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Abstract

In this paper we present Netalyzr, a network measurement and debugging service that evaluates the
functionality provided by people's Internet connectivity. The design aims to prove both comprehensive
in terms of the properties we measure and easy to employ and understand for users with little technical
background. We structure Netalyzr as a signed Java applet (which users access via their Web browser)
that communicates with a suite of measurement-specific servers. Traffic between the two then probes
for a diverse set of network properties, including outbound port filtering, hidden in-network HTTP
caches, DNS manipulations, NAT behavior, path MTU issues, IPv6 support, and access-modem buffer
capacity. In addition to reporting results to the user, Netalyzr also forms the foundation for an extensive
measurement of edge-network properties. To this end, along with describing Netalyzr's architecture
and system implementation, we present a detailed study of 112,000 measurement sessions that the
service has recorded since we made it publicly available in June 2009.
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1. INTRODUCTION

For most Internet users, their network experience—
perceived service availability, connectivity constraints, re-
sponsiveness, and reliability—is largely determined by the
configuration and management of their edge network, i.e.,
the specifics of what their Internet Service Provider (ISP)
gives them in terms of Internet access. While conceptu-
ally we often think of users receiving a straight-forward “bit
pipe” service that transports traffic transparently, in reality a
myriad of factors affect the fate of their traffic.

It then comes as no surprise that this proliferation of com-
plexity constantly leads to troubleshooting headaches for
novice users and technical experts alike, leaving providers
of web-based services uncertain regarding what caliber of
connectivity their clients possess. Only a few tools exist to
analyze even specific facets of these problems, and fewer
still that people with limited technical understanding of the
Internet will find usable. Similarly, the lack of such tools has
resulted in the literature containing few measurement studies
that characterize in a comprehensive fashion the prevalence
and nature of such problems in the Internet.

In this work we seek to close this gap. We present the
design, implementation, and evaluation of Netalyzr,' a pub-
licly available service that lets any Internet user obtain a de-
tailed analysis of the operational envelope of their Internet
connectivity, serving both as a source of information for the
curious as well as an extensive troubleshooting diagnostic
should users find anything amiss with their network experi-
ence. Netalyzr tests a wide array of properties of users’ In-
ternet connections, starting at the network layer, including IP
address use and translation, IPv6 support, DNS resolver fi-
delity and security, TCP and UDP service reachability, prox-
ying and firewalling, anti-virus intervention, content-based
download restrictions, content manipulation, HTTP caching
prevalence and correctness, latencies, and access-link buffer-
ing.

We believe the breadth and depth of analysis Netalyzr pro-
vides is unique among tools available for such measurement.
In addition, as of this writing we have recorded 112,000 runs
of the system from 86,000 different public IP addresses, al-
lowing us to construct a large-scale picture of many facets
of Internet edge behavior. The measurements have found a
wide range of behavior, on occasion even revealing traffic
manipulation that the network operators themselves did not
know about. More broadly, we find chronic over-buffering of
links, a significant inability to handle fragmentation, numer-
ous incorrectly operating HTTP caches, common NXDO-
MAIN wildcarding, impediments to DNSSEC deployment,
poor DNS performance, and deliberate manipulation of DNS
results.

We begin by presenting Netalyzr’s architecture and im-
plementation (§ 2) and the specifics of the different types
of measurements it conducts (§ 3). We have been operating
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Netalyzr publicly and continuously since June 2009, and in
§ 4 report on the resulting data collection, including flash
crowds, their resulting measurement biases, and our exten-
sive calibration tests to assess the correct operation of Net-
alyzr’s test suite. In § 5 we present a detailed analysis of the
resulting dataset and some consequences of our findings. We
defer our main discussion of related work to § 6 in order to
have the context of the details of our measurement analysis
to compare against. Finally, we summarize in § 7.

2. SYSTEM DESIGN

When designing Netalyzr we had to strike a balance be-
tween a tool with sufficient flexibility to conduct a wide
range of measurement tests, yet with a simple enough in-
terface that unsophisticated users would run it—giving us
access to a much larger (and less biased towards “techies”)
end-system population than possible if the measurements re-
quired the user to install privileged software. To this end,
we decided to base our approach on using a Java applet to
drive the bulk of the tests, since (i) Java applets run auto-
matically within most major web browsers, (ii) applets can
engage in raw TCP and UDP flows to arbitrary ports (though
not with altered IP headers), and, if the user approves trust-
ing the applet, contact hosts outside the same-origin policy,
(iii) Java applets come with intrinsic security guarantees for
users (e.g., no host-level file system access allowed by de-
fault runtime policies), and (iv) Java’s fine-grained permis-
sions model allows us to adapt gracefully if a user declines
to fully trust our applet.

The resulting system includes about 5,000 lines of Java
for the applet (as well as some JavaScript to implement the
client side of some test connections) and 12,000 lines of
Python for the different servers. Figure 1 shows the concep-
tual Netalyzr architecture, whose components we now dis-
cuss in turn.

Application Flow. Users initiate a test session by visit-
ing the Netalyzr website and clicking Start Analysis on the
webpage with the embedded Java test applet. Once loaded,
the applet conducts a large set of measurements probes, in-
dicating test progress to the user. When testing completes,
the applet redirects to a summary page that shows the results
of the tests in detail and with explanations (Figure 2). The
users can later revisit a session’s results via a permanent link
associated with each session. We also save the session state
(and server-side packet traces) for subsequent analysis.

Front- and Back-end Hosts. The Netalyzr system in-
volves three distinct locations: (i) the user’s machine run-
ning the test applet in a browser, (i) the front-end machine
responsible for dispatching users and providing DNS ser-
vice, and (iif) multiple back-end machines that each host
both a copy of the applet and a full set of test servers. All
back-end machines run identical configurations and Netalyzr
conducts all tests in a given client’s session using the same
back-end machine.

The front-end machine runs Linux 2.6 on a 2.5 GHz Intel
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Figure 1: Netalyzr’s conceptual architecture. @ The user
visits the Netalyzr website. @ When starting the test,
the front-end redirects the session to a randomly selected
back-end node. ® The browser downloads and executes
the applet. @ The applet conducts test connections to
various Netalyzr servers on the back-end, as well as DNS
requests which are eventually received by the main Net-
alyzr DNS server on the front-end. ® We store the test
results and raw network traffic for later analysis. ® Net-
alyzr presents a summary of the test results to the user.

Xeon machine with 8 GB of memory, physically located at
our institute. We manage the back-end machines using Ama-
zon’s EC2 service [1] to facilitate scalability. These hosts
are virtual 2.6 GHz AMD Opteron machines with 1.8 GB of
memory and run Linux 2.6. At peak load times we employ
20 back-end hosts.

Front-end Web Server. Running on the front-end ma-
chine, this server provides the main website, including a
landing/dispatch page, documentation, FAQs, an example
report, and access to reports from previous sessions. The
server employs a pre-forked pool of multithreaded child pro-
cesses. The front page also includes a Java dispatch applet
that ensures that the user has Java installed and then directs
the user to a randomly selected back-end server to load-
balance the actual testing process. Finally, the front page
rate-limits visitors to a fixed number of measurements per
minute per back-end server.

Back-end Web Servers. The back-end web servers host
the actual measurement applet (so that its probe connections
to the server accord with the same-origin policy) and per-
form HTTP testing and overall session management. When
sending the measurement applet, the server includes a set of
configuration parameters, including a globally unique ses-
sion ID.

