLand, VL2)

and an application, Middlebox Traversal. We evaluate each

one on the Mininet software emulator, and then deploy it

on a hardware testbed. We evaluate relative differences

between implementations, looking at how flow setup delays

and switch state requirements vary.

5.1 Software testbed
The software testbed is an instance of Mininet running

inside a Debian Lenny virtual machine, allocated one CPU

core and 256MB of memory. Mininet spawns kernel-mode

software OpenFlow reference switches, running version

0.8.9r2. The controller is NOX 0.6, with Ripcord core

components and applications on top. NOX runs on a Debian

VM on an Ubuntu 8.04 machine with 4GB of RAM and an

Intel Q6600 quad-core 2.4 GHZ CPU.
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5.2 Hardware testbed
The hardware testbed implements a k=4 three-layer Fat

Tree running at 1Gb/s. Aggregation and core switches

are implemented by slicing a 48-port 1GE switch (Quanta

LB4G) running OpenFlow. Eight 4-port NetFPGAs act as

edge switches. The OpenFlow implementation on the NetF-

PGAs can rewrite source and destination MAC addresses at

line-rate (required for PortLand) and can append, modify

and remove VLAN tags to distinguish multiple simultaneous

routing engines.

5.3 Experiments on Software Testbed
Our first topology is the k=4 Fat Tree in the left-hand side

of Figure 4. The graph on the right hand side show a CDF

of the ping times from the left-most host in our topology

to all other hosts, sending one ping at a time. The graph

contains curves from all four routing engines: APSP, VL2,

MBT (Middle Box Traversal using VL2), and PortLand. We

further break up VL2, MBT, and PortLand into two separate

configurations. In the first configuration (Hot) permanent

flow entries are pre-installed into switches, resulting in no

trips to the controller. In the second configuration (Cold)

the ARP caches are filled, but no flow entries are pre-

installed into the switches. When a packet arrives at an

edge switch and there is no matching flow, it heads for the

controller, where its trip through the routing engine pipeline

may generate flow entries for multiple switches. The APSP

routing engine only supports Hot operation. It does no

reactive lookups and simply pushes out all possible paths

directly to the switches.

APSP experiences slightly higher delay compared to Port-

Land (Hot) and VL2 (Hot), due to the higher number of

wildcard flow entries in the software switch, which are

scanned linearly to determine a match. PortLand (Hot) and

VL2 (Hot) both show similar curves, and since they leverage

topology information to reduce flow state, switch traversal

is faster. MBT (Hot) is roughly one and a half times worse

than VL2 (Hot) because it must traverse a middle box in

both directions, and experiences delays from our repeater

agent running on the middle box. VL2 (Cold), MBT (Cold),

and PortLand (Cold), as expected, trail by over two orders

of magnitude, because both the ping request and response

must pass up to the controller and back. Note that these

numbers are from an unoptimized Python implementation,

running on a single thread, with a worst case traffic pattern.

The specific ping time of 10 ms is unimportant; our goal here

is functional correctness. For example, we can see from the

graph that our PortLand implementation is slower than the

VL2 implementation in the Cold setting, possibly because of

its unoptimized memory accesses (PMAC-AMAC mapping

table) and the latency to install more entries at core switches

and aggregation switches.

Our second topology is a Clos network shown on the

left-hand side of Figure 5. The graph shows a CDF of

ping times from the left-most host in the topology. This

is the topology used in the VL2 paper’s evaluation, except

instead of a mix of 10 Gb/s and 1 Gb/s links, we have

one link speed of whatever the CPU will support. The

general trends are the same; flow setups are two orders

of magnitude more expensive than forwarding. Middlebox

traversal has an unexpected knee. Our hunch is that the

additional flow entries required by multiple hops exceeds the

CPU cache, which given linear lookups, would cause poor

cache locality. These graphs are useful for comparing the

different routing engines, but clearly CPU overheads from

running in software result in low performance fidelity.

(Note to reviewer: APSP is not present; it will be added

in the final version of the paper.)

