

This work was made possible by National Science Foundation grants NSF‐0831535 (“Comprehensive
Applications Analysis and Control”) and NSF‐0915667 (“A High‐Performance Abstract Machine for Network
Intrusion Detection”).

HILTI: An Abstract Execution Environment for
High‐Performance Network Traffic Analysis

Robin Sommer, Nick Weaver, and Vern Paxson

TR‐10‐003

February 2010

Abstract

When building applications that process large volumes of network traffic—such as high‐
performance firewalls or intrusion detection systems—one faces a striking gap between the
ease with which the desired analysis can often be described in high‐level terms, and the
tremendous amount of low‐level implementation details one must still grapple with for coming
to an efficient and robust system. We present a novel environment that provides a bridge
between these two levels by offering to the application designer the high‐level abstractions
required for effectively describing typical network analysis tasks, while still ensuring the
performance necessary for monitoring Gbps networks in operational settings. This new middle‐
layer comprises two main pieces: an abstract machine model that is specifically tailored to the
networking domain and directly supports the field’s common abstractions and idioms in its
instruction set; and a compilation strategy for turning programs written for the abstract
machine into highly optimized, natively executable task‐parallel code for a given target
platform. We present the design and an early prototype of the new environment and discuss
opportunities for extensive compile‐time code optimizations that our approach enables by
leveraging domain‐specific context. Such an environment holds promise for unleashing the
community’s potential to build libraries of efficient analysis functionality, reusable across a
wide range of scenarios.

1 Introduction

When building applications that process large volumes
of network traffic—such as high-performance firewalls
or intrusion detection systems (IDS)—one faces a strik-
ing gap between the ease with which the desired anal-
ysis can often be described in high-level terms, and the
tremendous amount of low-level implementation details
one must still grapple with for coming to an efficient and
robust system. As a networking application is assem-
bling the network’s high-level picture from zillions of in-
dividual packets, it must not only operate extremely effi-
ciently to achieve line-rate performance under real-time
constraints, but also deal securely with a stream of un-
trusted input that requires conservative processing. How-
ever, despite this challenge, there is hardly any reuse of
existing, well-proven functionality across applications:
implementations tend to build the same type of compo-
nents from scratch, often missing out on opportunities to
leverage experience from existing deployments.

We believe that much of this can be explained by the
lack of a common platform that provides high-level ab-
stractions suitable to implement typical network analysis
tasks in a reusable fashion, yet still offers the flexibility
and performance that a manually written low-level im-
plementation would yield. In this work, we develop such
a platform. We present a new middle-layer for network
traffic processing, consisting of two main pieces:(i) an
abstract machine modelspecifically tailored to the net-
working domain and directly supporting the field’s com-
mon abstractions and idioms in its instruction set; and
(ii) a compilation strategy for turning programs written
for the abstract machine into highly optimized, natively
executable code for a given target platform, with perfor-
mance comparable to manually written C code. At the
core of the abstract machine model is ahigh-level in-
termediary language for traffic analysis (HILTI). HILTI
provides high-level data structures, powerful control flow
primitives, extensive concurrency support, and a secure
memory model along with protection from unintended
control and data flows. A corresponding compiler turns
HILTI programs into input for the open-sourceLow-
Level Virtual Machine (LLVM)infrastructure, which we
leverage for all target-specific generation of native code.

The broader goal of our undertaking is to provide the
networking community with a novel architecture that fa-
cilitates development and reuse of building blocks com-
monly required for network traffic analysis. While the
focus of our effort is the design and implementation of
the HILTI environment itself, we envision enabling the
community to build analysis functionality on top of the
new platform, eventually developing a library of reusable
high-performance analysis functionality.

We present the HILTI model in more detail in§ 2, in-

cluding an early prototype that already provides many of
HILTI’s key features. In§ 3, we discuss application sce-
narios leveraging the new platform, and we then exam-
ine the key challenge for achieving high performance—
domain-specific code optimization—in§ 4. We finish
with a discussion of design choices in§ 5.

2 The HILTI Environment

Our overall goal is to compile high-level descriptions of
network analyses into efficient native code that can then
be executed directly on a specific target platform. To this
end, the heart of our effort is the design and implemen-
tation of anintermediary layerwithin this process: an
abstract machine environment that(i) provides abstrac-
tions to an application suited to express typical analysis
tasks; and(ii) compiles analysis expressed in such ab-
stract terms into native, high-performance code.

