
What, Where, and When: Software Fault Localization
for SDN

Robert Colin Scott
Andreas Wundsam
Kyriakos Zarifis
Scott Shenker

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-178
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-178.html

July 13, 2012



Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



What, Where, and When:

Software Fault Localization for SDN

Colin Scott
UC Berkeley

Andreas Wundsam
ICSI

Kyriakos Zarifis
ICSI

Scott Shenker
ICSI & UC Berkeley

Abstract
In this paper we leverage the structure of the SDN soft-
ware stack to automate the process of troubleshooting net-
works. We present two techniques for programmatically
localizing the root cause of network problems: cross-
layer correspondence checking infers what problems ex-
ist in the network, and where in the control software the
problem first developed; and simulation-based causal in-
ference infers when the triggering event(s) occurred. We
evaluated our tools on three popular SDN platforms—
Frenetic, Floodlight and POX—and found or reproduced
three bugs: isolation breaches and faulty failover logic
between replicated controllers.

1 Introduction
Given their critical role in enterprises, one might expect

that networks would come with a well-developed suite

of troubleshooting tools. However, the unfortunate truth

is that traceroute, developed in 1987 [15], remains

the network administrator’s most sophisticated diagnostic

mechanism. This reflects the lack of structure in network

control planes, which are an ad hoc mixture of distributed

protocols and manual configuration that directly manip-

ulate forwarding tables. It is hard to tell what is broken

when desired behavior is only implicitly expressed in the

routing entries themselves, and that is the case with to-

day’s networks.

In this respect, the emergence of Software-Defined Net-

works (SDN) provides both an opportunity and a chal-

lenge. Moving control logic out of hardware and into

software enables enables concise policy specifications and

significantly more sophisticated testing and troubleshoot-

ing tools. Moreover, since SDN is still in its infancy (com-

pared to traditional networking approaches), we as a com-

munity have an opportunity to make diagnostic tools a

more integral part of the overall design process. Although

SDN’s goal is to simplify the management of networks,

the challenge is that the SDN software stack itself is a

complex distributed system, operating in asynchronous,

heterogeneous, and failure-prone environments. In this

paper we present our approach to troubleshooting bugs in

SDN control software, a tool called W3.

W3 simplifies the troubleshooting process by program-

matically localizing the root cause of network problems

along three dimensions: what network problems exist at

a given point in time, where in the control software a

problem first developed, and when the triggering event oc-

curred. To accomplish this W3 employs two techniques:

Correspondence Checking. We observe that the struc-

ture of the SDN software stack (as we discuss in the next

section) enables a straightforward algorithm for checking

that control applications’ policies are implemented cor-

rectly in the physical network. Our algorithm enumerates

all policy-violations (i.e., any instance where the high-

level policies are not properly implemented by the SDN

control software) present in the network at a given point

in time, providing a crisp determination of the range of

inputs and the system component(s) responsible for the

fault.

Simulation-based causal inference. W3 can replay the

execution of the system against a stream of network events

(e.g., link failures). This allows us to (i) distinguish be-

tween policy-violations that are harmless and quickly heal

and those that are persistent, and (ii) identify the minimal

set of events that triggered the policy-violation.

In combination, correspondence checking and

simulation-based causal inference programmatically

localize software-faults in the SDN software stack. With

W3, operators and developers are free to focus their

efforts on debugging the code itself, without needing to

diagnose the symptoms in the first place.

It is important to place this work in context and scope

the problem we are attacking. First, W3 is a troubleshoot-

ing tool, not a debugger; by this we mean that W3 helps

identify and localize network problems (what, where, and

when?), but it does not help identify exactly which line

of code causes the error (why?). Second, W3 is focused

on the system software of the SDN stack (described in



the next section). While progress has been made in trou-

bleshooting control applications that run on top of the

SDN platform [6] and in troubleshooting the forwarding

tables in the physical switches [20, 16], we are not aware

of previous troubleshooting work that focuses on the SDN

platform itself; to the best of our knowledge, painstaking

analysis of detailed logs is the current state-of-the-art in

SDN platform troubleshooting.

In evaluating W3 on three popular SDN platforms—

Frenetic, Floodlight and POX—we found or reproduced

several bugs: isolation breaches and faulty failover logic

between distributed controllers. We also demonstrated

the feasibility of deploying W3 on production networks,

finding that our tools can enumerate all policy-violations

in simulated networks exceeding 25,000 hosts in under 5

seconds.

The rest of this paper is organized as follows. In §2,

we present an overview of the SDN stack and its failure

modes. In §3 we present correspondence checking and

simulation-based causal inference in detail. We discuss

the design of W3 in §4. In §5 we present three bugs found

by W3, as well as a performance evaluation. Finally, in §6

we discuss related work, and in §7 we conclude.

2 SDN Overview

In this section we first sketch the software architecture of

SDN networks, and then describe some examples of errors

observed in production software-defined networks.

2.1 SDN Architecture

SDN networks are managed by software running on a

set of network-attached servers called “controllers”. This

software is comprised of three distinct layers, as depicted

in Figure 1. The two lower layers are part of the SDN

platform, and the highest layer is the control application.

We now describe the functions of each layer.

Control Application: This component specifies the de-

sired high-level behavior of the network. We term these

behavioral specifications “policies”. It is the job of

the SDN platform to implement these high-level policy-

specifications by configuring the forwarding tables of the

physical switches. The platform does so in two steps, each

implemented in a separate layer.

Physical View: The lowest level of SDN software main-

tains a graph data-structure known as the ‘physical view’,

that has a one-to-one correspondence with the physical

network. When informed from above about a new pol-

icy, synchronization logic in this layer generates a set of

configuration changes and sends them to the correspond-

ing network devices. Conversely, when a state change oc-

curs in the network (links going down, new ports installed,

etc.), this layer notifies the layer above of the change.

