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Abstract

The essential elements of any navigation system are a shortest-path algorithm and a
map dataset. When seen in the light of the basic requirement of such a system, to
provide high quality navigation solutions fast, algorithms have to be efficient and
road networks have to be up-to-date. The contribution of this work is two-fold. First,
the HBA* algorithm, an efficient shortest-path algorithm, is presented that mimics
human driving behavior by exploiting road network hierarchies. HBA* is a fast
algorithm that produces high quality routes. Second, in a thorough performance
study dynamic, travel times are introduced to replace the unreliable static speed
types currently used in connection with road network datasets. Dynamic travel times
are derived from large quantities of historic vehicle tracking data. The integrated
result, fast algorithms using accurate data, is empirically evaluated using actual road
network datasets and related dynamic travel time data.

Work done when at RA Computer Technology Institute, Greece.



1. INTRODUCTION

“Time is money” becomes a very concrete and meaningful state-
ment when considering it in the context of routing and navigation
applications. A quote from the field of transportation logistics sug-
gests that saving 5% in transportation time translates to 25% added
profit!" This fact should be a more than adequate motivation for the
development of methods that efficiently support the computation of
dependable routing solutions.

The essential components of a navigation system are (i) a shortest-
path algorithm and (ii) a map dataset. The delivered solution can
be the shortest in terms of either distance or time. We concentrate
on the latter. In order to deliver high quality routing solutions to
users fast, algorithms need to be efficient and road networks up-to-
date. We introduce the HBA* algorithm, a bidirectional version of
the A* algorithm that utilizes road network hierarchies to achieve
faster computation times. The HBA* uses hierarchical jumping,
a technique that favors the use of the higher category roads to re-
duce the overall search space and to significantly improve the run-
ning time of shortest-path computation. We show that provided the
road network fulfills certain properties (connectedness), the HBA*
is guaranteed to find a solution. The question that needs to be an-
swered is how good the result will be when compared to an optimal
shortest-path solution.

Our expectations are that HBA* will provide superior perfor-
mance in terms of computation time when compared to a classi-
cal benchmark such as the A* algorithm [12]. Our comprehensive
performance study will show that while the running time can be
dramatically improved, one needs to carefully tune the HBA* to
achieve comparable shortest path solutions. The performance of
the HBA™ is investigated using road networks and respective travel
time datasets. An important issue for routing tasks is the unreliable
travel time database associated with the underlying road network.
Typically, only static weights as derived from road categories and
speed limits are used to calculate the fastest or shortest path for a
given trip. In this work, we use dynamic travel times [17, 18] to as-
sess the performance of our shortest-path algorithm (i) in relation
to existing solutions (HBA* vs. A*) as well as (ii) to assess the ef-
fect of the dynamic travel times on the quality of routing solutions.
Dynamic travel times are derived from vehicle tracking data also
commonly referred to as floating car data (FCD) or probe vehicle
data (PVD). Large collections of such data are used to derive trends
in the travel time behavior for road networks. To compute shortest-
path solutions, dynamic travel times allow us to find more accurate
solutions when compared to static weights as provided by map data
vendors. For this study, large amounts of historical FCD have been
collected over a period of 2 years for the road networks of Athens,
Greece and Vienna, Austria.

In relation to shortest-path computation, we can cite the follow-
ing literature. Bidirectional heuristic search algorithms were intro-
duced early to speed up computation in the general field of artificial
intelligence [19, 22]. Many approaches have been proposed since
then, among them a recent one based on the avoidance of repetitive
searching usually induced by a bidirectional A* algorithm [27].
A comprehensive survey on the use of heuristics in the domain of
transportation applications can be found in [11]. Introducing hier-
archies in data structures as a divide and conquer strategy has been
used for decades in data-intensive applications to speed up comput-
ing, especially in geospatial applications (map storage, map visual-
ization, etc.). In the case of road datasets, it was introduced rather
late (see e.g., [24, 5]). Virtual shortest-path-view was introduced

"The 5% saving directly contributes towards increasing the profit
margin.

in [21]. Hierarchical search has been also applied to the gaming
context [1], by using hierarchical clusters of the game world and
pre-computed paths between them to speed up routing. Closer re-
lated to our work, [15] uses knowledge on the road types to subdi-
vide the road network and optimize shortest-path search. Overall,
the our work is to the best of our knowledge the first to introduce
a parameterizable shortest-path algorithm that combines bidirec-
tional search with exploiting road network hierarchies and provides
a comprehensive theoretical as well as empirical analysis of the al-
gorithm and its properties.

The remainder of the paper is organized as follows. Section 2
discusses hierarchical road networks and introduces the HBA* al-
gorithm. Section 3 describes the data scenario used in the experi-
mentation. Specifically, it showcases dynamic travel times, an im-
portant property of the road network that directly affects shortest-
path computation and the quality of its solutions. Section 4 de-
scribes our experimental evaluation using actual road networks of
and related travel time datasets of Athens, Greece and Vienna, Aus-
tria. Finally, Section 5 draws our conclusions and gives directions
for future work.

2. HIERARCHICAL ROUTING

In the following, we outline the basic principles behind shortest-
path algorithms before discussing the properties of hierarchical road
networks and how they can be exploited to improve algorithmic
performance. The outcome of this discussion will be the HBA*
shortest-path algorithm.