Figure 1 summarizes the design of the HILTI envi-
ronment. The workflow starts from ananalysis speci-
fication, expressed in an application-specific input for-
mat. For example, for a firewall this could be the list
of rules; for an IDS its signature set. An application-
specificanalysis compilertransforms such a specifica-
tion into HILTI’s high-level instruction set. This instruc-
tion set is the conceptual centerpiece of HILTI’sexecu-
tion model, which also includes corresponding execution
semantics, aHILTI compiler, astub generatorfor inter-
facing thehost applicationvia language-independentin-
terface descriptions, and aruntime support library. The
compiler turns HILTI code into the instruction set of
theLow-Level Virtual Machine (LLVM)[5] for low-level
code generation. Finally, the byte-code is linked with the
host application into a native executable.

In the following, we present our main focus areas in
§ 2.1, and then discuss the execution model in§ 2.2 and
our current prototype in§ 2.3.

2.1 Focus Areas

HILTI needs to balance between providing a flexible,
generic platform for a variety of network applications,
and producing efficient and robust code at the end of the
processing pipeline. We now discuss the main areas we
need to consider when designing the framework.

Instruction set. The high-level instruction set needs
to support typical analysis idioms directly. In particu-
lar, much abstraction can be achieved by providing rich
domain-specific data types, automatic state management,
and a flexible control flow model, in particular allowing
for bothconcurrentandasynchronouscode execution.

Robust execution. A crucial concern is providing
a secure run-time environment for the generated native

1

Abstract Machine Execution Model

Native

Executable

Host Application

LLVM Toolchain

Stub

Generator

HILTI

Compiler

Analysis

Specification

Runtime

Library

HILTI

Code

Interface

Description

Language

Interface
Application

Code

LLVM

Bytecode
Linker

Figure 1: Architecture of the HILTI environment.

code, in which neither programming errors nor unex-
pected input traffic can lead to malicious control- or data-
flows. Specifically, we require the HILTI language to
be statically type-safe and provide mechanisms to han-
dle unexpected situations robustly.

Compile-time optimization,. The key to achieving
efficient output is extensive code optimization. The
HILTI-level provides the kind of domain-specific context
that allows modern compiler techniques to excel [4]. To
support such an approach, the execution model should
make relevant semantics explicit (e.g., processing struc-
ture, data flows, memory operations, operand types) and
limit variability by restricting the number of ways idioms
can be expressed.

Host application interface. The host application
drives the analysis and must therefore be able to con-
trol HILTI’s operation as well as hook into its processing
as necessary for retrieving results. However, it is crucial
to account for the fact that applications can internally be
structured in very different ways.

2.2 Execution Model

At HILTI’s core is an instruction set that models a high-
level domain-specific register machine. We now discuss
the instruction set along with its corresponding execution
semantics in terms of syntax, data types, memory man-
agement and concurrency support.

Syntax. We model the HILTI language after
register-based assembler languages. A program con-
sists of a series of instructions of the general form
<target> = <instruction> <op1> <op2>,
with target/operands omitted where not needed. In addi-
tion, there are primitives to define functions; custom data
types (including tuples and structures); local and thread-
global variables; and exceptions. Instruction mnemonics
are of the form <prefix>.<operation>, with
the sameprefix indicating a joint set of functional-

ity. In particular, for data types we use a convention
in which the prefix refers to the type and the
first operand is the object to be manipulated (e.g.,
list.append mylist 42, which appends the
integer 42 to the list specified as the operand,mylist).
Generally, the instruction set deliberately limits syntactic
flexibility, supporting compiler transformations directly
without needing another intermediary representation.
Figure 2 shows an example program.

Data Types. While being parsimonious with syntax,
we provide HILTI with a rich set of data types while en-
forcing static safety. First, in addition to standard atomic
types such as integers, character sequences (with sepa-
rate types for Unicode strings and raw bytes), floating
points, and enums, it offers domain-specific primitives
such astime intervals, network addresses1, subnet masks,
ports, andregular expressions. While these are techni-
cally straight-forward to implement, they provide crucial
context for type checking as well as for data flow and
dependency analyses.