Measurement Applet. The Java applet implements 38
types of tests, some with a number of subtests. We describe
them in detail in Section 3. The applet conducts the test
cases sequentially, but also employs multithreading to ensure
that test sessions cannot stall the entire process, and to speed
up some parallelizable tasks. As tests complete, the applet

Result Summary +/- (expandicoliapse)

an-example-network.com/ 10.1.2.3
Recorded at 16:49 PDT (23:49 UTG) on Sun, September 27 2009. Permalink. Client/server transcript

Summary of Noteworthy Events —

Minor Aberrations

Certain TCP protocols are blocked in outbound traffic

Certain UDP protocols are blocked in outbound traffic

The measured network latency was somewhat high

The measured time to set up a TCP connection was somewhat high
An HTTP proxy was detected based on added or changed HTTP traffic
The detected HTTP proxy blocks malformed HTTP requests

A detected in-network HTTP cache exists in your network

The network blocks some or all EDNS replies

Reachability Tests —

TCP connectivity (2): Note
Direct TCP access to remote FTP servers (port 21) is allowed.
Direct TCP access to remote SSH servers (port 22) is allowed.

Direct TCP access to remote SMTP servers (port 25) is allowed.

I Direct TCP access to remote DNS servers (port 53) is blocked.

Figure 2: A partial screen capture of Netalyzr’s results
page as seen by the user upon completion of all tests. The
full report is 4-10 times this size, depending on whether
the user expands the different sections.

transmits detailed test results to the back-end server; it also
sends a continuously recorded client-side transcript of the
session. Finally, we sign our applet with a certificate from a
trusted authority so that browsers indicate a valid signature.

DNS Servers. An instance of this server runs on the
front-end as well as the back-end machines. On the front-
end, it acts as the authoritative resolver for two subdomains,
.n.na.edu and .n.na.org, while on the back-ends it
receives DNS test queries generated directly from the ap-
plet rather than through the user’s DNS resolver library. The
server interprets queries for specific names as commands,
generating replies that encode values in A and CNAME
records. For example, requesting has_edns.n.na.edu
will return an A record reflecting whether the query message
indicated EDNS support. The server also accepts names
with arbitrary interior padding to act as a cache-busting
nonce, ensuring that queries reach our server.

Echo Servers. An array of simple TCP and UDP echo
servers allow us to test service-level reachability and content
modification of traffic on various ports. The servers mostly
run on well-known ports but do not implement the associ-
ated application protocol. Rather, they use their own simple
payload schema to convey timing, sequencing, and the re-
quester’s IP address and source port back to the client. An
additional server can direct a DNS request to the user’s pub-
lic address to check if the user’s NAT or gateway acts as a
proxy for external DNS requests.

Bandwidth Measurement Servers. To assess band-
width, latency, buffer sizing, and packet dynamics (loss,



reordering, duplication) we employ dedicated UDP-based
measurement servers. Like the echo servers, these use a cus-
tom payload schema that includes timing information, se-
quence numbers, instructions regarding future sending, and
aggregate counters.

Path MTU Measurement Server. To measure direc-
tional path MTUs, we use a server that can capture and trans-
mit raw packets, giving us full access to and control over all
packet headers.

Storage. To maintain a complete record of server-side
session activity, we record all relevant network traffic on the
front- and back-end machines, except for the relatively high-
volume bandwidth tests. Since Java applets do not have the
ability to record packets, we cannot record such traces on the
client side.

Session Management. The back-end web servers es-
tablish and maintain session state as test sessions progress,
identifying sessions via RFC 4122 UUIDs. We serialize
completed session state to disk on the back-end hosts and
periodically archive it on the front-end. When viewing a ses-
sion summary, the front-end web server redirects the request
to the appropriate back-end (encoded in the session ID) if it
does not have the state locally, and the back-end web server
does the opposite, with cycle detection to avoid looping.

3. MEASUREMENTS CONDUCTED

We now describe the types of measurements Netalyzr con-
ducts and the particular methodology used. We begin with
layer 3 measurements (addressing, fragmentation, MTU,
raw performance, IPv6 support) and then progress to higher
layers (general service reachability, DNS, HTTP), finishing
with a discussion of user feedback and tests we chose to
omit.

3.1 Network-layer Information

Addressing. We obtain the client’s local IP address via
the Java API, and use a set of raw TCP connections and UDP
flows to our echo servers to learn the client’s public address.
From this set of connections we can identify the presence
of NAT, and if so how it renumbers addresses and ports. If
across multiple flows we observe more than one public ad-
dress, then we assess whether the address flipped from one
to another—indicating the client changed networks while the
test was in progress—or alternates back and forth. This lat-
ter implies either the use of load-balancing, or that the NAT
does not attempt to associate local systems with a single con-
sistent public address but simply assigns new flows out of a
public address block as convenient. (Only 1% of sessions
included an address change from any source.)

IP Fragmentation. We test for proper support of IP frag-
mentation (and also for MTU measurement; see below) by
sending UDP payloads to our test servers. We first check
for the ability to send and receive fragmented UDP data-
grams. In the applet — server direction, we send a 2 KB
datagram which, if received, generates a small confirmation

response. Due to the prevalence of Ethernet framing, we
would expect most clients to send this packet in fragments,
but it will always be fragmented by the time it reaches the
server. We likewise test the server — applet direction by
our server transmitting (in response to a small query from
the client) a 2 KB message to the client. This direction will
definitely fragment, as the back-end nodes have an interface
MTU of 1500 bytes.

If either of the directional tests fails, the applet performs
binary search to find the maximum packet size that it can
successfully send/receive unfragmented.

The applet also tries to send and receive packets with 1471
bytes of UDP payload (normally yielding a 1499-byte IP
packet) which would maximize the payload on an Ethernet
network without fragmentation. This checks for the exis-
tence of an “MTU hole”, where packets can be sent unfrag-
mented by the endpoint but cannot be refragmented prop-
erly when passing through a path MTU bottleneck, either
because the bottleneck is functioning incorrectly or the host
sent the packet with DF set.

Path MTU. A related set of tests conducts path MTU
probing. The back-end server for this test supports two
modes, one for each direction. In the applet — server di-
rection, the applet sends a large UDP datagram, resulting in
fragmentation. The server monitors arriving packets and re-
ports the IP datagram size of the entire original message (if
received unfragmented) or of the original message’s initial
resulting fragment. This represents a lower bound on MTU
in the applet — server direction, since the first fragment’s
size is not necessarily the full path MTU. (Such “runts” oc-
curred in only a handful of sessions).

In the server — applet direction, the applet conducts a bi-
nary search beginning with a request for 1500 bytes. The
server responds by sending datagrams of the requested size
with DF set. In each iteration one of three cases occurs. First,
if the applet receives the DF-enabled response, its size is no
more than the path MTU. Second, if the response exceeds
the path MTU, the server processes any resulting ICMP
“fragmentation required” messages and sends to the applet
the attempted message size, the offending location’s IP ad-
dress, and the next-hop MTU conveyed in the ICMP mes-
sage. Finally, if no messages arrive at the client, the applet
infers that the ICMP “fragmentation required” message was
not generated or did not reach the server, and thus a path
MTU problem exists.

Latency, Bandwidth, and Buffering. @We measure
packet delivery performance in terms of round-trip latencies,
directional bandwidth limits, and buffer sizing. With these,
our primary goal is not to measure capacity itself (which nu-
merous test sites already address [31]), but as a means to
measure the sizing of bottleneck buffers, which can signifi-
cantly affect user-perceived latency. We do so by measuring
the increase in latency between quiescence and that experi-
enced during the bandwidth test, which in most cases will
briefly saturate the path capacity in one direction and thus



fill the buffer at the bottleneck.

Netalyzr conducts these measurements in two basic ways.
First, early in the measurement process it starts sending in
the background small packets at a rate of 5 Hz. We use this
test to detect transient outages, such as those due to a poor
wireless signal.