2.1 Algorithmic Solutions

A road network, made of links, is modeled as a directed graph
G = (V,E), whose vertices V represent intersections, and edges E
represent links between intersections. Additionally, a real-valued
weight function w : £ — R is given, mapping edges to weights.
In the routing context, such weights typically correspond to speed
types derived from road categories or based on average speed mea-
surements. However, what is important is that such weights are
static, i.e., once defined they are rarely changed.

Given a path p = (vy,vy,..., ) in G, the weight of the path is
the sum of the weights of its constituent edges w(p) = Zle w(Vi_y, Vi).
The weight 8(u, v) of a shortest path between vertices u and v is de-
fined as:

S, v) = { Toin{w(P) : pis a path from u to v} } a

A shortest path from u to v is any simple path p with w(p) =
o(u,v) [7].

Assume a directed graph with non-negative edge weights w(u, v) >
0 is given. The single source shortest path problem of finding a
shortest path between a source vertex s and a target vertex ¢ can al-
ways be solved by applying a uniform-cost all-pairs shortest paths
algorithm (also known as greedy or Dijkstra’s algorithm [10]). This
incremental algorithm maintains a set S of vertices whose final
shortest path weights from source vertex s have already been deter-
mined. It also maintains a priority queue of all verticesv € V - S,
ordered by the shortest path estimate d(v). Repeatedly, the ver-
tex u € V —§ with the minimum shortest-path estimate is extracted
from the priority queue, added to S, and all edges (u, v) are relaxed.
This means that it is tested whether the shortest path estimate for
v can be improved by considering a path through u. If that is the
case, the shortest-path estimate d(v) is updated (which also affects
the ordering in the priority queue). The algorithm terminates when
the set V — § is empty, i.e., when all edges have been relaxed, or



when a designated target vertex has been extracted.

Although Dijkstra’s algorithm is guaranteed to find the shortest
path from s to any vertex u, it is an uninformed search algorithm
that usually explores too many vertices that have no influence on
shortest paths from s to 7. This behavior can be improved by ex-
ploiting knowledge about the structure of shortest paths from s to
t. In that context, informed search algorithms ("best-first search")
have been proposed, among them pure heuristic-based algorithms
and the A" algorithm [12], which combines Dijkstra’s algorithm
with a heuristic-based algorithm. The A* algorithm differs from
Dijkstra’s algorithm in that for the selection of u € V — S, it uses
the cost d(u) of a shortest path from s to u, in combination with the
estimated cost to the goal, h(u,t). More precisely, the order of the
priority queue storing V — S (the “open list”) is based on

F) = d@) + h(u, 1) 2

The value of the heuristic function h(u, t) has to be heuristically
determined. 4 is called admissible if h(u,t) < h*(u,t) forallu € V,
where h*(u,t) is the cost of a shortest path from u to ¢. In other
words, & is admissible if it never overestimates the real cost of
reaching the target. It has been shown [16, 9] that for admissi-
ble A, the A* algorithm correctly computes the shortest paths. That
means, when the algorithm terminates, d(t) is the correct weight of
a shortest path from s to ¢. For shortest path problems in the Eu-
clidean plane, the straight-line (Euclidean) distance is admissible
and easy to compute, and is therefore often used as the heuristic
function.

Although the A* algorithm is optimal (cf. Section 2.1) in that,
if it uses an admissible heuristic function it finds the shortest path,
a point of criticism is still its efficiency. We introduce in the fol-
lowing the hierarchical, bidirectional A* (HBA*) algorithm to effi-
ciently compute short path solutions. The HBA* is a bidirectional
algorithm exploiting road category metadata to effectively reduce
the size of the road network during the search.

In the following, we first discuss hierarchical road networks, then
introduce the actual HBA* algorithm, and finally show some of its
important properties.

2.2 Hierarchical Road Networks

Roadmap data available from vendors usually provides road cat-
egory information for each road segment/link. Table 1 (cf. [23])
shows a typical example of road categories, including categories
such as “Freeway”, “Major Road”, and “Local Road of Minor Im-
portance”. In this categorization, low numbers are assigned to
higher road categories, i.e., the highest road category is “0: Free-
way”, and the lowest “8: Other Road”. Also shown are the link-
based speed types (static weights), i.e., the average speed that can
be achieved in a road category. This table also gives the size of the
respective road networks in number of links per road category (see
Figure 5 for a visualization of the network).

This road category information gives rise to interpret the network
as a hierarchical road network: Level L; of the road network con-
sists of all road segments of road categories j < i, including all
nodes incident to those segments. Let G = (V, E) be the whole road
network with vertex/node set V and road segment/link/edge set E,
and let L; = (V,,E;). Then V; € V;,; and E; C E;,, for all i, and
V=uV; and E = U;E;.

Connectivity assumption: It is commonly assumed that each level
L; = (V;, E;) in a hierarchical road network is strongly connected.
This means that for every u, v € V; there exists a path in L; from u
to v as well as a path from v to u (the two paths do not have to be
the same). We call a hierarchical road network that fulfills this con-
dition strongly connected. We will use this assumption in Section

Figure 1: A typical route for driving from one neighborhood to
another

2.4 to prove important properties about the proposed HBA* algo-
rithm. To check whether the road networks used in our experiments
(cf. Section 4) fulfill the above assumption, we use the JGraphT li-
brary [14] implementation of an algorithm presented in [7]. The
algorithm is a special application of DFS with a running time of
OV + E).