Second, HILTI provides a set of high-level compos-
ite types, including lists, vectors, sets, maps, stacks, and
queues. In our experience, typical analysis tasks rely
heavily on such data structures and having them directly
available enables expressing an analysis in very natu-
ral terms. For type-safety, all containers are statically
parametrized. They also provide built-in state manage-
ment support, such as automatic expiration of elements
after a specified amount of time or when reaching an up-
per size limit. Further domain-specific types areover-
lays for safely and efficiently dissecting packet headers
into their components; and “channels” for transferring
large volumes of (typed) data either internally or between
host applications and the HILTI environment, such as a
stream of network packets or the payload of a TCP ses-
sion. Channels are also one of HILTI’s main primitives
for supporting concurrency transparently (see below).

1The data type transparently supports both IPv4 and IPv6 addresses.

2

typedef tuple<addr, addr> host_pair # Define custom tuple type.
global ref< set<host_pair> > attempts # Define two global references.
global ref< map<addr, int32> > counters

Initialization code to be called at startup.
[...]
attempts = new set<host_pair> # Allocate set on the heap.
set.expire attempts 300 decr_count # Expire entries after 300s; decr_count() will be

called to decrease attempt counter (not shown).
counters = new map<addr, int32> # Allocate map on the heap.
map.set_default counters 0 # Non-existing entries default to 0.
[...]

Function to be called for each attempted connection.
void connection_attempt(addr src, addr dst) {

local bool cond # Define local variables on the stack.
local int32 count
local string message

cond = set.contains attempts (src, dst) # Check whether set contains tuple.
jump.if cond exit # If yes, pair is already known.
set.insert attempts (src, dst) # Insert tuple into set.

count = map.lookup counters src # Lookup attempt counter (default 0).
count = int.add count 1 # Increase counter.
map.insert counters (src, count) # Store new value.

cond = int.lower count 20 # Check if threshold of 20 reached.
jump.if exit # It is not, so we are done.

Build alarm message printf-style.
message = call Hilti::fmt ("%s has reached threshold", (src))
call alarm (message) # Call alarm function to report.

exit:
return # Return from function.

}

Figure 2:Example of possible code implementing a simple detector foraddress scans.connection attempt will be called
for each attempted connection, either by another componentor by the host application. It counts the number of attempts to unique
destinations per source over a sliding 300 s interval. Note that the model for such code is to be auto-generated.

Finally, HILTI contains first-order support for both
closuresandone-shot continuations. These two build-
ing blocks enable it to provide a set of types enabling
asynchronous executionof code blocks, includingtimers
for scheduling execution to a specific time in the future;
snapshotstaken of the current execution state for later
resumption;triggers for execution of code when a spec-
ified condition occurs; andhooksfor optional external
code to run at specific points during a computation.

Memory Model. The main objectives for HILTI’s
memory model are type-safety and automatic memory
management. All operands are strictly typed, with no
implicit casts, so that the compiler can enforce restric-
tions. An explicitnew instruction makes allocations of
dynamic memory explicit. Its return type is areference
typeref<T>, with T indicating the type of the allocated
object. Dynamically allocated memory is managed by
the HILTI runtime and eventually garbage-collected.

Concurrency Model. A crucial capability to provide
is concurrent processing. Most directly, this refers to
“real” concurrency in terms of having the ability to use
multiple threads for parallel execution of HILTI code.
With novel many-core platforms emerging rapidly, such
a model is important to support effectively. Perhaps less
obvious, there is a second form of concurrency inher-

ent to how network analysis operates: tasks tend to be
structured in terms of certainprocessing units. For ex-
ample, many IDS rely onflowsas their primary unit and
express their detection logic as a series of steps working
on a single flow at a time (e.g., “alarm when an HTTP
flow requests a particular URL”). However, while such a
policy is conceptually expressed at the level of an indi-
vidual unit, at runtime the system needs tomultiplexthe
analysis across a large number of simultaneous units.