Logical View: The middle layer in the SDN software

architecture is sometimes called the virtualization layer

because it translates the (possibly complicated) physi-

cal view into a simpler logical view. A common pat-

tern (and the one we focus on here) is to represent an

entire datacenter network as a single logical switch [7].

This allows operators to specify routing, access control,

and QoS policies by configuring a single forwarding de-

vice. Thus, network policies (emanating from the con-

trol application) can be expressed as a set of flow entries

< header, actions > where possible actions includes

primitives such as forward out a particular port, drop, or

encrypt, and the possible ports include all edge ports (ei-

ther connecting to external networks, or to hosts). Such

a specification would dictate how any packet entering the

network should be handled: i.e. what outgoing edge port

it should be forwarded to, and perhaps what middlebox

services it should be subject to along the way. In addition

to providing a simplified network view, the virtualization

layer can support multi-tenancy by providing each tenant

with their own logical network to specify policies over.

The platform then multiplexes the policies onto the same

physical network.

The logical view greatly simplifies the job of specify-

ing policies. However, SDN does not reduce the over-

all system complexity; it merely moves complexity out of

the control application and into the platform, which must

transform these high-level policy specifications into the

appropriate configuration of each physical device.

The SDN platform not only must handle a complex

task, it must do so in a distributed manner running in a

highly dynamic environment. Because modern datacenter

networks are large (easily reaching thousands of switches

and a hundred thousand hosts), the SDN platform must

be replicated across many servers. Onix [17], for exam-

ple, partitions a graph of the network state across either

an eventually-consistent DHT or a transactional database,

allowing control applications to make their own tradeoffs

in choosing consistency models, degree of fault tolerance,

and other properties. The large scale of these networks

also means that error events such as link failures or soft-

ware crashes are common. Microsoft, for example, re-

ports 36M error events over one year across 8 datacenters,

which implies 8.5 error events per minute per datacen-

ter [13].

Before describing the many ways in which such a

system might fail, we note that there are two different

2



Application
 Layer

Logical 
View

Physical
View

Physical 
Network

...

Control Server N

Process

OpenFlow

Policies

Process

OpenFlow

Policies

Control Server 1

Figure 1: The SDN Software Architecture

kinds of SDN control applications: proactive and reac-

tive. Proactive applications pre-compute forwarding ta-

bles for the entire network, and only push down updates

periodically to react to link failures, changes in traffic mix,

etc.. In contrast, reactive control applications forward all

new flows to control servers. After a control decision

is made, a flow entry is installed in the ingress switch,

and the packet is forwarded along. Production SDN de-

ployments are commonly proactive, primarily due to the

large scale of datacenter networks and the current capa-

bilities of forwarding hardware. We focus on proactive

controllers for the remainder of this paper, although our

troubleshooting mechanisms are also applicable to reac-

tive applications. For the purposes of our paper, the key

difference between the two cases is which events trigger

actions from the SDN platform; for the proactive case, the

SDN platform only responds to events that relate to the

network view (such as link failures, VM migrations, etc.),

while for the reactive case every packet arrival could po-

tentially invoke the SDN platform.

2.2 Platform Failure Modes

W3 is designed to troubleshoot the SDN platform; here

we discuss a few examples of platform failures. As de-

scribed above, modern SDN platforms differ from ‘first-

generation’ controllers such as NOX [14] in two dimen-

sions: they extend vertically by providing a virtualization

layer on top of which control logic resides, and they ex-

tend horizontally by distributing state across multiple con-

trol servers. Platform errors arise from both of these ex-

tensions.

Virtualization. Virtualization errors result from a mis-

match between the logical view and the state of the phys-

ical network. When an entire datacenter network (up to

10,000 switches) is abstracted into a single logical switch,

the mapping between the logical switch and the physical

topology is highly complex; for example, a simple con-

figuration change such as “the path from A to B should

pass through C” must be implemented as routing entries

in a sequence of switches in the physical network. Pol-

icy changes that span multiple shards of the physical view

(shards being statically-defined partitions of the physical

network small enough to be managed by a single control

server) require coordination between controllers.

This coordination becomes even more complicated in a

multi-tenant environment [7] where each tenant specifies

policies on their own logical switch. In such a case, each

controller must deal with multiple tenants, and each ten-

ant’s policies must be coordinated among multiple con-

trollers. Maintaining isolation between tenants is criti-

cal; updates to the physical network must therefore be

performed in a consistent fashion to ensure that isolation

breaches do not occur for any in-flight packets, despite

hardware failures and message delays. The virtualiza-

tion layer also performs resource arbitration, ensuring that

each logical network’s QoS policies are each met by the

capacity of the physical network.

Controller Coordination. Coordination between con-

trollers entails the same classes of error conditions that

arise in general distributed systems: inconsistent reads

and writes, race conditions over message arrivals, and un-

intended consequences of failover logic are common. As

an example, suppose a controller fails, and all the switches

under its purview are adopted by a new control server. If

the new parent neglects to properly query the switches for

their current state, or reads stale control information from

the data store, it may inadvertently install conflicting flow

entries in the network. Errors may also result from non-

disjoint partitioning schemes between controllers, or in-

correct delegation of control for different portions of the

network. High churn in the network topology due to VM

migration and hardware failures exacerbate these issues.

In this paper we focus on bugs in the virtualization and

controller coordination components of the SDN software

stack. We are primarily concerned with corner-case sce-

narios such as correlated hardware failures, which are the

hardest to test a priori. Corner-case scenarios, while rare,

cannot be ignored because of the distributed nature and

large scale of production networks.

3



3 Approach

W3 simplifies the troubleshooting process by program-

matically localizing the root cause of network problems

along three dimensions: what network problems exist at

a particular point in time, where in the control software

a problem first developed, and when the triggering event

occurred. In this section we present the components of

W3 we have designed for performing software fault local-

ization for SDN.