To best understand the significance of hierarchical road networks,
consider the typical example of how roads of varying importance
would typically be used in a routing task by a human. Figure 1
gives an example of driving from one neighborhood in Athens
(Kallithea) to another (Moschato). The route length is 3.45km.
The route consists of links of varying categories shown in Table 1.
The route starts at level 6 (gray), and continues on levels 5 (red),
3 (blue), 4 (green), 5 (red) and arrives at level 6 (gray). Such a
route represents a typical behavior of a driver searching for a route
between two locations: First, she searches for a major road con-
necting the two areas of interest, and then she finds access roads to
those major roads [2].

Table 1: Tele Atlas road categories, speed types, and size of the

Athens and Vienna road network
Cat. | Description Speed | Athens | Vienna
[km/h] | [links] | [links]

0 Motorway, Freeway, 90 1127 1374
or Other Major Road

1 Major Road Less Important | 70 102 805
than a Motorway

2 Other Major Road 45 4528 4535

3 Secondary Road 35 1977 4494

4 Local Connecting Road 25 13928 8045

5 Local Road of High 20 7190 3262
Importance

6 Local Road 15 18042 16029

7 Local Road of Minor 15 158782 | 35283
Importance

8 Other Road 15 1045 1495
Total 206721 | 75322

The basic question that needs to be addressed is how we can
mimic such route finding behavior in shortest-path search algo-
rithms.

2.3 Hierarchical Networks and Shortest-Path
Algorithms

Exploiting road network hierarchies in a shortest-path algorithm



requires some re-thinking of the general algorithmic strategy. The
A" algorithm computes a shortest path from a source to a target by
expanding nodes and recording the respective path cost. Consid-
ering the example shown in Figure 1, ideally, shortest-path search
should disregard lower category links during the middle portion of
the route search, since they are unlikely to contribute to a better
route solution. Note that in the example of Figure 1, the spatiotem-
poral category sequence of road categories of the links along the
path from the source to the targetis 6 —5 —3 —4 — 5 — 6. The num-
bers in this category sequence are first monotonically decreasing,
and then monotonically increasing. In other words, this sequence
is decreasing-increasing bitonic, or short bitonic.

2.3.1 Hierarchical Jumping

In order to utilize the hierarchical road network, our HBA* al-
gorithm will only consider paths that have a bitonic category se-
quence. The HBA* algorithm will consist of two separate A* algo-
rithms that each compute shortest paths with a monotone category
sequence.

Let’s first assume that for every vertex v € V, we would like
to compute the shortest path from s to v among all paths with
monotone increasing category sequence. The A" algorithm is it-
erative, and stores for every vertex v an implicit representation of
a current shortest path from s to v with weight d(v). We enforce
the monotonicity constraint during the A* algorithm by storing for
each vertex v € V its current category cat(v), which is defined
as the category of the edge of the current shortest path ending in
v. During node expansion for a node u, only those edges (u,v)
are considered for which cat(u,v) < cat(u), where cat(u,v) is the
road category of this edge. The road category for v is then com-
puted as cat(v) « cat(u,v). See Figure 4 for one iteration of this
monotone A* algorithm. This simple modification of the A* algo-
rithm ensures that only monotone sequences are considered. When
cat(u,v) is strictly less than cat(u), this means that the routing algo-
rithm jumped to a higher level in the hierarchical road network, and
starts disregarding lower category links. Once having jumped to a
higher category (i.e., a smaller number), the algorithm now stays at
this level for this specific path that it explores. Note that the values
of the current categories cat(v), cat(v') for different vertices v, v’
can be completely different, even if both vertices are incident to u
via edges (u, V), (u,v"). This is because the current road category
is not a global condition for all vertices in the open list, but a local
condition for each vertex.

The advantage is that since we effectively reduce the overall size
of the road network with each hierarchical jump, fewer nodes need
to be subsequently explored and the performance of the algorithm
in terms of memory consumption and computation speed is dramat-
ically improved. Figure 2 illustrates the number of nodes existing
for a route similar to Figure 1 when performing hierarchical jumps.
During the middle portion of the search, the number of nodes that
have to be evaluated is dramatically reduced. This is further evi-
dent when examining the number of nodes on a per-category basis
of a road network. 70% and 50% of all nodes in the case of Athens
and Vienna, respectively belong to the lowest category (local road
of minor importance)! Thus, by eliminating this portion of the road
network the performance of a shortest-path search will be consid-
erably improved.

2.3.2 Hierarchical Bidirectional A* (HBA*)

We propose a new variant of a bidirectional A* algorithm to com-
pute a shortest path from s to # that has a bitonic category sequence.
This can be done in a quite straight-forward way by running two
monotone A* algorithms in parallel: We simultaneously initiate a

Figure 2: Road network hierarchy sequence

monotone increasing A* algorithm from s to ¢ (the “front search”),
as well as a monotone increasing A* algorithm from 7 to s (the
“back search”). The two solutions will meet at some high level link
in the “middle” of the computed route.