Second, it conducts an explicit latency and bandwidth test.
The test begins with a 10 Hz train of 200 small UDP pack-
ets, for which the back-end’s responses provide the base-
line mean latency used when estimating buffer sizing ef-
fects. The test next sends a train of small UDP packets that
elicit 1000-byte replies, with exponentially ramping up (over
10 seconds) the size in slow-start fashion: for each packet
received, the applet sends two more. In the second half of
the interval, the applet measures the sustained rate at which
it receives packets, as well as the average latency. (It also
notes duplicated and reordered packets over the entire run.)
After waiting 5 seconds for queues to drain, it repeats with
sizes reversed, sending large packets to the server that trig-
ger small responses. Note that most Java implementations
will throttle sending rates to < 20 Mbps, imposing an upper
bound on the speed we can measure.

IPv6 Adoption. To measure IPv6 connectivity we have
to rely on an approximation because neither our institution
nor Amazon EC2 supports [Pv6. However, on JavaScript-
enabled hosts the analysis page requests a small logo from
ipv6.google. com, reachable only over IPv6. We report
the outcome of this request to our HTTP server. Since we
cannot prevent this test from possibly fetching a cached im-
age, we could overcount IPv6 connectivity if the user’s sys-
tem earlier requested the same resource (perhaps due to a
previous Netalyzr run from an IPv6-enabled network).

3.2 Service Reachability

To assess any restrictions the user’s connectivity may im-
pose on the types of services they can access, we attempt
to connect to 25 well-known services along with a few ad-
ditional ports on the back-end. For 80/tcp and 53/udp
connectivity, the applet speaks proper HTTP and DNS, re-
spectively. We test all other services using our echo server
protocol as described in Section 2.

In addition to detecting static blocking, these probes also
allow us to measure the prevalence of proxying. In the ab-
sence of a proxy, our traffic will flow unaltered and the re-
sponse will include our public IP address as expected. On
the other hand, protocol-specific proxies will often transform
this non-protocol-compliant response into an error, or sim-
ply abort the connection. Such proxies can reside on the end
host (e.g., as part of an AV system) or in the network, with
additional protocol information such as banners or headers
often suggesting the source.

3.3 DNS Measurements

Netalyzr performs extensive measurements of DNS be-
havior, since DNS manipulations and subtle errors can have

a major impact on a user’s network experience. We imple-
ment two levels of measurement, restricted and unrestricted.
Restricted measurements comply with Java’s default same-
origin policy, which for most JVMs allows the lookup of
arbitrary names but only ever returns the IP address of the
origin server, or throws an exception if the result is not the
origin server’s address. If however the user trusts the applet,
then we can look up arbitrary names through the system’s
DNS resolver unrestrictedly, allowing us to conduct substan-
tially more comprehensive testing. We refer to names corre-
sponding to Netalyzr’s actual domain as infernal, and any
others as external. We can only look up the latter if unre-
stricted.

As mentioned earlier, our DNS authority server interprets
requests for specific names as commands telling it what sort
of response to generate. We encode Boolean results by re-
turning the IP address of the back-end service for frue and
the address of an unrelated host in our institution for false.
For results that return names, we indicate failure with the
hostname return_false.

In our discussion, we abbreviate the fully
qualified  hostname of the  back-end node
as follows. First, n.na.edu stands  for
node.netalyzr.icsi.berkeley.edu (likewise
n.na.orqg stands for node.netalyzr.icir.org).
Second, if we give only a hostname name, it stands
for name.node.netalyzr.icsi.berkeley.edu.
Finally, we indicate the presence of a pseudo-random nonce
value (to ensure cache penetration) using “nonce” in the
name.

Glue Policy. One important but subtle aspect of the DNS
resolution process concerns the acceptance and promotion
of response data in the Authoritative or Additional records
of a response, commonly referred to as “glue” records. Ac-
ceptance of such records can boost performance by avoid-
ing future lookups, but also risk cache poisoning attacks [6].
Assessing the acceptance of these records is commonly re-
ferred to as “bailiwick checking,” but the guidelines on the
procedure allow latitude in how to conduct it [11]. Netalyzr
leverages glue acceptance to enable tests of the DNS resolver
itself.

We first check acceptance of arbitrary A records in the
Additional section by sending lookups of special names
(made distinct with nonces) that return particular additional
A records. We then look up those additional names directly
to see whether the resolver issues new queries for the names
(which would return false when those names are queried di-
rectly) or answers them from its cache (returning true), in-
dicating that the resolver accepted the glue. We then like-
wise check for caching of Authority A records. Finally, we
check whether the server will automatically follow CNAME
aliases. In this test, the response provides an Answer of a
CNAME for return_false, with an Additional record
encoding return_false as true. Thus, the query eval-
uates as frue only if the resolver accepts the A record asso-



ciated with the CNAME.

DNS Server Identification and Properties. We next
probe more general DNS properties, including resolver iden-
tity, IPv6 support, 0x2 0 support [8], respect for short TTLs,
port randomization for DNS requests, and whether the user’s
NAT, if present, acts as a DNS proxy on its external IP ad-
dress.

When able to conduct unrestricted DNS measurements,
we identify the resolver’s IP address (as seen by our server)
by returning it in an A record in response to a query for
server.nonce.n.na.edu. This represents the address
of the final server sending the request, not necessarily the
one the client uses to generate the request. During our beta-
testing we changed the applet code to conduct this query
multiple times because we observed that some hosts will
shift between DNS resolvers, and some DNS resolvers ac-
tually operate as clusters.

We test IPv6 AAAA support by resolving
ipv6_set .nonce. We expect the resolver to request
at least an A record for this name, and if it supports IPv6
then also a AAAA record. We discard the server’s reply for
the A record and then then resolve ipv6_check.nonce.
When the A record request for this name arrives, the server
checks whether it saw a AAAA request for the previous
name (which might have arrived after the original A request,
and thus could not have been reported initially), which it
indicates by whether it returns frue for the second A request.
By proceeding in this fashion, we can assess resolver
support for IPv6 even if the client itself does not support it.

Queries for the name 0x2 0 return true if the capitalization
in a mix-cased request retains the original mix of casing.
This detects non-0x2 0-compliant resolvers that change the
capitalization of requested names.

If the DNS resolver accepts glue records for nameservers
(NS responses in Authority or Additional), we leverage this
to check whether the resolver respects short TTLs. Re-
sponses to the name tt10 or tt11 place a glue record for
return_false in the Authoritative section with a TTL
of 0 or 1 seconds, respectively. A subsequent fetch of
return_false reveals whether the short TTLs were re-
spected. (We can’t simply use A records for this test because
both the browser and end host may cache these records in-
dependently.)

We also use lookups of glue_ns.nonce to measure re-
quest latency. If the DNS resolver accepts glue records,
it then also looks up return_false.nonce to check the
latency for a cached lookup. We repeat this process ten
times and report the mean value to the server, and also val-
idate that return_false.nonce was fetched from the re-
solver’s cache rather than generating a new lookup.

Finally, we test DNS port randomization. For unrestricted
measurements, we perform queries for port . nonce, which
the server answers by encoding in an A record the source
port of the UDP datagram that delivered the request. For
restricted measurements, the applet sends several queries for

dns_rand_set and then checks the result by a query for
dns_rand_check, with the latter resolving as frue if the
ports seen by our DNS server appeared non-monotone.

EDNS, DNSSEC, and actual DNS MTU. DNS resolvers
can advertise the ability to receive large responses using
EDNS [29], though they might not actually be capable of
doing so. For example, some firewalls will not pass IP frag-
ments, creating a de-facto DNS MTU of 1478 bytes for Eth-
ernet framing. Other firewall devices may block all DNS
replies greater than 512 bytes under the out-of-date assump-
tion that DNS replies cannot be larger. While today small
replies predominate, a lack of support for large replies poses
a significant concern for DNSSEC deployment, as it will re-
sult in unpredictable performance degradation when DNS
replies exceed unstated and hidden limits.