3.1 Correspondence Checking

The SDN platform transforms high-level policies (spec-

ified by the control application) into low-level configu-

ration of they physical infrastructure. The configuration

of the physical network should semantically correspond

with the policy specified by the application layer, in the

sense that the disposition of any packet by the physi-

cal forwarding tables should reflect the policies dictated

for that packet. We refer to any lack of semantic corre-

spondence between the policy and the configuration as a

policy-violation.

We leverage the virtual packet algebra pioneered in

headerspace analysis [16] to verify whether the applica-

tion’s policies are indeed implemented correctly in the

physical network. Our algorithm, correspondence check-

ing, provides a crisp determination of all possible packet

inputs that would not behave according to the applica-

tion’s policies if injected into the network at a particu-

lar point in time. Furthermore, running correspondence

checking between intermediate layers of the SDN stack

(logical view versus physical view), allow us to identify

the component(s) of the system where policy-violations

first manifest themselves.

Formally, the state of the physical network, the physical

view, and the logical view can be represented as a graph,

G = (V,E). Packets are series of bits, h ∈ {0, 1}L = H ,

where L is the maximum number of bits in the header.

Upon receiving a packet, forwarding elements apply

a transformation function, potentially modifying packets

before forwarding them on1:

T : (H × E) → (H × E∅)

We use ‘Ψ‘ to denote the collection of all transfer func-

tions present in the network at a particular point in time.

In this model, network traversal is simply a composition

of transformation functions. For example, if a header h

1Multicast forwarding can expressed by extending the range to sets

of output tuples

enters the network through edge e, its state after k hops

will be:

Ψk(h, e) = Ψ(Ψ(. . .Ψ(h, e) . . . ))

The externally visible behavior of the network can be

expressed as the transitive closure of Ψ:

Ω : (H × Eaccess) → (H × E∅)
Ω(h, e) = Ψ∞(h, e)

Here, Eaccess denotes access links adjacent to end-hosts.

In words, Ω is a mapping between all possible input pack-

ets inserted into the network from an end-hosts, to the final

location of the packet after traversing the network.

In SDN, it should always be the case that:

Ωview ∼ Ωphysical

Informally, this means that any packet injected at an ac-

cess link in Gvirtual should arrive at the same final loca-

tion as the corresponding (encapsulated) packet injected

at the corresponding access link in Gphysical. Note that

hosts are represented in all layers, although there may not

be a one-to-one mapping between the internal vertices of

Gvirtual and Gphysical.

To check correspondence in SDN, we begin by taking a

causally consistent snapshot [8] of the physical network.

The routing tables of forwarding elements can then be

translated into transformation functions. Finally, we feed

a symbolic packet xL to each access link of the network.2

The end result is a propagation graph representing all pos-

sible paths taken by a packet injected at the access link.

The leaves of the propagation graph represent Ω. We

verify correspondence in SDN by generating propagation

graphs for all SDN layers, and comparing the leaves. Any

mismatch in leaves of the propagation graphs represent

policy-violations between control applications and net-

work configuration.

It is important to note that correspondence checking as-

sumes that the application’s policies are correct; it only

checks whether the physical network’s configuration is

isomorphic with the logical view, but does not check for

additional correctness properties such as connectivity and

loop-free routing. If the user wishes to explicitly express

additional invariants, the HSA framework used by our

system can easily check for such properties.

3.2 Simulation-based Causal Inference
Correspondence checking infers all policy-violations in

the network at a particular point in time. However, trou-

2The rules for process wildcard bits xn are defined in the HSA pa-

per [16]

4



bleshooters need two additional pieces of the diagnostic

puzzle.

First, in large distributed systems with communication

delay and hardware failures, transient policy-violations

are unavoidable, even common. That is, every time there

has been a link failure that the SDN platform has not had

time to respond to, or every time there has been a policy

change that has not yet propagated down to the physical

switches, there is a policy-violation. Most of these pol-

icy violations will be temporary, resolving as soon as the

SDN platform has had time to respond. Some of these

policy violations will persist, and that indicates a prob-

lem in the SDN platform. In addition, even some of the

ephemeral violations may be harmful (such as those that

violate isolation conditions), which again indicate a prob-

lem in the SDN platform.

Troubleshooters therefore need a mechanism to differ-

entiate policy-violations that indicate a problem in the

SDN platform from those that merely reflect inherent

delays in responding to events; we will call all policy-

violations that indicate a problem“pernicious” violations.

Second, once pernicious policy-violations are encoun-

tered, troubleshooters need to identify the events (link

failures, controller failures, VM migrations, etc.) that trig-

gered the problem. Moreover, they would like to have

these events narrowed down to a minimal set, to make it

easier to understand the problem.

Simulation-based causal inference is our mechanism

for providing this information. Simulation-based causal

inference models the network in a single simulation

process, thereby providing arbitrary control over hard-

ware failures, message delays and other failure modes.

Simulation-based causal inference distinguishes between

“internal” events that happen throughout the normal

course of the system execution (e.g. message sends and

receives), and “external” events injected into the system

(e.g. link failures). We describe the details of the simula-

tor in the next section.

The key insight behind simulation-based causal infer-

ence is that fault localization is significantly easier with

the ability to selectively filter out external events from the

system execution and observing how the system plays out

in isolation. With complete control over the system exe-

cution, we are able to programmatically (i) track the life-

time of policy-violations to differentiate persistent from

transient errors, and (ii) infer the ‘minimal causal set’ of

events triggering the problem. We describe these compo-

nents below.

Note that we have implemented policy-violation life-

time tracking, but we are still developing the infrastruc-

ture for minimal causal set inference. Nonetheless, we

present our algorithm in this section.