The HBA* algorithm is given in pseudo-code notation in Fig-
ures 3 and 4. Figure 3 initializes the respective data structures
such as the open and the closed lists, path costs, and link cate-
gories. This function initiates the two respective A* searches and
checks whether any search has terminated, upon which it recon-
structs the resulting shortest path. The two respective searches are
coordinated in that after execution of a single node expansion it
is checked whether both algorithms still operate on the same link
level. A search that has reached a higher level is halted until the
other search has caught up.

One iteration of the monotone A* search algorithm is detailed in
Figure 4. Each execution of this function only evaluates one node
from the open list. The essential task of this algorithm is to extract
the node with minimal f(x) from the open list and expand it, i.e.,
check all neighboring links and place the current node on the closed
list. This algorithm terminates once it finds a node from the closed
list of the other search or reaches the target node (line 4). In line 6,
a specific node is expanded by retrieving all neighboring nodes that
can be reached through links that are at least of the category the
current node was reached by. Note that for the back search, links
have to be processed in the reverse direction. To provide a concise
notation, this detail has been omitted in the pseudocode description
of the algorithm.

The function STepCost(x,y) returns the travel time associated
with the link that connects the two nodes x and y, and category(x, y)
is the category of the link (x, y). The heuristic function A(x, y) needs
to return the estimated travel time from node x to y. In our im-
plementation, A(x,y) is defined as the Euclidean distance between
x and y, divided by the average speed of the network. The right
choice of an average speed is critical since a small speed would
overestimate the cost to the goal and thus eliminate valuable candi-
date solutions. Choosing a high speed underestimates the cost and
thus keeps many candidate solutions, however possibly including
too many unlikely routes that may inflate the size of the open list.
For our setting, our choice of an ideal speed was 110km/h, which
is less than the typical speed on highways but well above the speed
encountered in inner-city routes. The function ParH(s, m) extracts
the computed shortest path from s to m using the predecessor ar-
ray P. Proper concatenation of the two extracted paths from the
front and the back searches (line 17 in Figure 3) yields a path with
bitonic category sequence.



HBASTAR(S, 1)
> Initialize front search and back search

1 CLp,CL5 <« 0> Closed lists

2 OLp,OLg < 0 Open lists

3 DIs],D[t] <0

4 OLy .insert(s, D[s] + h(s, 1))

5 OLg.insert(t, D[t] + h(t, s))

6 P[s], P[t] < nNuLL> Predecessor array, implicitly storing
> the shortest paths tree

7 CATls], CAT[t] < oo Current category of nodes

8 catp, caty < oo > Current category of search

> Start two-sided A* search
9 m = nuLL > Node at which searches meet
10 while (front and back search are active)

11 if (caty > caty and front search active)
12 m = ASTAR(s, t, OLp, CLr, CLg, catr)
13 if (catg > catr and back search active)
14 m = AsTtAr(¢, s, OLg, CLg, CLr, catp)

15 © Searches from both sides have terminated
16 if (m # NuLL)

17 return res = PaTH(s, m) o PATH(m, 1)

18 else return NULL > no path found

Figure 3: HBA* - control algorithm

AsTAR(s, t, OL, CL, CL', cat)
1 ifOL+#0

2 x « OL .removeMin() > Node with smallest f-value
3 CL .insert(x)
4 ifx=torxeCL
5 return x
6 for each y € Adj[x] with category(x,y) < CAT[x]
> Link is of current category or better
7 cost < D[x] + StepCost(x, y)
8 if y ¢ OLand y ¢ CL) or (cost < D[y])
> Update y
9 Dly] « cost
10 CAT|y] « category(x,y)
11 Pyl =x
12 cat «— min(cat, CAT[y])
13 if ye OL
14 OL .decreaseKey(y, D[y] + h(y, 1))
15 elseif y e CL
16 CL .remove(y)
17 OL .insert(y, D[y] + h(y, 1))
18 else
19 OL .insert(y, D[y] + h(y, 1))

20 else return NULL

Figure 4: One iteration of the monotone A* - search algorithm

2.4 Algorithm Properties

In this section we show that given an admissible heuristic func-
tion and a strongly-connected hierarchical road network, the HBA*
algorithm (see Figures 3 and 4) always terminates returning a bitonic
path between source s € V and target ¢ € V, whose decreasing and
increasing portions are each shortest.

THEOREM 1. If the HBA* algorithm uses an admissible heuris-
tic function h, then for any s,t € V, the algorithm computes a
decreasing-increasing bitonic path from s to t, whose decreasing
portion is shortest and whose increasing portion is shortest as well.

Proor. The monotone A* algorithm (see Figure 4 for one itera-
tion of it) by construction considers all monotone decreasing paths
in G. The monotone A* algorithm basically equals the A* algo-
rithm, with the only change being the category condition in line
6 and the addition of line 10 to update the current category of a
node (see Figure 4); note that line 12 is only needed for coordi-
nating the front search and back search. From the correctness and
other related properties of the A* algorithm for admissible 4 [16,
9] follows that, at any time during the monotone A* algorithm with
admissible 4, if u is in the closed list then d(u) equals the weight of
a shortest monotone decreasing path from the source to u € V. (If
no such path exists, then the weight is considered to be c0.)