We measure the prevalence of this limitation by issuing
lookups (i) to determine whether requests arrive indicating
EDNS support, (ii) to measure the DNS MTU (for unre-
stricted measurements), and (iii) to check whether the re-
solver requests DNSSEC records. For the first, we look up
has_edns, which returns frue if the request contained an
EDNS OPT pseudo-record. Responses for edns_mtu en-
code the advertised EDNS MTU in the lower 16 bits of an
A record, and want s_dnssec returns true if the DO (“use
DNSSEC”) flag is set in an EDNS pseudo-record.

That a DNS resolver advertises (via EDNS) the ability to
receive large responses does not guarantee that it actually
can. We test its ability by requesting names edns_medium
and edns_large, padded to 1300 and 1700 bytes, respec-
tively. (We pad the replies to those sizes by adding Addi-
tional CNAME records.) Their arrival at the client indicates
the resolver an indeed receive larger DNS replies.

During beta-testing we made this test more precise: the
server answers requests for ednspadding X with a re-
sponse padded to exactly X bytes of DNS payload. We use
this mechanism and binary search to determine the actual
maximum supported by the resolver (whether or not it ad-
vertises EDNS).

NXDOMAIN Wildcarding. Some DNS operators con-
figure their resolvers to perform “NXDOMAIN wildcard-
ing”, where they rewrite hostname lookups that fail with a
“no such domain” error to instead return an A record for
the IP address of a web server. The presumption of such
blanket rewriting is that the original lookup reflected web
surfing, and therefore returning the impostor address will
lead to the subsequent HTTP traffic coming to the opera-
tor’s web server, which then typically offers suggestions re-
lated to the presumed intended name. Such rewriting—often
motivated by selling advertisements on the landing page—
corrupts the web browsers’ URL auto-complete features,
and, worse, breaks protocol semantics for any non-HTTP
application looking a hostname.

If unrestricted, the applet checks for this behavior
by querying for a series of names in our own do-
main namespace, and which do not exist. We first



look up www.nonce.com. If this yields an IP ad-
dress, we have detected NXDOMAIN wildcarding, and
proceed to probe the behavior in more detail, in-
cluding simple transpositions (www.yahoo.cmo), other
top-level domains (www.nonce.org), non-web domains
(fubar .nonce.com), and domain internal to our site
(nxdomain.n.na.edu). The applet also attempts to con-
tact the host returned for www . nonce.com on 80/tcp to
obtain the imposed web content, which we log.

DNS proxies, NATs, and Firewalls. Another set of DNS
problems arise not due to ISP interference but misconfigured
or misguided NATSs and firewalls. If the applet operates un-
restricted, it conducts the following tests to probe for these
behaviors. First, it measures DNS awareness and proxy-
ing. Our servers answer requests for entropy .n.na.edu
with a CNAME encoding the response’s parameters, includ-
ing the public address, UDP port, DNS transaction ID, and
presence of 0x20 encoding. The applet sends such DNS
requests directly to the back-end server, bypassing the con-
figured resolver. If it observes any change in the response
(e.g., a different transaction ID or public address), then
we have found in-path DNS proxying. The applet makes
another request directly to the back-end server, now with
deliberately invalid format, to which our server generates
a similarly broken reply. If blocked, we have detected a
DNS-aware middlebox that prohibits non-DNS traffic on
53/udp. The applet then issues direct queries for the names
edns_large and edns_medium (discussed above), and
now also edns_small (a 400-byte response with EDNS),
to check whether the NAT or firewall has problems handling
either EDNS replies or large DNS responses.

During beta-testing we added a series of tests for the pres-
ence of DNS proxies in NAT devices. NATSs often include
such a proxy, returning via DHCP its local address to clients
as the DNS resolver location if the NAT has not yet itself ac-
quired an external DNS resolver.> Upon detecting the pres-
ence of a NAT, the applet assumes the gateway’s local ad-
dress is the a.b.c.1 address in the same /24 as the local IP
address® and sends it a query for entropy.n.na.edu.
Any reply indicates with high probability that the NAT im-
plements a DNS proxy. In addition, we can observe to where
it forwards the request based on the client IP address seen by
our server.

During our beta-testing we became aware of the possi-
bility that some in-gateway DNS resolvers act as open re-
lays for the outside (i.e., for queries coming from external
sources), enabling amplification attacks [22] and other mis-
chief. We thus added a test in which the the applet instructs
the back-end DNS server to send a UDP datagram contain-
ing a DNS request for entropy .n.na.edu to the public
IP address of the client to see if it elicits a resulting response

2Once the NAT obtains its external DHCP lease, it then forwards
all DNS requests to the remote resolver.
3 We assume this is the address, rather than probe for it, to avoid
creating any apparent scanning activity.

at our DN server.

Name Lookup Test. Finally, if unrestricted the applet
looks up a list of 70+ common names, including major
search engines, advertisement providers, financial institu-
tions, email providers, and e-commerce sites. It uploads the
results to our server, which then performs reverse lookups
to test the forward lookups for consistency. This testing un-
earthed numerous aberrations, as discussed below.

3.4 HTTP Proxying and Caching

For analyzing HTTP behavior, the applet employs two
different methods: using Java’s high-level API, or its low-
level TCP sockets (for which we implement our own HTTP
logic). The first allows us to assess behavior imposed on
the user by their browser (such as proxy settings), while the
latter reflects behavior imposed by their access connectiv-
ity. (For the latter we take care to achieve the same HTTP
“personality” as the browser by having our server mirror the
browser’s HTTP request headers to the applet so it can em-
ulate them in subsequent low-level requests.) In general, the
applet co-ordinates measurement tasks with the server using
URL-encoded commands that instruct the server to deliver
specific kinds of content (such as cache-sensitive images),
report on properties of the request (e.g., specific header val-
ues), and establish and store session state.

Proxy Detection. We detect proxy configuration settings
by monitoring request and result headers, as well as the
server-perceived client address of a test connection. Dif-
ferences when using the high-level API versus the socket
API indicate the presence of a configured proxy. We first
send a low level message with specific headers to the web
server. The server mirrors the headers back to the applet, al-
lowing the applet to conduct a comparison. Added, deleted,
or modified headers flag the presence of an in-path proxy. To
improve the detectability of such proxies, we use eccentric
capitalization of header names (e.g. User—AgEnt) and ob-
serve whether these arrive with the same casing. A second
test relies on sending an invalid request method (as opposed
to GET or POST). This can confuse proxies and cause them
to terminate the connection. A final test sets the Host re-
quest header to www.google.com instead of Netalyzr’s
domain. Some proxies use this header’s value to direct the
outgoing connection [13]. The applet monitors for unex-
pected content—either Google’s HTML banner, or a 302
redirect to a country-specific Google page. If seen, this rep-
resents a significant security vulnerability, as such proxies
will allow Java and Flash to violate same-origin policies ar-
bitrarily. However, we saw only a handful of instances of
such behavior.

Caching policies, Content Transcoding, and File-type
Blocking. We next test for in-network HTTP caching. For
this testing, our server provides two test images of identical
size (67 KB) and dimensions (512-512 pixels), but each the
color-inverse of the other. Consecutive requests for the im-
age result in alternating images returned to the applet. We



can thus reliably infer when the applet receives a cached im-
age based on the unchanged contents (or an HTTP 304 status
code, “Not Modified”). We conduct four such request pairs,
varying the cacheability of the images via various request
and response headers, and including a unique identifier in
each request URL to ensure each session starts uncached.

The applet can also identify image transcoding or block-
ing by comparing the received image’s size to the expected
one. In the post-beta codebase, the applet uploads any
changed content for off-line analysis.

Finally, we test for content-based filtering. The ap-
plet downloads (i) an innocuous Windows PE executable
(notepad.exe), (i) a small MP3 file, (iii) a bencoded BitTor-
rent download file (for a Linux distribution’s DVD image),
and (iv) the EICAR test “virus”,* a benign file that AV ven-
dors recognize as malicious for testing purposes.