3.2.1 Policy-Violation Lifetime Tracking

The first step in simulation-based causal inference in-

volves detecting policy-violations and prioritizing them

based on their duration. We do so in a relatively straight-

forward fashion. First, we take as input a stream of net-

work events (e.g. link failures). Event sequences are ei-

ther synthetically generated or gathered from a production

trace of failure and topology change events, as enabled,

e.g., by OFRewind [26]. We then replay the execution of

the control plane based on the input trace. Throughout the

system execution, the simulator periodically invokes cor-

respondence checking to enumerate all policy-violations

(defined as any value in Ωphysical not present in Ωvirtual,

or vice versa). When a policy-violation is detected, the

simulator forks off a branch that investigates the future

system behavior in a case where no further failure events

are played out. Finally, we prioritize the policy-violations

based on their duration.

3.2.2 Causal Inference

Having identified persistent policy-violations, simulation-

based causal inference seeks to identify the ‘minimal

causal set’ of events leading up to the problem. By ‘mini-

mal causal set’, we mean the minimally-sized set of events

preceding (defined by the ‘happens-before’ relation [18])

the onset of the policy-violation, such that if any single

event were removed the set, the policy-violation would

not have resulted.

Simulation-based causal inference captures the notion

of causality by attaching vector clocks [21] to all con-

trol messages in the simulated execution of the system.

Our simulator runs as a single sequential thread; there-

fore we convert any partially-ordered input trace of net-

work events into a totally-ordered trace by choosing an

arbitrary sequential ordering that maintains the ‘happens-

before’ relation.

Without regarding casual constraints, a naive algorithm

to infer the minimal causal set would be to iteratively ex-

clude each event from the system execution, and see if

the policy-violation still appears. The problem is that we

cannot simply “erase history”; antecedent events in the

system execution may have depended on the event we are

excluding.

Our algorithm therefore proceeds as as follows. First,

consider the state of the system at exactly the point where

the given policy-violation occurs. The active ‘causal

branches’ in the system at this time are (i) the most recent

event (message send, message receive, or internal state

5



change) occurring on every node in the system, and (ii)

the message send event for any in-flight control packets in

the network. Our goal is to prune these causal branches

until we are left with the minimal causal set at the leaves

of the pruned branches.

After having identified the active ‘casual branches’ in

the system at the onset of the policy-violation, our algo-

rithm essentially performs a traversal of the causal graph’s

(a DAG) topological ordering, pruning leaves that are not

responsible for the policy-violation. In pseudo-code:

causalSet ← []
while ∃ leaf in causalGraph do

remove leaf from causalGraph
violation ← runSimulation(causalGraph)
if not violation then

causalSet + = leaf
end if

end while
Here, runSimulation(DAG) executes the system

from the beginning of the trace, and checks whether the

policy-violation occurs at the end of the execution. The

beginning of the trace starts at some pre-defined point

where the system was known to be in a coalescent state.

Note that each iteration of the loop can be performed

in parallel by cloning the state of the simulator. The se-

rial runtime of the algorithm is therefore linear with the

number of events in the input trace.

We also note that Lamport’s definition of the ‘happens-

before’ relation is conservatively general, and can include

events that are not in fact casually-related. In fact, as

described here, our algorithm can be viewed as a gener-

alization of dependency graph algorithms for hardware

fault isolation [5]. In future work we hope to leverage

domain knowledge of network control plane protocols to

provide a more specific definition of causality (e.g. Open-

Flow control messages with differing transaction ids are

not causally related), allowing us to further prune events

that are not in fact causally related from the DAG.

3.2.3 Additional Use-Cases

Besides lifetime tracking and causal analysis, our simu-

lation infrastructure has a number of other possible use-

cases:

Checking related problems by fuzzing. Input traces can

be fuzzed, i.e., randomly perturbed, to expose the system

to similar error conditions, and confirm that a proposed

solution is not just a point-fix.

Investigating pathological environment conditions.
The simulator allows for investigation of pathological en-

vironment conditions difficult to achieve in a real world

test bed (e.g., correlated failure rates, extremely long de-

lays etc.). This enables investigation of situations that

have a high potential for triggering errors.

Interactive exploration. Troubleshooters can also inter-

actively bisect the trace or modify specific events to fur-

ther pinpoint the cause for a failure. This is useful as soon

as a suspect event sequence has been identified.

Regression/Integration Test Library. In traditional soft-

ware engineering practices, integration tests are an impor-

tant part of the software development cycle: developers

feed end-to-end input through the system, and verify that

the system execution satisfies certain safety and liveness

properties. As additional failure cases are encountered in

production, new cases can be added to a suite of integra-

tion tests to ensure robust operation of the system in future

versions of the system.

Although the practice of accumulating an integration

test suite over time is commonplace in other fields of com-

puter science, the field of networking simply did not have

the requisite software infrastructure to realize this practice

before the emergence of SDN. Simulation-based causal

inference can be viewed as our realization of this devel-

opment practice, applied to network controllers. Our sim-

ulator’s fine-grained control over failure scenarios allows

us to test corner-case network conditions – those that are

most difficult to anticipate in traditional unit tests. As

known failure cases are accrued over time, we envision

simulation-based causal inference being used to validate

new and existing SDN platforms.

3.3 Discussion

Correspondence checking and simulation-based causal in-

ference serve to isolate the platform layer and event se-

quence responsible for a given error. W3 can be com-

plemented by classical debugging techniques (e.g. log

messages and source code debugging) to identify the root

cause of the failure in the code. These techniques are

much more effective when applied a specific event se-

quence. Once a potential fix has been developed, it can be

validated by repeating the problematic execution within

W3. Input fuzzing further helps to validate whether there

are related error events that the patch missed.

4 System Design

W3 is our realization of correspondence checking and

simulation-based causal inference as a useful platform to

troubleshoot SDN controllers. In this section we discuss

our goals in designing simulation-based causal inference,

6



and the challenges we encountered in the process of real-

izing these goals.