The condition in line 4 of the monotone A* algorithm (see Figure
4) ensures that the HBA* algorithm stops with a found path iff a
vertex m is found that is contained in both closed lists for the front
and the back monotone A* searches. Hence, HBA* computes a
path from s via m to ¢, such that the path from s to m is the shortest
monotonically decreasing path from s to m, and the path from m to
t is the shortest monotonically increasing path frommto¢t. [

Note that in theory it is possible to construct hierarchical road
networks for which no bitonic path exists between two given ver-
tices s and t. However, in Theorem 2 below we show that for hierar-
chical road networks that fulfill a reasonable connectivity assump-
tion, which we introduced in Section 2.2, a bitonic path always
exists for any choice of s and ¢, and hence HBA* always terminates
finding a path.

THEOREM 2. If each level in a given hierarchical road network
G = (V,E) is strongly connected, then for any choice of s,t € V
there exists a decreasing-increasing bitonic path from s to t in G.

Proor. Let Ly, ..., L; be the levels of the hierarchical road net-
work, with k > 0, and L; = (V;, E;). We show the claim by induc-
tion on k. Since Ly is strongly connected, the category sequence
of any path in Ly between any two vertices s, € V; is constant
0,0,...,0, and hence trivially bitonic. Now assume the claim is
true for k (inductive hypothesis), then it remains to show that the
claim is true for k + 1. Let s, € V)1 be any two vertices. Remem-
ber that by definition, V; C V.. If both s,¢ € V,, then the claim
follows by the inductive hypothesis. Now assume s ¢ V, or t ¢ V.
(or both), and let 7 : s = vo,Vvy,...,v_1, v, = t be a path in V,
from s to t. If the category sequence for r is constant with category
k + 1, then it is also bitonic. Now assume the category sequence is
not constant. Let (v;,v;,1) be the first edge in 7 with category less
than k + 1, and let (v}, v;;) be the last edge in & with category less
than k + 1. This implies that i <= j, and vy, ...,v; and vj,...,v;, if
non-empty, have constant category sequences with category k + 1.
(Note that one of these sequences may be empty, but not both.) By
construction, v;,v; € Vj, and by the inductive hypothesis there ex-
ists a path 7’ in L; from v; to v; with bitonic category sequence,
starting and ending with at most k. Therefore the concatenation
§$=Vvg,...,viorn’ ov;,...,v; =t has a bitonic category sequence as
well. [



Although it is not clear at first whether the front and the back
search in HBA* algorithm have to meet, Theorem 2 shows that pro-
vided the hierarchical road network is strongly connected, HBA*
is guaranteed to terminate with a found path. This connectivity
assumption holds typically for any commercially available map
dataset, i.e., connectivity at various levels of the road network hier-
archy is a property guaranteed by the map data vendor. However,
for all road network datasets used in our experiments it is certain
that they fulfill this property (cf. Section 2.2).

Theorem 1 shows that if an admissible heuristic function is used,
the algorithm is guaranteed to find a bitonic path that is optimal in
the sense that the decreasing portion and the increasing portion are
each optimal. Note that for road networks with travel time edge
weights it is not obvious how to define a good heuristic function
that is provably admissible (except for the trivial i(u, 1) = 0). The
conventionally used Euclidean distance does not yield a meaning-
ful heuristic function in this case, since it does not encode time
information. In our implementation we do however integrate the
Euclidean distance, and compute h(u, t) as the Euclidean distance
divided by speed, see Section 2.3.2. There is however no provably
correct value for the speed, as it could theoretically be arbitrarily
large, and hence distance/speed arbitrarily small. For our applied
setting, our choice of an ideal speed was 110km/h, which is less
than the typical speed on highways but well above the speed en-
countered in inner-city routes.

Our HBA* algorithm, given an admissible heuristic function,
computes a bitonic path with shortest decreasing and increasing
portion but it does not necessarily compute the overall shortest
bitonic path as it does not optimize over all possible split vertices.
By running both the front search and the back search until all ver-
tices have been discovered, an optimal split vertex and hence a
shortest bitonic path can be computed. This, however, would not
yield the desired speedup in runtime. Hence, we decided to opt
for finding one bitonic path with shortest decreasing and increasing
portion. The condition in lines 11 and 13 of the HBA* (see Figure
3), attempt to keep a balance between the decreasing and increasing
portion of the computed path.

3. DATA

Road networks and related travel time data are an essential as-
pect for any meaningful route computation. The following sections
discuss the specific datasets used to assess the performance of the
HBA* algorithm.

3.1 Road Networks

In terms of road network, our experiments focus on the greater
metropolitan areas of Athens, Greece and Vienna, Austria. The
portion of the road network that was used has an extent of roughly
25 x 25km in each case. The road networks are visualized in Fig-
ures 5(a) and 5(b). Major roads are indicated by darker colors.

Table 1 lists the road categories and respective size in terms of
number of edges (links) for each road network. Table 3 presents an
aggregate view showing total size vs. number of links belonging
to major road categories. This distinction is important as we will
see in the following that dynamic travel times will only be avail-
able for major road categories. An interesting observation is that
although the Athens road network is three times the size of Vienna,
the number of roads belonging to major road categories is almost
the same!

3.2 Travel Times

To improve the quality of shortest-path solutions, one needs to
carefully select the underlying weight database of the road network

(a) Athens network (b) Vienna network

(c) Athens queries (d) Vienna queries

Figure 5: Vienna and Athens road networks

graph DB(w(u,v)) (cf. Section 2.1). Typically, weights in map
data are static and correspond to link-based speed types, which are
derived from the respective road category and its associated speed
limit, or a speed type determined by costly road-side surveys.