3.5 User Feedback

Because we cannot readily measure the physical context
in which the user runs Netalyzr, we include a small, optional
questionnaire in the results page. Some 19% of the users
provided feedback. Of those, 57% reported using a wired
rather than a wireless network; 17% reported running Net-
alyzr at work, 79% from home, 2% on public networks, and
2% on “other” networks.

3.6 Intentional Omissions

We considered several tests for inclusion but decided not
to do so for one of two reasons. First, some tests can re-
sult in potentially destructive or abusive effects, particu-
larly if run frequently or by multiple users. In this regard
we decided against tests to measure the NAT’s connection
table size (which could disrupt unrelated network connec-
tions purged from the table), fingerprint NATs by connect-
ing to its internal web-administration interface (which might
expose sensitive information), general scanning either lo-
cally or remotely, and sustained high-bandwidth tests (such
as BitTorrent throttling, for which alternative, bandwidth-
intensive tests exist [10]). Another reason to omit a test
concerns potential long-term side-effects for the users them-
selves. These could occur for technical reasons (e.g., we
contribute towards possible upload/download volume caps)
or legal/political ones (e.g., tests that attempt to determine
whether access to certain sites suffers from censorship). Fi-
nally, we do not store tracking cookies in the user’s browsers,
since we do not aim to collect mobility profiles and can man-
age sessions using state on our servers.

4. DATA COLLECTION

We began running Netalyzr publicly in June 2009 and
have kept it available continuously. We initially offered
the service as a “beta” release (termed BETA), and for the
most part did not change the operational codebase until

4http: //www.elicar.org/anti_virus_test_file.htm

January 2010, when we rolled out a substantial set of ad-
justments and additional tests (RELEASE). These comprise
about 68% and 32% of the measurements, respectively. Un-
less otherwise specified, discussion refers to the combination
of both datsets.

Website Operation. To date we have collected 112,239
sessions from 86,252 public IP addresses. The peak rate
of data acquisition occurred during the June roll-out, with a
maximum of 1,452 sessions in one hour. This spike resulted
from mention of our service on several web sites. A simi-
lar but smaller spike occurred during the January relaunch,
resulting in a peak load of 373 sessions in one hour.

Calibration. We undertook extensive calibration of the
measurement results to build up confidence in the coherence
and meaningfulness of our data. A particular challenge in
realizing Netalyzr has been that it must operate correctly in
the presence of a wide range of failure modes. While we put
extensive effort into anticipating these problems during de-
velopment, subsequent calibration served as a key technique
to validate our assumptions and learn how the tests actually
work on a large scale. In addition, it proved highly benefi-
cial to employ someone for this task who was not involved in
developing the tests, as doing so avoided incorporating nu-
merous assumptions implicitly present in the code. Finally,
we emphasize the importance of capturing subtle flaws in
the data and uncovering inconsistencies that would other-
wise skew the analysis results or deflate the scientific value
of the data.

We based our calibration efforts on the BETA dataset, us-
ing it to identify and remedy sources of errors before begin-
ning the RELEASE data collection. To do so, we assessed
data consistency individually for each of the tests mentioned
in § 3. We emphasized finding missing or ambiguous values
in test results, checking value ranges, investigating outliers,
confirming that each test’s set of result variables exhibited
consistency (e.g., examining that mutual exclusiveness was
honored, or that fractions added up to a correct total), en-
suring that particular variable values complied with corre-
sponding preconditions (e.g., availability of raw UDP capa-
bility reliably enabling certain DNS tests), and searching for
systematic errors in the data.

To our relief, this process did not uncover any major flaws
in the codebase or the data. The most common problems we
uncovered were ambiguity (for example, in distinguishing
silent test failures from cases when a test was not executed at
all) and inaccuracies in the process of importing the data into
our session database. The RELEASE version of the codebase
only differs from BETA in the presence of more unambigu-
ous and extensive result reporting (along with the addition
of new tests).

Identified Measurement Biases. A disadvantage of
website-driven data collection is vulnerability to sudden re-
ferral surges from specific websites—in particular if these
entail a technologically biased user population that can skew
our dataset. In addition, our Java runtime requirement could
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discourage non-technical users whose systems do not have
the runtime installed by default. It also precludes the use of
Netalyzr on many smartphone platforms. We now analyze
the extent to which our dataset contains such bias.

The five sites referring the most users to Netalyzr
are: stumbleupon.com (25%), lifehacker.com (14%), slash-
dot.org (13%), google.com (7%), and heise.de (7%). The
context of these referrals affects the number of sessions we
record for various ISPs. For example, most users arriving
from slashdot.org did so in the context of an article on al-
leged misbehavior by Comcast’s DNS servers, likely con-
tributing to making their customers the biggest share of our
users (10.9% of our sessions originate from Comcast’s IP
address ranges). Coverage in Germany via heise.de likely
drove visits from customers of Deutsche Telekom, account-
ing for 2.6% of the sessions. We show a summary of the
dominant ISPs in our dataset in Table 3 below.

The technical nature of our service introduced a “geek
bias” in our dataset, which we can partially assess by us-
ing the User—Agent HTTP request headers of our users
to infer browser type and operating system. Here we com-
pare against published “typical” numbers [33, 34], which we
give in parentheses. 39.8% (90%) of our users ran Windows,
8.1% (1.0%) used Linux, and 14.3% (5.9%) used MacOS.
We find Firefox over-represented with 60.9% (28.3%) of
sessions, followed by 18.8% (59.2%) for Internet Explorer,
15.6% (4.5%) for Safari, and 2.9% (1.7%) for Opera. This
bias also extends to the choice of DNS resolver, with 12% of
users selecting OpenDNS as their DNS provider.

While such bias is undesirable, it can be difficult to avoid
in a study that requires user participation. We can at least
ameliorate distortions from it because we can identify its
presence. Its primary effect concerns our characterizations
across ISPs, where we endeavor to normalize accordingly, as
discussed below. We also note that technically savvy users
may be more likely to select ISPs with fewer connectivity
deficiencies, which would mean the prevalence of problems
we observe may reflect underestimates.

S. DATA ANALYSIS

We now turn to an assessment of the data gathered from
Netalyzr measurements to date. In our discussion we fol-
low the presentation of the different types of tests above, be-
ginning with layer 3 measurements and then progressing to
general service reachability and specifics regarding DNS and
HTTP behavior.

5.1 ISP and Geographic Diversity

We estimate the ISP and location of Netalyzr users by in-
specting reverse (PTR) lookups of their public IP address,
if available; or else the final Start-of-Authority record in the
DNS when attempting the PTR lookup. We found these re-
sults available for 97% of our sessions.

To extract a meaningful organizational name, we started
with a database of “effective TLDs,” i.e., domains for

Figure 3: Global locations of Netalyzr runs.

which the parent is a broad, undifferentiated domain such
as gouv. fr [19], to identify the relevant name preceding
these TLDs. Given this approach, our dataset consists of
sessions from 6,868 organizations (see Table 3 below for the
15 most frequent) across 182 countries, as shown in Fig-
ure 3. Activity however was dominated by users in the USA
(48.2%), the EU (31.3%, with Germany accounting for 9.7%
and Great Britain for 7.9%), and Canada (5.4%). 10 coun-
tries contributed sessions from more than 1,000 addresses,
46 from more than 100, and 97 from more than 10.

5.2 Network-Layer Information

Network Address Translation. Unsurprisingly, we find
NATs very prevalent among Netalyzr users (90% of all ses-
sions). 79% of these sessions used the 192.168/16 ad-
dress range, 16% used 10/8, and 4% used 172.16/12.
2% of the address-translated sessions employed some form
of non-private address (either public or not allocated for pri-
vate use). We did not discern any particular pattern in these
sessions or their addresses; some were quite bizarre.