4.1 Design Goals: The 7 rules of W3

We seek to build a system that facilitates the process of

troubleshooting. First and foremost, we hope that W3 can

reproduce difficult bugs observed in production networks,

and automate the process of diagnosing their causes. We

also envision W3 being used as a common repository

for difficult, corner-case scenarios known to have caused

problems for other control platforms in the past. Given

these potential use cases, we require the design of the sys-

tem to be driven by the following requirements:

(1) Realistic Network Sizes. We focus on large, produc-

tion SDN deployments. As today’s datacenters may con-

tain up to 100,000 hosts and 10,000 switches, our simula-

tion infrastructure must be able to support large numbers

of switches.

(2) Control plane focus We expect the dynamism in our

system to stem from control plane events. Typical rates

of control plane events must thus be handled, and con-

trol plane events must be modeled precisely. Conversely,

we don’t expect to handle a realistic amount of dataplane

traffic, which is intractable for a software solution, and

largely irrelevant in current networks (because they are

mostly proactive, so control planes are not being driven

by packet arrivals).

(3) Controller choice Our system should run with exist-

ing production controllers with minimum additional in-

strumentation. To allow for wider adoption, we don’t

want to limit ourselves to a particular controller imple-

mentation.

(4) Full determinism We want our simulation environ-

ment to be fully deterministic, such that repeated simu-

lations with identical initialization values yield provably

identical results. This creates a challenge in conjunction

with our goal (3).

(5) Comprehensive Failure Modes. W3 should support

a wide range of failure modes at all components in the

system, including switch and link failures and message

drops, delays and reorderings.

(6) Corner cases investigation The potential state-space

in a large-scale network is intractably large. We focus on

interesting cases, as recorded, e.g., in production, or found

through interactive evaluation. To investigate related error

conditions, we fuzz the input traces.

(7) Interactivity The system should be fast enough for

interactive exploration through an operator.

While none of these requirements were particularly dif-

ficult in isolation, taken in aggregate they posed some dif-

ficulties, as we now recount.

4.2 Components

As depicted in Figure 2, W3 combines several compo-

nents to facilitate the process of troubleshooting SDN

platforms: W3 takes input from production traces, inter-

active manipulation, and synthetic trace generation, and

fuzzes these inputs to ensure that fixes are sufficiently

general; W3’s simulator supports large, sophisticated net-

works; W3 provides a deterministic, code-agnostic ex-

ecution environment for running SDN control software;

and provides efficient algorithms for checking correspon-

dence throughout the system execution. We now provide

an overview of each of these components, and the chal-

lenges we encountered in realizing our goals.

Trace Input And Fuzzing. Since a major goal W3 was to

support a wide range of usage scenarios, we provide sup-

port for three different methods for generating network

trace inputs. The most common method is to insert failure

and topology change logs from production deployments

into the simulator for replay. Input traces may also be

produced synthetically with configurable, random prob-

abilities for network events. Lastly, we support interac-

tive use, where the troubleshooter has complete control

over network events, and is thereby free to explore her in-

tuitions in order to reproduce a failure mode she has in

mind.

Simulator. We have built a simulator for SDN net-

works, where network devices and hosts are modeled as

lightweight python objects. Within a single thread, we

are able to deterministically model the execution of very

large networks. Our simulated model supports a wide

range of failure modes, and provides fine-grained control

over event orderings, component failures, and other as-

pects of the system execution. Our simulator currently

supports switch failures, link failures, arbitrary packet re-

orderings, drops and delays, and a fully general control

plane.

The main challenge we encountered in the design of

the simulator was the maintaining large numbers of TCP

connections to the controller(s). Although the controllers

themselves may be spread over multiple physical servers,

the main simulator must nonetheless handle all TCP con-

nections between switches and controllers within a single

process. We ultimately ended up using epoll to avoid lim-

itations of the UNIX select implementation.

Controller Sandbox. One of our major goals for W3 was

to be able to run any SDN controller on top of the plat-

form, with minimal code changes to the controllers them-

selves. In addition, control servers running on top of the

7



Figure 2: System architecture

simulated network must support deterministic execution

for reproducible results.

Currently we run applications as UNIX processes out-

side of the simulator. We note however that there are a

number of approaches for achieving deterministic replay

for external software. For example: a software determin-

ism layer (e.g. deterministic random number generators)

is extremely lightweight, but requires modifications to the

external software; binary rewriting does not require any

modification to the external software’s source code, but

incurs moderate performance overhead; and VMs fully

support deterministic replay, but only a relatively small

number of VMs can be run on a single machine. We hope

to leverage this previous work in future versions of W3.

Nonetheless, our architecture does not prevent us from

running controllers on different physical servers in case

we encounter memory or CPU bottlenecks.

Correspondence Checking. W3 leverages the hassell li-

brary provided by HSA [16] to implement the correspon-

dence checking algorithm. We optimize the code slightly

to run efficiently on large networks; in particular, we par-

allelize symbolic packet propagation to a large number of

subtasks. Correspondence checking currently requires a

small code change to the controller to fetch the platform’s

view of the network state.

W3 is written in roughly 5,000 lines of python, and is

publicly available. [anon]

5 Evaluation

We applied W3 to three open source SDN control plat-

forms: Frenetic [12], POX [22], and Floodlight [4], and

quickly found (or reproduced) one bug in each. The bug

in Frenetic demonstrates the utility of checking corre-

spondence between high-level policies and low-level con-

figuration (without needing to specify invariants). The

bugs in POX and Floodlight demonstrate the importance

of simulation-based causal inference’s ability to program-

matically prioritize persistent policy-violations and infer

their minimal causal sets.

For all three cases, only a small code modification to

the controller was necessary to retrieve the the platform’s

state for correspondence checking.

5.1 Case studies

Here we the discuss the three bugs we found with W3.