5.4 Experiment on Hardware Testbed
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Figure 6: CDF of 1 to many host ping delays on a Quanta

48x1GE switch + NetFPGA topology

The hardware testbed described in Section 5.2 implements

a k=4 Fat Tree, with twelve core and aggregation switches

and eight NetFPGAs for edge switches. Individual vir-

tual switches are connected together via physical loopback

cables, and all packets are processed in hardware at line-

rate. Both switch types use the OpenFlow 0.8.9 reference

distribution.

Figure 6 confirms our expectation of lower variance in

hardware than in software — overall we can expect greater

performance fidelity. PortLand (Hot) and Proactive show

identical delay curves, with minimal variation. (PortLand

(Cold) exposes a limitation of our edge switch implementa-

tion, and needs to be corrected).

Next, we attempt to gain insight into tradeoffs between

state management and flow setup delay.

5.5 Flow Table Size
To test our implementation and to illustrate the conse-

quences of choosing different flow entry timeout intervals,

we preformed the following two tests. First, we run our VL2

Ripcord application on the Clos topology on the software

testbed, with permanent flow entries, and perform an all-

to-all ping. After the test, we query all the switches and

record the number of flows entries in each switch. Table 8

presents the data. The choice of a CRC-based hash function
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to pick a path, combined with a symmetric test and topology,

yields evenly distributed flow entries at each level. The ToR

switch has many entries because it keeps per flow state. As

discussed in section 6, one way to solve this problem is

to move the per-flow packet manipulation functionality to

the hosts. Indeed, [5] performs the IP-in-IP encapsulation

at the host. In the context of OpenFlow, this solution can

be best realized by running an Open vSwitch [13] at the

hosts. Ripcord would control it just like any other OpenFlow

switch.

The second experiment is the same as the first one, except

that the idle flow timeout interval is set to 3 seconds. Every

10 ms, we poll the switches and record the number of flow

entries. Table 9 shows the average, maximum, and 95th

percentile of the number of flow entries in each switch.

As the table shows, because only a few entries are actively

used at any given time, expiring the idle ones dramatically

reduces the table size.

Switch Type # Instances # Entries (per instance)
Core 2 4

Aggregation 4 10

ToR 4 2780

Table 8: The number of flow entries installed at each switch

by VL2 implementation with no flow idle timeout.

Switch ID Type Avg # Entries Max 95th percentile
0 Core 3.88 4 4

1 Core 3.86 4 4

2 Aggr 7.61 10 8

3 Aggr 7.50 10 9

4 Aggr 7.73 10 9

5 Aggr 7.75 10 9

6 ToR 142.78 336 74

7 ToR 140.00 292 190

8 ToR 141.40 294 64

9 ToR 143.69 325 154

Table 9: The number of flow entries installed at each switch

by VL2 implementation with flow idle timeout of 3 sec.

5.6 Running Simultaneous Ripcord Applica-
tions

To test Ripcord’s ability to run multiple management ap-

plications simultaneously, we run several experiments with

both VL2 and Portland controlling a subset of traffic. We

randomly divided the hosts into two groups and configured

the hostmanager to classify the traffic within the first group

as belonging to VL2 and the traffic within the second group

as belonging to Portland. In each experiment, we run pings

between hosts in each group and repeated the experiments

on both Clos and FatTree topologies.

Figure 7 illustrates a simplified scenario and shows the

informaton flow. Hosts H1 and H3 belong to VL2 and

H1 H2 H3 H4

Authenticator
-Demultiplexer

App Engine

VL2

PortLand

ToR

Aggr

Core

Routing Engine

PKT_IN

FLOW_IN
FLOW_IN

Flow
Installer

Flow Table

DST_IP

DST_MAC

FLOW_OUT

FLOW_MOD

OutPort1

OutPort2

Match Action

Figure 7: Diagram illustrating simultaneous running of

multiple Ripcord Management Applications

hosts H2 and H4 belong to Portland. H1 is sending pack-

ets to H3 (path is shown in bold), and H4 is sending

packets to H2 (path is shown with a dashed line). When

the first packets from these flows hit the first hop ToR

switches, the switches do not have any matching entry and

hence they forward the packets to the controller. There

Authenticator-Demultiplexer classifies the traffic and deliv-

ers the FLOW IN event to the appropriate application, which

eventually installs the necessary entries in all switches on the

path.