To support both of these types of concurrency, HILTI
implements two orthogonal concurrency mechanisms.
First, HILTI directly supports concurrent operation when
running on multi-core platforms by providing a thread
abstraction, thread-local storage, and a set of atomic
memory operations. Second, independent of any actual
parallel execution, HILTI provides extremely lightweight
virtual threadsacross which it can transparently multi-
plex processing using using continuation-based [3] coop-
erative multitasking. Now, these two concurrency mod-
els can be combined to provide the host application with
an abstract view of having a infinite supply of extremely
lightweight threads at its disposal, which are then at run-
time automatically mapped to a much smaller set of ac-
tual hardware threads.

3

2.2.1 Compiler

The HILTI compiler turns code expressed in the high-
level instruction set into LLVM bytecode, which is then
further compiled into native code. Generally, most of
the compilation process is straight-forward to implement
using standard compiler technology. In the following, we
highlight a few of the more interesting issues.

To support continuations, the HILTI compiler gener-
ates code that manages custom stack frames explicitly,
relying on garbage collection to determine when a frame
is safe to release.

For some functionality, the generated code relies on
support by a runtime library linked to the final native
code. One example is some of the more complex data
types, such as hash maps: operations like inserting an
element into a map are outsourced to the runtime library.

The compiler needs to enable the host application to
interface with the generated code in a flexible way. We
provision for this with two separate mechanisms. First,
most communication uses basic function calls: the host
application can call functions defined in HILTI code, and
vice versa. While technically a bit subtle—we need to
convert data types and adapt calling conventions—the
compiler generates most of the glue logic automatically.
Due to this glue, such function calls however incur a
small overhead. When passing larger volumes of data,
the channel data type (see above) is more efficient as in-
ternally it avoids copying the data physically. Accord-
ingly, we provide a channel API to the host application.

2.2.2 Linking and Execution

A host application can use the code generated from a
HILTI program in two different ways. First, it can stat-
ically link the code into the application’s core, produc-
ing a single executable. This model will best suit cases
where the analysis rarely changes, requiring new exe-
cutables only occasionally. The second option is to load
the generated code atruntime, either as a dynamic library
or by leveraging LLVM’s just-in-time compiler. The lat-
ter approach provides two additional, powerful capabili-
ties: (i) the portable nature of LLVM’s bytecode allows
distributing a compiled analysis to other parties (e.g., an
IDS could receive detector updates in this form); and
(ii) it makes it easy toreplaceanalysis during runtime
without the need for a restart of the host application (e.g,
the IDS could pick up a new signature set, compile it,
and switch processing over).

2.3 Current Prototype

We have implemented an initial prototype of HILTI’s
main pieces. The HILTI compiler is written in Python
and the run-time library in C. Many features discussed

bool filter(ref<bytes> packet) {
[... Declarations of t1,...,t5 ...]
local IP::Header iphdr
local iterator<bytes> start

Attach IP header overlay to packet’s raw bytes.
start = bytes.begin packet
overlay.attach iphdr start

Extract fields.
t1 = overlay.get iphdr "src"
t2 = equal t1 192.168.1.1
t3 = overlay.get iphdr "dst"
t4 = equal t3 192.168.1.2
t5 = bool.or t2 t4
return.result t5
}

Figure 3: HILTI code for the filter‘‘src host
192.168.1.1 or dst host 192.168.1.2’’.

above are already working, including many data types
(such as IPv4 and IPv6 addresses, ports, lists, vectors,
regular expressions, overlays, channels); as well as con-
tinuations, exceptions, threads, and the generation of
glue logic for communication between HILTI and host
applications. The generated code is not yet particularly
optimized for efficiency but we expect to spend signif-
icant time on improving performance once the overall
framework gets into a stable state. As a first proof-of-
concept host application, we implemented a basic com-
piler for tcpdump-style BPF filters [6], producing native
code that filters network packets according to a speci-
fied expression. Figure§ 3 shows an example. The code
leverages an IP “overlay” type provided by HILTI for
transparent, type-safe access to individual header fields.

3 Application Scenarios

A wide variety of host applications can leverage the func-
tionality provided by the HILTI environment, including
firewalls, security monitors, application-layer proxies,
and traffic debuggers. For example, by compiling its rule
set into HILTI code, a firewall system can avoid the low-
level complexity of parsing packets and managing its
own data structures. Likewise, intrusion detection sys-
tems can specify their detection logic on top of HILTI-
provided primitives. Consider for example the popular
open-source Snort IDS. Snort could not only transform
its signatures into a HILTI module, but also leverage the
platform’s capabilities for supporting its special-purpose
detectors currently written in low-level C code. Another
open-source IDS, Bro, provides a custom scripting lan-
guage that is currentlyinterpretedat run-time, render-
ing it a major performance bottleneck. Compiling Bro
scripts into HILTI code, and from there into a native exe-
cutable, would boost the system’s run-time performance.