Frenetic. Our first example is Frenetic [12], a control

platform providing functional-reactive language support

for programming OpenFlow networks. Frenetic’s lan-

guage features aim to prevent common OpenFlow pro-

gramming errors such as race conditions and overlapping

flow entries; Frenetic’s runtime system handles these low-

level details on the application’s behalf. Frenetic is a mod-

ern SDN controller with a reactive flow installation pol-

icy; we present it here to demonstrate that W3, although

focused primarily on proactive controllers, can nonethe-

less be used to troubleshoot errors in reactive control plat-

forms.

8



When running learning switch, the simplest Frenetic

application, we encountered persistent policy-violations

immediately. The propagation graph (Ω) for Frenetic’s

runtime representation of the network policy had leaves

that were not present in the physical network. Upon closer

examination, we found that Frenetic’s runtime system was

neglecting to remove old FLOOD routing entries from its

representation of the network policy after the hosts’ route

had been learned, even though the learning switch appli-

cation had asked for these entries to be removed. Note that

this case was not an overtly malicious bug; the FLOOD

entries had indeed been removed from the physical net-

work. The outdated controller state nevertheless went un-

noticed; the bug in Frenetic’s runtime was not specific to

the learning switch, and could have resulted in failure to

install flow entries at a later point in time if the applica-

tion had asked to re-install them. The key takeaway from

this example is that correspondence checking is a power-

ful mechanism for verifying that the controller’s represen-

tation of the network matches the true network state cor-

rectly; without correspondence checking, troubleshooters

would need to compare the routing configurations and

controller’s data structures side-by-side.

POX Our second example is POX [22]. POX is modeled

after Onix [17], a production SDN platform; as in Figure 1

POX provides a physical view, a virtualized view, and a

naive replication mechanism between distributed control

servers.

Because the functionality within POX is relatively

young, we chose to fabricate a bug in POX’s distribution

failover logic, and independently validate that the simu-

lator was able to identify, prioritize, and find the minimal

causal set for the fabricated policy-violation.

In particular, we injected the following bug: a con-

troller replica performs updates to switches by (i) updat-

ing the persistent datastore storing the state of the network

(thereby notifying other replicas of the update), and (ii)

pushing the update to the switch. A control server writes

a new ACL entry update to the datastore, but crashes be-

fore completing step (ii). The switch is adopted by a new

replica, but the new control server assumes that the state in

the persistent datastore is correct. The ACL entry is there-

fore never installed in the switch, and a breach of tenant

isolation occurs.

We interleaved this event sequence with a normal sys-

tem execution trace, and determined whether simulation-

based causal inference could identify the policy-violation.

Throughout the system execution there were a handful of

transient policy-violations overlapping with the isolation

breach. Nonetheless, our simulator was able to identify

the correct policy-violation.

Floodlight: Distributed controller failover race condi-
tion More complex bugs and race conditions occur when

controllers need to be distributed, and fail-over mecha-

nisms between the individual instances are required for

fault tolerance. Consider the following case described

in the Floodlight [10] source code3: For high availabil-

ity, Floodlight can run as a distributed controller, with

switches connecting to several replica controllers at the

same time. In this setup, one controller assumes the role

of master and thereby gains the authority to issue state

changing requests to the switches. The other controllers

are in slave mode and thus do not perform any state-

changes on the switch. Here, a race condition can occur

when a switch connects to the controllers shortly after the

master controller has died, but before a new master has

been selected. In this case, all controllers will be in the

slave role and thus will not take responsibility for clearing

the switch flow table. At some point, one of the controllers

is elevated to to master role and will proceed to manage

the newly connected switch, based on an inconsistent flow

table.

Using W3 we were able to reproduce the problem. The

emulated switches in the simulator support the role ven-

dor extension to connect to several controllers. The inter-

controller synchronization and heartbeat protocol is prox-

ied through the simulator for control over the timing. Af-

ter the master controller dies, a new switch is associated

with the slave controllers, and integrated into the sys-

tem with an unmerged flow-table, resulting in a persistent

policy-violation between the flow-table representation in

the controller and the switch.

5.2 Overhead

In addition to describing bugs, we show that W3 is able to

simulate and check large networks quickly.

Record and Replay Overhead. In contrast to general

record-and-replay mechanisms, the amount of recorded

state needed for high-fidelity replay is tractable. With

proactive flow installation, updates are pushed to rout-

ing tables over a relatively long time scale; periodic FIB

snapshots along with a log of link state events, control

server downtime, and host mobility information suffice

for our purposes. As a point of reference, the Cisco

7000 core switch model supports a maximum of 128K

MAC entries and 128K ACL entries [1]. Assuming 36

bytes per flow entry, (larger than the OpenFlow 13-tuple),

each FIB will contain a maximum of 9216 bytes, uncom-

pressed. A datacenter of 100,000 hosts includes roughly

3Note this issue was independently discovered by the developers of

Floodlight.

9



8,000 switchee [3]. Therefore a snapshot of the FIBs of

the entire network takes up roughly 74 MB. The VL2 pa-

per reports 36M network error events over one year over

8 datacenters, which implies 8.5 error events per minute

per datacenter [13]. Suppose we took a snapshot of the

FIBs in the network every second. Then we would need

to store roughly 4GB, uncompressed, per minute, a rela-

tively small growth rate for datacenter logs. This informa-

tion, in addition to a log of host mobility events (e.g. VM

migrations) will suffice for our purposes. Note that this is

a conservative overestimate.

Correspondence Checking Runtime. Computing the

propagation graph for correspondence checking is equiv-

alent to enumerating all possible paths in the network,

which scales with the diameter of the network and the

number of routing entries per switch. The propagation

graph for each host can be computed in parallel however,

so the computation is bottlenecked by the serial runtime

of computing a single host’s propagation graph.