Port sequencing behavior. For more recent Netalyzr
runs we have tracked potential NAT port renumbering ex-
plicitly, recording port numbers as seen by both the client
and the server for a batch of 10 TCP connections. Of
19,510 sessions, 33% exhibit port renumbering. Of these,
8.9% appear random,’ while 89.0% renumber in a strictly
monotone-increasing fashion. We find a median “spread”
for this sequence (range from smallest port to largest, inclu-
sively) of 10, indicating renumbering that exactly reflects the
tests we generated. A number of sessions have much higher
spread, however (with a mean of 102). For these we have
ruled out little-endian increments (i.e., by 256 rather than
by 1) for other than a handful of sessions, but have not at
this point assessed whether sessions with higher means con-
tain significant forward jumps. Such jumps could occur due
to effects other than the NAT concurrently processing addi-
tional connections separate from our measurements. Identi-
fying and removing these would then enable us to estimate
the level of multiplexing apparently present in the user’s ac-
cess link.

>We use a Wald-Wolfowitz test with sequence threshold 4 to mea-
sure randomness.
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Figure 4: Average up/downstream bandwidths for countries with > 10 sessions (left) and the 20 most prevalent ISPs
(right). Circle areas are proportional to prevalence in the dataset, and diagonal lines mark symmetric upload and

download capacity.

IPv6. We found IPv6 support to be rare but non-
negligible: 4.5% of sessions fetched the logo from ipvé.
google.com. As discussed above, this represents an upper
bound due to possible caching effects.

Fragmentation. Overall, we find that fragmentation is
not as reliable as desired [16, 26]. The RELEASE included
a significant evaluation of UDP fragmentation behavior, for
which we found 8% of the sessions unable to send 2 KB
UDP packets, and likewise 8% unable to receive them.

We also found that 3% of the sessions which could send
2 KB packets could not send 1500 B packets. We find that
88% of these sessions come from Linux systems, strongly
suggesting the likely cause to be Linux’s arguably incorrect
application of Path MTU discovery to UDP traffic, sending
unfragmented UDP with DF set unless the system previously
received an ICMP “fragmentation required” message from
the recipient’s path. Java, likewise, does not appear to re-
transmit in the face of such ICMP feedback, instead raising
an exception which Netalyzr reports as a failure.

Regarding the path MTU from our server to the client,
80% of the sessions exhibited a path MTU of 1500 B, fol-
lowed by 1492 B (15%) which suggests a prevalence of PPP
over Ethernet (PPPoE). We also observe small clusters at
1480 B, 1476 B, 1460 B, and 1458 B, but these are rare.
Only 1% reported an MTU less than 1450 bytes.

For sessions with an MTU < 1500 B, only 58% had a
path that successfully sent a proper “fragmentation required”
ICMP message back to our server. This finding reinforces
that systems should avoid PMTU for UDP, and for TCP
should provide robustness in the presence of MTU black
holes [18].

Latency and Bandwidth. Figure 4 illustrates the bal-
ance of upstream vs. downstream capacities for countries
and ISPs. Figure 5 shows the distribution of download band-
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Figure 5: PDF of download bandwidths for the three
most prominent ISPs in our dataset.

widths for particularly prominent ISPs. Two years after the
study by Dischinger et al. [9] our results still partially match
theirs, particularly for RoadRunner.

From the most aggregated perspective, we observed an
average download bandwidth of 6.7 Mbps and for up-
load 2.7 Mbps. We find far more symmetric band-
widths for sessions that users self-reported as at work
(10 Mbps/8.2 Mbps), and reported home connections
exhibited far more asymmetry and lower bandwidth
(6.3 Mbps/1.6 Mbps). Public networks exhibited less down-
load bandwidth but more symmetry (3.4 Mbps/2.3 Mbps).


ipv6.google.com
ipv6.google.com

We saw less variation in the aggregate perspective for qui-
escent latency. Sessions reported as run at work had an av-
erage latency of 100 ms, while home networks experienced
120 ms and public networks 180 ms of latency.

Network Uplink Buffering. A known problem [9] con-
firmed by Netalyzr concerns the substantial over-buffering
present in the network, especially in end-user access devices.
Netalyzr attempts to measure this by recording the amount of
delay induced by the high-bandwidth burst of traffic once it
exceeds the actual bandwidth obtained. We then infer the
buffer capacity as equal to the sustained sending rate mul-
tiplied by the additional delay induced by this test. Since
the test uses UDP, no back-off comes into play to keep the
buffer from completely filling, though we note that Netalyzr
cannot determine whether the buffer did indeed actually fill
to capacity.

When plotting measured upload bandwidth vs. inferred
upload buffer capacity (Figure 6), several features stand out.
First, we note that because we keep the test short in order
to not induce excessive load on the user’s link, sometimes
Netalyzr cannot completely fill the buffer, leading to noise,
which also occurs when the bandwidth is quite small (so we
do not have a good “quiescence” baseline). Next, horizontal
banding in the figure reflects commonly provided levels of
service.

Most strikingly, we observe frequent instances of very
large buffers. Vertical bands reflect common buffer sizes,
which we find fall into powers of two, with many sessions
exhibiting buffers of 128 KB or 256 KB in size. Even with a
relatively fast 8 Mbps uplink, such buffers can easily induce
250 ms of additional latency during file transfers. For a not
atypical 1 Mbps uplink, such buffers translate into well over
1 sec queueing delays.

We can leverage the biases in our data to partially val-
idate these results. By examining only Comcast cus-
tomers, we would naturally expect only one or two buffer
sizes to predominate, due to more homogeneous hardware
deployments—and indeed the Ruthann figure for just Com-
cast manifests sizes mainly at 128 KB and 256 KB. In this
figure, another more subtle feature stands out with the small
cluster that lies along a diagonal. Its presence suggests that
a small number of customer have access modems that size
their buffers directly in terms of time, rather than memory.

In both plots, the scattered values above 256 KB that lack
any particular power-of-two alignment suggest the possi-
ble existence of other buffering processes in effect for large
UDP transfers. For example, we have observed that some of
our notebook wireless connections occasionally experience
larger delays during this test apparently because the note-
book buffers packets at the wireless interface (perhaps due
to use of ARQ) to recover from wireless congestion.

Yet even given noise introduced by other sources, the con-
clusion is inescapable: over-buffering is endemic in access
devices, and they would significantly benefit from dynami-
cally sized buffers that introduce only a fixed delay before
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dropping packets.

Packet Duplication, Reordering, Outages, and Cor-
ruption. The bandwidth tests deliberately stress the net-
work, not only to test the buffer capacity but to induce du-
plication or reordering. For these tests, the bottleneck point
receives 1000 B packets at up to 2x the maximum rate of the
bottleneck. Only 1% of the uplink tests exhibited packet du-
plication, while 16% included some reordering. For down-
link tests, 2% exhibited duplication and 33% included re-
ordering. The prevalence of reordering qualitatively matches
considerably older results [2]; more direct comparisons are
difficult because the inter-packet spacing in our tests varies,
and reordering rates fundamentally depend on this spacing.

In addition, the RELEASE data includes the background
monitoring process that enables us to check for transient
outages. We define an outage as a period with a loss of
> 3 background test packets (sent at 5 Hz) in a row. We
find fairly frequent outages, with 9% of sessions experienc-
ing one or more such events (45% of these reflect single loss
bursts, while 28% included > 5 bursts). These burst are gen-
erally short, with 48% of sessions with losses having outages
<1 sec.

We also find a significant correlation between such bursts
and whether the user reported use of a wireless vs. wired
network, with 10% of the former sessions exhibiting at least
one outage, versus only 5% of the wired sessions.