From a different perspective, HILTI allows applica-
tions tosharecommon functionality easily. HILTI en-

4

ables writing code once on top of its execution model and
then integrates it transparently into different host appli-
cations. As a specific example for sharing functionality,
consider parsers for network protocols as found in almost
any traffic analysis application. A key step towards their
reuse is the BinPAC [7] parser generator—”a yacc for
network protocols”—which generates parser implemen-
tations from declarative grammar specifications. Cur-
rently, BinPAC focuses on parsingsyntax, still leaving
tracking of communicationsemanticsto the main ap-
plication. By generating code for the HILTI platform
(rather than C++), and extending it with corresponding
semanticconstructs, BinPAC could generate fullystan-
daloneparsers suitable for use in many applications.

One little explored area of working with network traf-
fic is the challenge ofunderstandingand potentiallyre-
stricting an analysis. Due to privacy implications, in-
specting real-world network traffic is a highly sensitive
task. Consequently, operators often face the challenge of
assessing a proposed analysis for its potential to leak in-
formation. As an example from the research world, con-
sider the scientist asking to analyze traffic on its behalf in
a mediated setting. Clearly, the operator must fully un-
derstand the nature of any results handed back. By cap-
turing the analysis at a high semantic level, the HILTI
environment can(i) provide support for tracking infor-
mation flows, e.g., with taint analysis; and(ii) enforce
constraints during run-time by restricting permitted op-
erations, turning HILTI into a domain-specific sandbox.

Finally, we note that every application using the HILTI
environment benefits directly from any additional re-
sources the framework can leverage, such as specific
hardware support for any of its functionality. Consider
for example a platform providing an FPGA-based pattern
matcher: once we enable the HILTI runtime to interface
with it, all string matching operations will benefit with
no further change to any host application.

4 Performance via Optimization

Code optimization is the key to providing an abstract
machine environment that is sufficiently generic to cater
to different host applications, yet can still exploit their
full performance potential individually. Our primary fo-
cus isdomain-specificoptimizations at the interface be-
tween HILTI and LLVM, where we find a large poten-
tial for optimizing both CPU and memory performance.
Likely the most important single area here is the con-
currency model: we can achieve significant performance
gains by adapting control flow and memory access pat-
terns to the highly parallel analysis structure inherent
to the analysis [4]. As one example, many applica-
tions analyze connections mostly independent of others
(e.g., when decoding protocols), and we can schedule the

processing across a set of concurrent threads automati-
cally. Generally, in network traffic analysis, there is a
wealth of such inherent task parallelism [8], and HILTI’s
domain-specific semantics provide parallelization tech-
niques with crucial context.

A further area for high-level optimizations is state
management. As HILTI’s data types have state-
management support built-in, much of the relevant infor-
mation is readily available for understanding their con-
crete semantics (such as where and when entry expiration
takes place). This allows for a set of powerful static op-
timizations, such as grouping related state management
tasks for joint execution, and it also provides the opportu-
nity for optimization based onruntime profiling. Strate-
gies developed in the past forautomatic tuning(e.g., [2])
should also transfer well to the HILTI environment, in
particular because the execution model’s reduced struc-
tural complexity (compared to the full IDS used in the
cited study) will make resource estimates more precise.

Generally, for all low-level, domain-independent op-
timizations we rely on the LLVM infrastructure, which
implements many standard compiler techniques that are
crucial for generating efficient code. However, relying
on LLVM’s optimizations also enables us to provide a
generic interface for host applications without sacrificing
performance. Consider HILTI code that wants to report
different kinds of information back to an application de-
pending on its requirements. Some of the information
might be expensive to compute and thus the correspond-
ing code should better be excluded if the data is not going
to be needed. LLVM in fact enables such scenarios by
performing optimizations across link-time units, in par-
ticular recursive dead code elimination. This allows the
HILTI compiler to initially produce “worst-case code” by
including all functionality that couldpotentiallybe used.