We show the serial runtime of correspondence check-

ing in Figure 3. For this analysis we generated fat tree

topologies between 2 and 48 pods wide, with pre-installed

PORTLAND [23] routing tables in each switch. Each

data point is the minimum of three runs on a single In-

tel Xeon 2.80GHz core. Note that the number of PORT-

LAND routing entries per switch scales with the number

of pods in the fat-tree. We excluded the time to convert

flow tables to HSA transfer functions, since transfer func-

tions can be maintained offline.

As the figure depicts, even for large networks (27,648

hosts) the serial runtime of correspondence checking is

reasonable for interactive use. The number of serial tasks

to be executed is the number of hosts in the network

squared, disregarding ECMP load balancing.

Simulator Scalability. Our design models the entire

network within a single process. We show in Figure 4

that this approach nonetheless scales to large networks.

For this analysis we generated fat tree topologies be-

tween 2 and 48 pods wide, where all switches in the

network connected to a single controller. The controller

sent each switch an OpenFlow FLOW MOD and sub-

sequent BARRIER REQUEST message, and waited

for the corresponding BARRIER REPLY . We then

measured the time to between the first FLOW MOD
sent and the last BARRIER REPLY received. As ex-

pected, the runtime was roughly linear with the number

of switches in the network. The figure also shows that the

processing time for large networks (5 seconds per simula-

tor round) was well within the bounds for interactive use.

We also tested the extreme limits of the simulator’s

scalability, pushing up the number of switches until some-

Figure 3: Serial runtime of correspondence checking on

PORTLAND fat tree networks. Each datapoint consists

of x3/4 hosts and 5x2/4 switches (e.g. 48 pods means

27,468 hosts attached to 2,880 switches)

Figure 4: Time to send and process messages between

controller and simulated switches. Each datapoint con-

sists of x3/4 hosts and 5x2/4 switches (e.g. 48 pods

means 27,468 hosts attached to 2,880 switches)

thing broke. We encountered what appears to be a limita-

tion of the Linux TCP/IP stack: TCP connection attempts

began failing beyond 26,680 sockets. Note that 26,680

switches is an order-of-magnitude larger than the today’s

biggest networks.

5.3 Replay fidelity

On the one hand, since the SDN platform is in software,

we can, in theory, reproduce all software-induced policy

violations (though not problems resulting from flaky hard-

ware implementing code incorrectly). However, this re-

quires setting up the simulator to emulate the appropriate

conditions that led to the policy violation, and that can

be quite difficult. We hope to make progress in this area

10



along two dimensions. First, we hope to help the commu-

nity build up a set of regression tests, so that a wide va-

riety of bug-triggering scenarios are available in a public

repository. This would go a long way towards providing

adequate test coverage.

Second, we hope to gather error logs from real pro-

duction deployments which will help us populate this

repository; this may require providing novel kinds of

anonymization, so that large datacenter operators would

be willing to share their problems (since they want their

SDN code to work) without revealing the details of their

network. This may require a infrastructural counterpart to

minimally-causal events; the smallest number of infras-

tructure components that can reproduce the same bug.

Also, note that our correspondence checking algorithm

can not verify time-dependent policies such as “No link

should be congested more than 1% of the time”, or “No

server should receive more than 500MB/s of external traf-

fic”. In future work we will extend our correspondence

checking algorithm to account for this class of policies.

6 Related Work
.

This work extends a growing literature on troubleshoot-

ing tools for Software-Defined Networks.

The work most closely related to ours is NICE [6].

NICE combines concolic execution and model checking

to automate the process of testing NOX applications. This

enables one to catch bugs before they are deployed.

Our approach and NICE complement each other in sev-

eral ways. First, NICE’s systematic exploration of failure

orderings is potentially of great use for finding corner-

case errors, which we could then add to our regression

suite. NICE may also be applied directly to the code-base

of the SDN platform, but in the case that only a subset of

all possible code-paths in the SDN platform can be model-

checked due to state-space explosion; our mechanisms al-

lows users to troubleshoot errors post-hoc after they are

observed in production, so we can find bugs that might be

missed due to truncating the state-space exploration. In

complement to NICE, correspondence checking helps de-

velopers isolate the specific component of the SDN plat-

form responsible for an error, without needing to specify

invariants.

Focusing on the physical network, Anteater [20] and

HSA [16] are alternative approaches to statically check-

ing invariants in the configuration of switches and routers.

Both take take as input a snapshot of the FIB of each net-

work device. To check invariants, Anteater generates a

set of constraint functions and feeds them through a SAT

solver, while HSA defines an algebra for virtual packets

and their transformation through the network. We lever-

age the HSA work in W3, and our simulator allows us to

detect policy-violations not just in a given set of tables but

what tables are produced by a wide range of scenarios.

Also focusing on the physical network, OFRewind [26]

develops record and replay techniques for the control

plane of OpenFlow networks. Unlike simulation-based

causal inference OFRewind focuses specifically on Open-

Flow interactions, while we focus on more course-grained

replay of failures and topology changes. Running re-

play within a simulator also allows us to manually modify

the execution of the system, rather than playing a static

recording.

Another line of work aims to prevent bugs from be-

ing introduced in the first place. Frenetic [12] presents

a language-based approach to building robust SDN appli-

cations. By providing a specialized programming model,

Frenetic helps developers avoid writing common classes

of bugs, such as ‘composition errors’ where installed flow

entries override each other. Reitblatt et al. [24] developed

a technique for ensuring consistent routing updates, guar-

anteeing that all switches in the network either route a

given packet under the new configuration or under the old

configuration, but not both. These abstractions are valu-

able for preventing common, difficult errors in platform

logic.

Several other network simulators exist for testing SDN

controllers. Mininet is a platform for emulating Open-

Flow switches and hosts within a single VM [19]. The

ns-series of network simulators provides a general frame-

work for testing new protocols, topologies, and traffic

mixes [2]. We found that these existing simulators did

not provide sufficient support for the corner-cases situa-

tions which are the focus of our work, such as failures and

VM migration.