This section introduces a dynamic weight database in which the
travel time associated with a link changes based on a temporal argu-
ment (speed profile). The idea is to derive dynamic weights from
historical traffic assessment based on sensor measurements in the
form of FCD. Using the causality between historical and current
traffic conditions, weights in the form of dynamic travel times will
replace static weights.

With the availability of cheap positioning technology and the
penetration of asset tracking applications such as fleet management
applications, vehicle tracking data, as a component of Floating Car
Data (FCD), becomes an important tool for traffic assessment and
prediction. FCD refers to using data generated by one vehicle as
a sample to assess to overall traffic conditions (“‘cork swimming in
the river”). Having large amounts of vehicles collecting such data
for a given spatial area such as a city (e.g., taxis, public transport,
utility vehicles, private vehicles) will create an accurate picture of
the traffic condition in time and space [20, 17].

To derive dynamic travel time datasets from collected FCD, map-
matching algorithms are needed, as they relate GPS tracking data
to the road network [3, 26]. The resulting travel times then need
to be aggregated using a data warehouse architecture such as de-
scribed in [17, 18]. Existing commercial solutions employ similar
approaches. For example, Dash [8] markets off-board navigation
devices that provide online traffic information based on the submit-
ted FCD from the Dash device network. Recently, similar to Dash,
TomTom introduced IQRoutes [25], a routing engine that relies on
offline speed profile information derived from collected tracking
data.

To illustrate the power of dynamic travel times, consider the ex-
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Figure 6: Speed profile

Table 2: Amounts of collected FCD for Athens

FCD | Travel Times

Daily 46365 73523

Athens | 5 cars [ 20M 23M
Vienna Daily 481479 718408
2 years 232M 320M

ample of Figure 6 showing varying travel times (in minutes) for
a road segment. The figure shows a step function giving different
travel times for each hour of the day and a static travel time re-
maining constant throughout the day. This shows the potential of
dynamic travel times to improve the weight database and in turn
increase the quality of routing solutions. The collection of such
dynamic travel times is also referred to as speed profile of a road
network.

Speed profiles are understood by observing travel times over a
longer time period, i.e., for one year, and they are derived by aggre-
gated individual travel times measures using meaningful temporal
granularity. As travel times are recorded with respect to a specific
edge in the road network and a specific time, travel time aggrega-
tion is achieved by computing the average of a set of travel times
having similar timestamps. An example here would be to average
all travel times recorded on Mondays from 9:00 - 9:15. Speed pro-
files represent travel time trends in the road network and can thus
be used as a simple prediction mechanism. The assumption is that
future travel times will be similar to travel times observed in the
past.

In our case speed profiles have been compiled using FCD from
a commercial vehicle fleet (Athens) and from a taxi fleet (Vienna).
To illustrate the amount of data that is generated, Table 2 gives the
FCD that was collected on a typical day (Feb. 4, 2008) and overall
during a 2 year period. The amount of data collected for Vienna is
roughly ten times the amount of the Athens data. In the former case,
a taxi fleet of around 1000 vehicles is collecting the data, while in
Athens only 120 delivery trucks are being tracked. Feeding this
data into the map-matching algorithm produces roughly 50% more
travel time data, since two consecutive GPS position samples 30s
apart are usually mapped to a path in the road network that consists
of more than one edge. For our experiments, 28M and 320M travel
times were generated for the respective cities.

The temporal granularity of the speed profile was 15min inter-
vals for each weekday (cf. [18]). Le., for each quarter of an hour
during a week, the “typical” travel time for one of the 22k and 19k
links belonging to major roads of the respective cities is computed.

Note that only dynamic travel times for such higher category
roads (cf. Table 3) were computed due to a lack of data and random

Table 3: Dynamic Travel Time dataset for Athens

Size road network | Higher cat. roads | Size TT dataset

[links] [links] [tt entries]

Athens 207,000 22,000 ™
Vienna 75,000 19,000 6M

behavior. Typically, the FCD coverage of lower category roads is
insufficient and produces inconclusive data. Our data collection as
well as previous studies [4] show that it is not possible to use his-
torical travel times to establish speed profiles for lower category
roads, as the travel times fluctuate considerably due to non-traffic
related circumstances such as parking vehicles, local maneuvering,
pedestrians, etc. Thus, the dynamic weight dataset in the following
experimentation is a hybrid one. For higher category roads dy-
namic travel times are used, while for lower category roads we use
static travel times as indicated in Table 1.

The second weight dataset used in the experiments comprises
only static travel times. They are derived from speed information
that is part of the road network dataset. In our case, speeds range
from 90km/h for inner city highways to 15km/h for local roads (cf.
Table 1).

4. EXPERIMENTAL EVALUATION

The objective of our experiments is (i) to compare the perfor-
mance of the HBA* algorithm in terms of quality of result and cost
as well as (ii) to assess the respective impact of using dynamic
travel times. To evaluate the HBA™ algorithm we use a standard
A* algorithm to benchmark its performance.