As the figure shows, some switches can be common to

both paths. These switches will contain flow entries for

both applications. Hence it is critical to make sure that

applications do not install conflicting entries. In general,

this separation can be achieved by tagging traffic belonging

to different applications with distinct VLAN IDs. In our

case, because of the specifics of Portland’s and VL2’s imple-

mentations, their flow entries could not possibly collide and

we did not implement VLAN tagging because our hardware

testbed did not support this optional functionality.

6. SCALABILITY
A primary goal of Ripcord is to provide a research plat-

form for data center network architecture experimentation.

To this end, a fundamental requirement for the platform is

that it not hinder experiments with reasonable network sizes

or limit the experimentation to artificially small data center

networks, which would have little value for the community.

After all, many of the challenges in data center networking

stem directly from their scaling requirements.

We consider two of the primary scalability concerns with

dynamic state in the network and introducing centralization

into the architecture: a) the number of concurrent, active

flows may exceed the capacity of the switches, and b) a

single controller may become overwhelmed by the number

of flow setup requests. We consider each of these cases in

turn.

While it is our experience that long-lived, any-to-any

communication in a data center is rare, there still exists the

potential for exhausting switch sate in the network. We

first point out that for most approaches, this problem is
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limited to the ToR switches as aggregation and core layers

can often handle flows in aggregate. Secondly, if per-

transport flow policy is not required, flows can be set up on

a per-source/destination pair basis which is limited by the

number of servers attached to the switch. Today chipsets

are available which can support tens of thousands of flows,

which is suitable for moderate to large size workloads.

Another approach described in [13] proposes pushing

network switching state into the hypervisor layer on end

hosts to overcome the hardware limitations of ToR switches.

With such a software-based switch, the issue of exhaustion

at first-hop switch can also be alleviated.

Flow setups can become a scalability bottleneck of the

platform in terms of flow setup latencies and throughput.

We’ll discuss the scalability of setup latency first. While

many of the data center applications like MapReduce toler-

ate delays on the order of tens of milliseconds, applications

that have strict latency requirements may not tolerate any

extra delay incurred by setting up flow entries. For such

demanding applications, assuming a large enough flow table

at the ToR switch either in hardware or software, Ripcord

can pre-install flow entries towards all possible network des-

tinations into the switch. In this proactive mode, therefore,

the network virtually behaves as if MPLS-tunneled, and

applications are not exposed to additional latency for flow

setup. If the luxury of large flow tables is not available,

additional decision hints such as application priorities or

communication pair likelihood can be used to select pre-

loaded flows. In our current prototype, such information

could be stored in the configuration database module and/or

topology database module.

Scaling flow setup throughput beyond the limits of a

single controller requires that the platform support multi-

ple controller instances. However, before diving into the

details, it is worthwhile to explicitly differentiate between

the scalability requirements research and production quality

platforms for data center networks.

The goal of Ripcord, at least in its current incarnation,

is not to provide a researcher with a production quality

implementation. The implementation lacks in many aspects,

such as in efficiency, robustness, and importantly Ripcord is

built around a simple, centralized, single-host state sharing

mechanism. If subjected to the extreme scalability and avail-

ability requirements of data center networks in production,

this mechanism is clearly insufficient.

In research experiments the lack of extreme scalability

and availability properties is a non-issue as long as the

programming abstractions offered for the application devel-

opers are similar to the ones, which would be provided in

systems designed to scale for production use. To this end, we

briefly overview the scalability approaches of both Portland

and VL2:

• Portland centralizes all state sharing into a fabric

manager component, which manages the switch mod-

ules over OpenFlow. As such, the fabric manager

corresponds directly with a single Ripcord controller

instance.

• VL2 assumes no single, centralized controller instance,

but uses a distributed directory system to share state

among multiple controllers (agents). The directory

system is essentially a strongly-consistent, reliable and

centralized store, which has an eventually consistent

caching layer for reads on top.