Finally, analysis of the server-side packet traces finds no
instances of TCP or IP checksum errors. We do see UDP
checksum errors at an overall rate of about 1.6 - 10~°, but
these are heavily dominated by bursts experienced by just a
few systems. The presence of UDP errors but not TCP might
suggest use of selective link-layer checksum schemes such
as UDP Lite.

5.3 Service Reachability

Table 1 summarizes the prevalence of service reachability
for the application ports Netalyzr measures. As explained
above, for TCP services we can distinguish between block-
ing (no successful connection), application-aware connec-
tivity (established connection terminated when our server’s
reply violates the protocol), and proxying (we observe al-
tered requests/responses). For UDP services we cannot in
general distinguish the second case due to the lack of ex-
plicit connection establishment.

The first four entries likely reflect ISP security policies in
terms of limiting exposure to services well-known for vul-
nerabilities and not significantly used across the wide-area
(first three) or to thwart some forms of email spam (SMTP).
For this latter, the fraction of blocking in fact appears lower
than expected, suggests that many ISPs may employ dy-
namic blocking for SMTP or other methods to fight bot in-
fections, rather than wholesale blocking of all SMTP.

The prevalence of blocking and termination
(“BLOCKED”) for FTP, however, likely arises as an ar-
tifact of NAT usage: because FTP uses a separate data
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channel, many NATs implement FTP proxies, which
presumably terminate our FTP probing when observing a
protocol violation in the response from our server.

Somewhat surprising is the prevalence of blocking for
1434 /udp, used by the Slammer worm of 2003. Likely
these blocks reflect legacy countermeasures that have re-
mained in place for years even though Slammer no longer
poses a significant threat.

The large fraction of terminated or proxied POP3 connec-
tions appears due to in-host anti-virus software that attempts
to relay all email requests. In particular, we can identify al-
most all of the proxying as due to AVG anti-virus because
it alters the banner in the POP3 dialog. We expect that the
large number of terminated IMAP connections has a similar
explanation.

We found the prevalence of terminated SIP connections
surprising. Apparently numerous NATs and Firewalls are
SIP-aware and take umbrage out our echo server’s proto-
col violation. We learned that this blocking can even occur
without the knowledge of the network administrators—a Ne-
talyzr run at a large university flagged the blockage, which
came as a surprise to the operators, who removed the restric-
tion once we reported it.

Finally, services over TLS (particularly HTTPS,
443/tcp) are generally unmolested in the network, as
expected given the end-to-end security properties that TLS
provides. Thus clearly if one wishes to construct a network
service resistant to network disruption, tunneling it over
over HTTPS should prove effective.

5.4 DNS Measurements

Selected DNS Server Properties. We measured sev-
eral DNS server properties of interest, including glue policy,
IPv6 queries, EDNS, and MTU. Regarding the first, most
resolvers behave conservatively, with only 22% accepting
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any glue records present in the Additional field, and those
only doing so for records for subdomains of the authoritative
server. Similarly, only 25% accept A records corresponding
to CNAMEs contained in the reply. On the other hand, re-
solvers much more readily (63%) accept glue records when
the glue records refer to authoritative nameservers.

We find 0x20 usage scarce amongst resolvers (1.8%
of sessions). However, only 4% removed capitalizations
from requests, which bodes well for 0x20’s deployability.
Similarly, only a minuscule number of sessions incorrectly
cached a O-TTL record, and none cached a 1 sec TTL record
for two seconds.

We quite commonly observe requests for AAAA (IPv6)
records (12% of sessions), perhaps largely due to a com-
mon Linux default rather than a resolver property, as 38% of
sessions with a Linux-related User-Agent requested AAAA
records.

The prevalence of EDNS and DNSSEC in requests is sig-
nificant but not universal, due to BIND’s default behavior of
requesting DNSSEC data in replies even in the absence of a
configured root of trust. 51% of sessions used EDNS-aware
DNS resolvers, with 48% of sessions DNSSEC-enabled.
Most cases where we observe an advertised MTU show the
BIND default of 4096 B (94%), but some other MTUs also
occur, notably 512 B (3.4%), 2048 B (1.7%) and 1280 B
(0.3%)

The prevalence of DNSSEC-enabled resolvers does not
mean transition to broad use of DNSSEC will prove pain-
less, however. For EDNS sessions with an advertised MTU
of > 1800 B, 14% failed to fetch the large EDNS-enabled
reply and 2.1% for the medium-sized one. This finding sug-
gests a common failure where the DNS resolver is connected
through a network that either won’t carry fragmented UDP
traffic or assumes that DNS replies never exceed 1500 B
(since edns_medium is unlikely to be fragmented). Since



INTERFERENCE (%)

SERVICE PORT BLOCKED CLOSED PROXIED
NetBIOS 139T 51.0 1.0

SMB 445 T 50.3 1.0

RPC 135T 46.2 1.2

SMTP 25T 25.7 8.2 1.0
FTP 21T 20.0 3.7 0.1
MSSQL 1434 U0 11.1

SNMP 161 T 74 0.2

BitTorrent 6881 T 6.7 0.5

AuthSMTP 587T 6.6 0.2 0.7
SecureIMAP 585T 6.2 0.2

Netalyzr Echo 1947 T 6.1

SIP 5060 T 5.8 49
SecureSMTP 465 T 5.7 0.3 <0.1
PPTP Control 1723 T 5.5 5.1 <0.1
OpenVPN 1194 T 5.3 0.2

DNS 53T 52 0.8

IMAP/SSL 993 T 5.1 0.2 <0.1
TOR 9001 T 5.0 0.2

POP3/SSL 995 T 5.0 0.3 <0.1
IMAP 143 T 5.0 6.7 0.2
POP3 110T 4.0 7.4 6.1
SSH 22T 3.6 0.1 <0.1
HTTPS 443 T 2.3 0.4 <0.1
HTTP 80T 3.8 53

Table 1: Reachability for services examined by Netalyzr,
for all attempted connections. ‘“Blocked” reflects failure
to connect to the servers, ‘“Closed” are cases where an
in-path proxy or firewall terminated the established con-
nection after the request was sent, likely due to a pro-
tocol violation. “Proxied” indicates cases where a proxy
revealed its presence through its response, excluding the
“closed” cases. Omitted values reflect zero occurrences.

DNSSEC replies will likely exceed 1500 B, the prevalence
of this problem suggests a potentially serious deployment is-
sue that will require changes to the resolver logic.

The RELEASE data includes a full validation of DNS
MTU up to 4 KB. We find that despite not advertising a large
MTU, almost all sessions (95%) used a resolver capable of
receiving messages over 512 B. However, a significant num-
ber of sessions (16%) exhibited a measured DNS MTU of
1472 B, suggesting an inability to receive fragmented traf-
fic. This even occurred for 11% of sessions that explicitly
advertised an explicit EDNS MTU > 1472 B.

A similar problem exists in the clients themselves, but of-
ten due to a different cause. When the client directly re-
quests edns_large, edns_medium, and edns_small
from the server, 14.5%/4.5%/1.3% failed, respectively. This
suggest two additional difficulties: network devices assum-
ing DNS replies do not exceed 512 B (both edns_large
and edns_medium fail) or networks that do not handle
EDNS at all (all three fail).® We find this high failure rate

® We note that the failures we observe could instead be due to
heavy packet loss. However, each failure would require five con-
secutive losses just after a successful non-EDNS query. Further-
more, such failures should not particularly favor one type of query
over another, yet we observe only 0.09% of sessions for which
edns_medium succeeded while edns_small failed.
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quite problematic, as the experiences with NXDOMAIN
wildcarding and DNS lookups (§ 5.4) clearly demonstrate
that DNS resolvers can behave in an adversarial manner.
Thus, sound DNSSEC validation requires implementation
on the end host’s stub resolver to achieve end-to-end secu-
rity, which requires that end hosts can receive large, EDNS-
enabled DNS messages.