4.1 Tuning HBA*

The HBA* algorithm exploits an important aspect of the road
network, its hierarchical structure, to improve its running time. In
utilizing hierarchical jumping, the algorithm mimics human driv-
ing behavior, i.e., when given the choice, it selects higher cate-
gory roads to reach a destination. On the other hand, hierarchical
jumping, especially when used early on in shortest-path search may
eliminate candidate solutions and provide suboptimal results. To
address this potential issue, we introduce an initialization buffer.
Le., assume that we want to compute a shortest path from s to v,
then the initialization buffer /(e) around both s and v prevents the
use of hierarchical jumping for all vertices
u € I(e) : {dist(u,v) < € V dist(u, s) < €}.

Using this approach, the HBA* essentially postpones the choice
of a higher category road in search for a potentially better alterna-
tive. As we shall see in the following experimentation, this mod-
ification improves the quality of the solutions by only minimally
impacting the algorithmic cost.

In our experimentation we utilized € = [0, 50, 150, 500]m. Fig-
ures 7(a) - 7(d) show the relative results when comparing the per-
formance of the respective four instances of the HBA* using various
initialization buffers to the A* algorithm. The following sections
discuss the results in detail.

4.2 Shortest Path Quality

To assess performance, the two algorithms are compared using a
set of 150 shortest path problems, each uniformly distributed over
the city area. Figures 5(c) and 5(d) visualize the queries as sets of
line segments connecting source and target nodes. The Euclidean
distance between the nodes ranges from a couple of 100m to 20km.

4.2.1 Plain HBA*
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Figure 8: Shortest path results, static weights, Athens

Assuming the heuristic function h(u, ) to be admissible, the A*
is an optimal algorithm that is guaranteed to find the shortest path.
Using the same heuristic function as defined in Section 2.3.2, Fig-
ure 7(a) shows that a plain HBA* (¢ = 0) in the case of static
weights produces solutions that are on average 2% and 3.5% longer
than those of the A* for Vienna and Athens, respectively.

Figure 8 gives absolute shortest-path results and shows for Athens
(Vienna results are similar) the lengths in terms of travel time for
the set of routes computed by the A* and HBA* algorithms. The
travel times are plotted with respect to the Euclidean distance be-
tween the source and the target of a route. This detailed view shows
that for 45% and 50% of the routes (Athens and Vienna), the two
algorithms find the same solution.

It is interesting that the plain HBA* algorithm performs this well,
even though it considers only a subset of possible paths (namely,
bitonic paths) and it heuristically stops immediately when the front
and back searches meet. This shows that coordinating the front
and back searches by roughly staying on the same level of the road
network (lines 11-14 in Figure 3) yields surprisingly good results.

In the case of dynamic weights the quality disadvantage of the
HBA* increases to 3.5% and 8% respectively. The main reason for
this are the lower actual travel times measured for higher category
roads. While the A* is not bound to road categories, so does the
HBA* get “trapped” due to hierarchical jumping on top level roads
that actually exhibit low speeds (cf. Section 5 on addressing this
problem). Due to a in relation to the entire network smaller number
of higher category roads, this problem is more pronounced in the
case of Athens.

4.2.2  Using Initialization Buffer

The quality of the HBA* can be improved dramatically when
using the initialization buffer. Figure 7(a) shows that for static
weights and, e.g., € = 150m the quality of the shortest-path so-
lution is within 0.2% of that of the A* algorithm. Examining the
specific results for Athens in detail (Figure 8), shows that on an in-
dividual route basis, the gap between A* and HBA* closes with an
increasing initialization buffer.

For the case of dynamic weights and for € = 150m, the qual-
ity improves to 0.5% and 2% for Vienna and Athens, respectively.
While, increasing the initialization buffer to 500m only marginally
improves the quality for Vienna, it however does improve the qual-
ity for Athens to within 0.2%. Judging by the quality of the shortest-
path results, the initialization buffer proves to be a useful means for
tuning the HBA* algorithm. It will be interesting to see how it af-
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fects the computation cost.

4.3 Computation Cost

A major advantage of the HBA* algorithm is its improved run-
ning time due to the fact that it evaluates much fewer nodes of the
road network graph when computing a shortest path.

Itis evident from Figure 7(b) that the plain HBA* algorithm com-
putes a shortest path 20 times faster than the A* algorithm (less
than 5% of its running time). Figure 9 provides more detail for
the Athens dataset. A typical run of the HBA* algorithm takes in
the range of 0.0001s (short routes) to 0.01s (long routes), while the
running time of the A* algorithm may be up to 3s.

The quintessential reason for this running time difference of the
algorithms can be found in the number of nodes processed in each
case. Figure 10 shows that the A* algorithm processes up to ten
times more nodes than the HBA*. Consider here the example of
the 15km Euclidean distance route in the middle of the chart. The
A* processes 120,000 nodes, whereas the HBA™ only evaluates
12,000 nodes. The same fact is evident from Figure 7(b) showing
relative cost figures. The plain HBA* (e = Om) accesses only 10%
of the nodes of the A* algorithm.

The quality of the shortest-path solution can be improved by in-
creasing initialization buffer. Figure 7(b) shows that the running
time of the algorithm increases as well. For the case of € = 150m,
which yields results comparable to the optimal A* solutions, the
running time more than doubles. However, what is important is

that the running time of the HBA” is still only 10% that of the A",
thus being faster by an order of magnitude.