Many of our ideas originate from the literature on trou-

bleshooting general distributed systems. WiDS checker

introduced the notion of recording production executions

to be later replayed and verified in a controlled simula-

tion. Pip [25] defines a DSL and collection of annotation

tools to reason about causal paths throughout the execu-

tion of the distributed system. Finally, end-to-end tracing

frameworks such as X-Trace [11] and Pinpoint [9] provide

a framework for tracing requests throughout a distributed

system in order to infer correctness errors between lay-

ers and across components. Our work solves a more con-

strained problem; we leverage the structure of the SDN

stack to enable a simple notion of platform correctness. In

addition, these systems assume that invariants should hold

at all times; we observe that in an eventually-consistent

11



system such as SDN, transient policy-violations are in-

evitable. We built simulation-based causal inference to

help troubleshooters differentiate ephemeral from persis-

tent errors.

7 Conclusion
SDN is widely heralded as the “future of networking”,

and its purpose is to make it easy to manage networks. It

does so by providing control applications with a simple

programmatic interface through which they can specify

high-level policies about the network’s behavior. While

this does indeed make writing control applications sim-

pler, it requires that the underlying SDN platform trans-

lates these high-level policies into low-level configuration

of the physical switches.

This process of translation is performed by a sophis-

ticated distributed system, comprised of multiple con-

trollers and serving multiple tenants, which must operate

at large scales and in the presence of frequent failures.

Distributed systems are fundamentally difficult to build,

particularly in such a nascent field such as SDN where

we have such little experience, and the resulting errors are

hard to understand from inspecting logs. Thus, it is im-

portant that SDN provide adequate troubleshooting tools

so users can determine whether or not the platform is re-

sponsible for the problems they are seeing, and SDN ven-

dors can find problems in their own platform code.

In this paper we described a system for troubleshooting

called W3. W3 employs two techniques to localize the

root cause of policy-violations.

• Correspondence-checking identifies which compo-

nent of SDN platform is responsible for the policy-

violation.

• Simulation-based causal inference identifies the min-

imal causal set network events that trigger the policy-

violation.

We have applied this system to several available SDN

platforms, and were able to find or reproduce bugs in all

the platforms we investigated.

References
[1] Cisco 7000 series datasheet. http://tinyurl.

com/77jorsq.

[2] The ns-3 network simulator. http://www.
nsnam.org/.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat. A scal-

able, commodity data center network architecture.

SIGCOMM ’08. ACM.

[4] BigSwitch Networks. http://www.
bigswitch.com/.

[5] A. Bouloutas, S. Calo, and A. Finkel. Alarm cor-

relation and fault identification in communication

networks. Communications, IEEE Transactions on,

42(234):523 –533, feb/mar/apr 1994.

[6] M. Canini, D. Venzano, P. Peresini, D. Kostic, and

J. Rexford. A NICE way to test OpenFlow applica-

tions. NSDI ’12.

[7] M. Casado, T. Koponen, R. Ramanathan, and

S. Shenker. Virtualizing the network forwarding

plane. PRESTO ’10.

[8] K. M. Chandy and L. Lamport. Distributed snap-

shots: determining global states of distributed sys-

tems. ACM Trans. Comput. Syst., 1985.

[9] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, O. Fox,

and E. Brewer. Pinpoint: Problem determination in

large, dynamic internet services. Intl. Conf. on De-

pendable Systems and Networks, 2002.

[10] Floodlight Controller. http://floodlight.
openflowhub.org/.

[11] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and

I. Stoica. X-trace: a pervasive network tracing

framework. NSDI’07.

[12] N. Foster, R. Harrison, M. J. Freedman, C. Mon-

santo, J. Rexford, A. Story, and D. Walker. Frenetic:

A network programming language. ICFP ’11.

[13] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,

C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sen-

gupta. VL2: a scalable and flexible data center net-

work. SIGCOMM ’09.

[14] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,

N. McKeown, and S. Shenker. NOX: towards an

operating system for networks. CCR, 2008.

[15] V. Jacobson. Unix traceroute man page, 1987.

[16] P. Kazemian, G. Varghese, and N. McKeown.

Header space analysis: static checking for networks.

NSDI ’12.

12



[17] T. Koponen, M. Casado, N. Gude, J. Stribling,

L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata,

H. Inoue, T. Hama, and S. Shenker. Onix: A dis-

tributed control platform for large-scale production

networks. OSDI ’10.

[18] L. Lamport. Time, clocks, and the ordering of events

in a distributed system. Commun. ACM, 21(7):558–

565, July 1978.

[19] B. Lantz, B. Heller, and N. McKeown. A network

in a laptop: rapid prototyping for software-defined

networks. Hotnets ’10.

[20] H. Mai et al. Debugging the data plane with

Anteater. SIGCOMM ’11.

[21] F. Mattern. Virtual time and global states of dis-

tributed systems. In Parallel and Distributed Algo-
rithms, pages 215–226. North-Holland, 1989.

[22] J. Mccauley. POX: A python-based openflow con-

troller.

[23] R. Niranjan Mysore, A. Pamboris, N. Farrington,

N. Huang, P. Miri, S. Radhakrishnan, V. Subra-

manya, and A. Vahdat. PORRTLAND: a scal-

able fault-tolerant layer 2 data center network fabric.

SIGCOMM ’09.

[24] M. Reitblatt, N. Foster, J. Rexford, and D. Walker.

Consistent updates for software-defined networks:

Change you can believe in! HotNets ’11.

[25] P. Reynolds, C. Killian, J. L. Winer, J. C. Mogul,

M. A. Shah, and A. Vadhat. Pip: Detecting the un-

expected in distributed systems. NSDI ’06.

[26] A. Wundsam, D. Levin, S. Seetharaman, and

A. Feldmann. OFRewind: Enabling record and re-

play troubleshooting for networks. ATC ’11.

13