5 Discussion

Building an execution environment. One might won-
der about our choice to build a complete abstract exe-
cution environment rather than assemble reusable func-
tionality into, say, a simple C library. The key here is
the additional power that the compilation of HILTI code
provides. Typical traffic analysis logic is built on top of a
rather small set of conceptual idioms, and it is precisely
such domain-specific context that allows modern com-
piler technology to excel. Any library-based approach
would break the tight semantic link between analysis
logic and library functionality, preventing optimization
schemes from exploiting their full potential. Further-
more, compilation also enables us to provide safety guar-
antees that a C library cannot achieve.

Leveraging existing technology. Many abstract ma-
chines (also called virtual machines) have been built for

5

a variety of target domains, with the the Java Virtual
Machine likely being the best known instance. Dynam-
ically typed languages (e.g., Python, Ruby) often rely
on them for efficient run-time operation. The Parrot
VM [1], originating in the Perl community, aims to pro-
vide a common platform for such languages, similar in
spirit to what we propose to build for networking ap-
plications. Abstract machines are by their very nature
specific to their particular domain, and it is therefore
not surprising to find none of the existing ones fit well
with our focus areas. However, these mismatches con-
cern primarily high-level, domain-specific functionality,
and consequently we reuse an existinglow-levelframe-
work, LLVM. The LLVM infrastructure is an industrial-
strength, open-source compiler toolchain modelling a
portable representation of a register machine.

Introducing a middle-layer. The new platform
serves as a middle-layer between an application’s analy-
sis and the low-level code generated for native execution.
A different approach for supporting a variety of analyses
would be a platform forend-users, putting a complete
easy-to-use scripting language directly at their disposal.
However, our primary goal is to enable the reuse of func-
tionality acrossapplications, and we argue that a single
system can hardly address the needs of both users and ap-
plications simultaneously. For example, the Bro IDS pro-
vides a domain-specific language for traffic analyses yet
it structures it along an event-based approach that would
not fit well with the needs of, say, an application-layer
proxy. In some sense, we see HILTI as a “low-level Bro”
that provides much of its core functionality, yet does not
tie an application to a specific analysis structure. HILTI
is an ideal compilationtarget for an end-user language.

6 Summary

We introduce a middle-layer for building network ap-
plications, consisting of an abstract domain-specific ex-
ecution environment (HILTI), and a compiler toolchain
for turning programs written for that model into effi-
cient, native code. We discuss the framework’s design,
and present an early prototype implementation that al-
ready supports many of its features. The key to achiev-
ing high performance is extensive, domain-specific code
optimization, such as exploiting the enormous concur-
rency potential found in typical traffic analyses. We be-
lieve that the HILTI platform has the potential to become
an established platform for a variety of applications, and
will eventually enable our community to build a reusable
library of robust yet efficient traffic analysis components.

References

[1] Parrot VM. http://www.parrotcode.org/docs/.

[2] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer. Predicting the
Resource Consumption of Network Intrusion Detection Systems.
In Proc. Recent Advances in Intrusion Detection (RAID), 2008.

[3] S. E. Ganz, D. P. Friedman, and M. Wand. Trampolined Style.
SIGPLAN Notices, 34(9):18–27, 1999.

[4] K. Kennedy and J. R. Allen.Optimizing Compilers for Modern
Architectures: A Dependence-based Approach. Morgan Kaufmann
Publishers Inc., 2002.

[5] C. Lattner and V. Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. InProc. Interna-
tional Symposium on Code Generation and Optimization, 2004.

[6] S. McCanne and V. Jacobson. The BSD Packet Filter: A New
Architecture for User-level Packet Capture. InProc. USENIX ’93.

[7] R. Pang, V. Paxson, R. Sommer, and L. Peterson. binpac: A yacc
for Writing Application Protocol Parsers. InACM IMC, 2006.

[8] R. Sommer, V. Paxson, and N. Weaver. An Architecture for Ex-
ploiting Multi-Core Processors to Parallelize Network Intrusion
Prevention. Concurrency and Computation: Practice and Expe-
rience, 21(10):1255–1279, 2009.

6

	TR-10-003cover
	TR-10-003 no cover