The descriptions above suggest that the design of Ripcord

is well aligned with the scalability approaches of these

individual proposals. In particular, Ripcord can provide

the platform for centralized single-controller designs like

PortLand, while for VL2 like designs, which rely on a

distributed state sharing mechanism, Ripcord can provide

a single-host configuration database with the identical se-

mantics. This is clearly not scalable (nor highly-available),

but the programming abstractions within the controllers

connected to the database will be the same as if a distributed

state sharing mechanism were used. Eventually, as Ripcord

matures, it could also replace this centralized, single-host

configuration database with a distributed database.

It is still an open question to what extent the platform

should scale to provide value to different communities.

The research community, which principally targets devising,

rapidly developing, and evaluating new ideas, could be

an immediate beneficiary, even with networks on smaller

scales. For those networks, even our current Ripcord proto-

type can be an ideal vehicle since it is capable of emulating

a 100-node data center on a modern laptop computer and

it supports seamless porting from software emulation to real

hardware testbeds. For a designer of a production data center

seeking radically new approaches to improve networking

performance, or trying to introduce competitive features,

Ripcord may also prove valuable, as long as the size of the

testbed is not on the order of the production network.

7. RELATED WORK
Ripcord is built on top of programmable switches and

a logically centralized control platform. In our prototype

we use OpenFlow [11] switches and NOX [8], an open-

source OpenFlow controller. While NOX was designed

to be a general controller platform applicable to many

environments, Ripcord was designed around needs specific

to the datacenter. This includes providing infrastructure for

managing structured topology, location independence, and

service quality as well as exposing higher-level abstractions,

such as tenants.

While we chose NOX in large part due to our familiarity

with it, Ripcord could also have been implemented within

other centralized network control platforms such as Tesser-

act [6] or Maestro [3]. Like NOX, both of these projects

provide centralized development platforms on top of which

network control logics can be implemented.
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The use of OpenFlow was similarly a matter of familiarity

and convenience. However, other than the table and port

abstractions, no low-level details of OpenFlow are exposed

through Ripcord. Therefore, the Ripcord design should be

compatible with other programmable datapath technologies

that maintain table-entry level control of the network.

Having described related technologies for programmable

switches and controllers we now discuss Ripcord in the

context of recent data center networking proposals (e.g.,

VL2 [5], Monsoon [7], BCube [9], PLayer [10], and Port-

Land [12]). We note that each of these networking proposals

presents a solution based on specific requirements, some

of which overlap across solutions, but may be prioritized

differently in each solution. As a consequence specific

architectural choices are made that may make it difficult

to accommodate new requirements, changes to data center

environments or modifications to the solution that attempt to

tailor/tweak it for another data center environment.

Ripcord is not in direct competition with any of these

networking proposals, rather it provides a platform that

allows network administrators to experiment with one or

more of data center networking proposals (side-by-side if

necessary), make modifications and evaluate the proposal

in their own data center environments. Further, whereas

Ripcord does not include or propose any novel distributed

algorithms for managing data center networks, we posit that

it provides a suitable platform for experimentation in this

space based on its modular design.

Ripcord is also similar in spirit to the broad testbased

work which allows multple experiments to share the same

infrastructure. Notable recent proposals include VINI [2],

and FlowVisor [14]. Ripcord differs from these and similar

proposals in that our goal is to construct a modular platform

at the control level which provides primitives useful in

the data center context. To this end, we have designed

multiple components (such as the topology and monitoring

interfaces) which aid (and limit!) the applications suitable

for running on Ripcord.
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APPENDIX
NOX and OpenFlow OpenFlow is a vendor-agnostic interface to
control network switches and routers. In particular, it provides an
abstraction of the flow-tables already present in most devices - they
were originally placed there to hold firewall rules. OpenFlow allows
rules to be placed in a table, consisting of a ¡header pattern, action¿
pair. If an arriving packet matches the header pattern, the associated
action is performed. Actions are generally simple, such as forward
to a port or set of ports, drop, or send to the controller. NOX is a
network-wide operating system that controls a collection of switches
and routers using the OpenFlow protocol. NOX provides a global
view of the topology, and presents an API to hosted applications to
both view and control the network state. A hosted application might
reactively respond to new flows, choose whether to allow them and
then install rules to determine their path. Or it could proactively add
rules to define how new flows will be routed.
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