When developing algorithms, an important characteristic is the
size of the allocated data structures during the execution of the al-
gorithm. The A* algorithm maintains a closed and an open list,
which are both implemented as heaps. The HBA* maintains two
sets of these data structures. Figure 7(b) shows that the relative
allocated memory is 10% that of the A* for the case of the plain
HBA* and for € = 150m increases up to 20% and 30% for Vienna
and Athens, respectively. In absolute numbers, the open list of the
HBA" is for all searches around 50 nodes. This small size is due
to the hierarchical jumping and its effect on node expansion, i.e.,
highways do not have intersections, thus only one node is typically
expanded and the open list essentially does not grow. Here, in con-
trast the A* open list reaches a size of up to 1000 nodes.

While, the discussion of cost figures so far only concerned static
weights, the respective trends are quite similar for the case of dy-
namic weights (cf. Figure 7(d)).

4.4 Static vs. Dynamic Travel Times

Having two alternative shortest-path algorithms, each with its
respective strength, the following section assesses qualitative im-
provements to algorithmic solutions utilizing dynamic travel times.
As such, this section goes beyond evaluating the respective algo-
rithms but assesses the potential of dynamic weights for improving
routing solutions. In the specific experiments, in addition to static
weights, two dynamic travel time datasets for 8h and 13h on Mon-
days were used. This selection was based on available travel time
data (collected FCD) and expected impact on the routing solutions,
i.e., common sense expectations could be that 8h constitutes rush
hour, whereas 13h means smoother traffic.

For the quintessential experiment with respect to dynamic travel
times, i.e., to assess the improvement of the route quality, we com-
pared dynamic weights to static weights (cf. Figure 8), by recom-
puting for the latter the time it would take to traverse those routes
using the more accurate dynamic travel times! Table 4 gives the
percentage of the shortest-path solutions that were improved and
the average improvement in each case. For example, for Athens,
using HBA* and the dynamic travel time dataset for 8h, 55% of
the 150 shortest-path solutions were improved by an average of
11.5%. Examining the improvements in detail shows that the im-
provements may range from 27% to somewhat less than 1%.

The following observations can be made from these experiments:

o the shortest-path solutions for Athens benefit more from the
dynamic travel time data - this can be attributed to greater
fluctuations in traffic conditions for Athens, i.e., Athens ex-
hibits greater fluctuations in its speed profiles than Vienna
(cf. Figure 6).

e a “rush-hour” effect can be observed when comparing 8h to
13h shortest path improvements. This effect is more evident
in the Vienna data, e.g., in case of the A* algorithm yielding
9.1% vs. 6.1% improvement for 8h and 13h, respectively.

4.5 Summary

The HBA* algorithm computes shortest paths much more effi-
ciently than the A* algorithm does. Utilizing an initialization buffer,
(1) the quality of solutions is virtually identical to that of the A* al-
gorithm and (ii) its running time is 10 times faster. Due to hierar-
chical jumping, it examines 10 times fewer nodes and also allocates
smaller data structures.

While dynamic weights slightly affect the performance of the
algorithms, they improve the quality of individual shortest-path so-



Table 4: Qualitative improvements using dynamic travel times

Athens
HBA* A*
affected | imp. | affected | imp.
8h 55% 11.5% 65% 11.9%
13h 54% 11.1% 60% 10%
Vienna
HBA* A*
affected | imp. | affected | imp.
8h 53% 9.1% 59% 9.8%
13h 41% 6.1% 40% 7.1%

lutions on average by 10%. Thus, when used, dynamic travel times
represent a significant qualitative step for shortest-path solutions.

Overall, combining dynamic travel times with the HBA* algo-
rithm generates a fast and accurate solution base for routing and
navigation applications.

5.  CONCLUSIONS AND FUTURE WORK

The objective of this work was to develop an efficient algorithm
to compute shortest-path solutions fast and at the same time not
to compromise the result quality when compared to optimal so-
lutions. Specifically, an efficient shortest-path algorithm termed
HBA* was presented. The algorithm is bidirectional and exploits
road network hierarchies by using hierarchical jumping to improve
on computation speed. Using an initialization buffer, a technique
that postpones hierarchical jumping for early stages of the shortest-
path search, the experiments showed that the HBA* computes so-
lutions 10 times faster in comparison to the A* algorithm, while
essentially producing identical results.

Another important aspect was the use of dynamic travel times in
the performance evaluation. While typically static weights that are
derived from road category information and edge length are used
in routing tasks, we propose the use of dynamic travel times that
are derived from historical floating car data. Dynamic travel times
represent speed profiles that provide travel time trends based on the
time of the day for a road network. In terms of routing solution, this
data leads to a significant qualitative improvement, which is shown
to be 10% on average, but can be up to 30% on an individual basis.

Our ongoing and future work is as follows. While this work only
presents experimental results for Athens and Vienna, we are cur-
rently in the process of testing this technology with existing fleet
management solutions and their respective routing engines. The
objective is to develop a plug-in technology that can be used in as
many dynamic travel-time contexts as possible. An aspect for im-
proving the performance of the HBA* for dynamic travel times are
the road network categories as provided by the map manufacturer
(cf. Section 4.2). Dynamic travel times show that given the right
conditions, high category roads have low travel times and should be
avoided. While the A* does not rely on category information, the
HBA* is restricted by it due to hierarchical jumping. Modifying
category information based on dynamic weights could in this case
improve the algorithmic performance.
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