Another concern comes from the continued lack of DNS
port randomization [6]. This widely publicized vulnerability
was over a year old when we first released Netalyzr, but 5%
of sessions used monotone or fixed ports in DNS requests,
Manual examination suggests that these cases mostly reflect
small resolvers run by individuals or institutions— no major
ISP showed significant problems with this test.

In terms of DNS performance, it appears that DNS re-
solvers may constitute a bottleneck for many users. 9% of
the sessions required 300 ms more time to look up an name
within our domain versus the base round-trip time to our
server, and 4.6% required more than 600 ms. (We can ac-
count for likely at most 100 ms of the increase due to our
DNS server residing at a different location than the back-end
servers.)

When the user’s resolver accepted glue records (53% of
sessions), we could directly measure the performance of
DNS requests answered from the resolver’s cache. Surpris-
ingly, 10% of such sessions required over 200 ms to look up
cached items, and 3.7% required over 500 ms. Such high
latency suggests a considerable distance between the client
and the resolver, and for example we found 15% of sessions
that used OpenDNS required over 200 ms for cached an-
swers compared to 9% for non-OpenDNS sessions.

Finally, we note that numerous resolvers reflect BIND
implementations: 32% of the sessions used resolvers that
match a BIND fingerprint in terms of glue policy, CNAME
processing, and request options.

NXDOMAIN Wildcarding. We find NXDOMAIN
wildcarding quite prevalent among Netalyzr users. 28%
performing this test found NXDOMAIN wildcarding for
www . nonce . com. Even excluding users of both OpenDNS
(which wildcards by default) and Comcast (which started
wildcarding during the course of our measurements), 21%
show NXDOMAIN wildcarding. This wildcarding will dis-
rupt features such as Firefox’s address bar, which prepends
www. onto failed DNS lookups before defaulting to a
Google search.

Of further concern is the number of users affected by NX-
DOMAIN wildcarding that causes broader collateral dam-
age. Excluding Comcast and OpenDNS users’, 44% of ses-
sions with NXDOMAIN wildcarding also showed wildcard-
ing for non-www names. Wildcarding all addresses mistak-
enly assumes that only web browsers will generate name
lookups.

DNS Proxies, NATs, and Firewalls. Many NATs and

" Comcast only wildcards names beginning with www ., while the
default OpenDNS behavior wildcards all invalid names.



ALL LOOKUPS (%) OPENDNS (%)

DOMAIN FAILED BLOCKED FAILED CHANGED
www.nationwide. 23 <001 16 0.01
co.uk
ad.doubleclick.net 1.5 1.99 1.6 1.27
www.citibank.com 1.3 <0.01 0.9 0.03
windowsupdate. 0.7 0.02 05 0.01
microsoft.com
www.microsoft.com 0.7 <0.01 0.4 0.01
mail.yahoo.com 0.6 0.02 0.4 0.17
mail.google.com 0.4 0.02 0.3 0.13
www.paypal.com 0.4 0.04 0.1 0.03
www.google.com 0.3 0.01 0.2 76.71
www.meebo.com 0.3 0.03 0.2 0.79

Table 2: Reliability of DNS lookups for 10 selected
names (reflecting 107,000 sessions, 11,000 of which used
OpenDNS).

firewalls are DNS-aware and may act as DNS proxies. Al-
though we find 99% able to perform direct DNS queries,
11% of these sessions show evidence of a DNS-aware net-
work device, where a non-DNS test message destined for
53/udp failed (but proper DNS messages succeeded). Far
fewer networks contain mandatory DNS proxies, with only
1.2% of DNS-capable sessions indicating such in the form
of changed DNS transaction ID.

Although most NATs don’t automatically proxy DNS,
most contain DNS proxies. We found 67% of the NATs
would forward a DNS request to the server (with this mea-
surement restricted to the cases where Netalyzr correctly
guessed the gateway IP address). Of these, only 1.8% of
the sessions contained their own recursive resolver, rather
than forwarding the request to a different recursive re-
solver. Finally, although rare the number of NATS providing
open DNS resolution externally accessible is still significant.
When queried by our server, 4.4% of the NATed sessions
forwarded the query to our DNS servers. Such systems can
be used both for DNS amplification attacks and to probe the
ISP’s resolver.

DNS Reliability of Important Names. DNS lookups can
fail for a variety of reasons, including an unreliable local
network, problems in the DNS resolver infrastructure, and
failures in the DNS authorities or paths between the resolver
and authority. Table 2 characterizes some failure modes for
10 common domain names. For general lookups, “failure”
reflects a negative result or an exception returned to the ap-
plet by InetAddress.getByName (), or a 20 sec time-
out expiring. “Blocked” denotes the return of an obviously
invalid address (such as a loopback address).

We explored reliability for OpenDNS users in more de-
tail. OpenDNS not only performs NXDOMAIN wildcard-
ing, but also wildcards SERVFAIL (for the latter, return-
ing the IP address of hit-servfail.opendns.com).
Thus for queries generated by OpenDNS users we can dis-
tinguish between failures which occur between the client
and OpenDNS, and server failures due to problems between
OpenDNS and the DNS authority for the domain. OpenDNS
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also includes powerful features to change other names. For
www.google.com, OpenDNS will act as a proxy by de-
fault, redirecting users transparently through an OpenDNS
server. For other domains, OpenDNS allows users or do-
main administrators to block ‘“undesirable” names, with
OpenDNS instead returning the address of various blocking
Servers.

Some behavior immediately stands out. First, regardless
of resolver, we observe significant unreliability of DNS to
the client, due to packet loss and other issues. Caching also
helps, as highly popular names have a failure rate substan-
tially less than that for less common names. For example,
compare the failure rate of www.nationwide.co.uk to
that of mail.google.com, for which we presume re-
solvers will have the latter cached significantly more often.

Second, we observe high reliability for the DNS authori-
ties of the names we tested. Only 14 sessions had OpenDNS
returning the SERVFAIL wildcard in response to a legiti-
mate query. (One such session showed many names failing
to resolve, obviously due to a problem with OpenDNS’s re-
solver rather than the authority servers.)

Third, we can see the acceptance of DNS as a tool
for network management and control. All but the
www.google.com case for OpenDNS represent user
or site-admin configured redirections. For domains like
mail.yahoo, the common change is to return a pri-
vate Internet address, most likely configured in the institu-
tion’s DNS server, while blocking of ad.doubleclick
commonly uses nonsense addresses (such as 0.0.0.0),
which may reflect resolution directly from the user’s hosts
file (as suggested on some forum discussions on blocking
ad.doubleclick).

The DNS results also included two strains of mali-
ciousness. The first concerns an ISP (Wide Open West)
that commonly returned their own proxy as an answer for
www.google.com or search.yahoo.com (but not sites such as
mail.google.com or www.yahoo.com). Deliberately invalid
requests to these proxies return a reference to “phishing-
warning-site.com”, a domain parked with GoDaddy. We
also observed similar behavior for customers of sigecom.net,
cavtel.net, rcn.net, fuse.net, and ol.com.

Second, in a few dozen sessions we observed mali-
cious DNS resolvers due to malcode having reconfigured
an infected user’s system settings. These servers ex-
hibit two signatures: (i) malicious resolution for window-
supdate.microsoft.com, which instead returns an arbitrary
Google server to disable Windows Update, and (ii) some-
times a malicious result for ad.doubleclick.net. In these lat-
ter (less frequent) instances, these ad servers insert malicious
advertisements that replace the normal ads a user sees with
ones for items like “ViMax Male Enhancement” [12].

5.5 HTTP Proxying and Caching

8.6% of all sessions show evidence of HTTP proxying. Of
these, 32.4% had the browser explicitly configured to use an



HTTP proxy, as the server recorded a different client-side IP
address only for HTTP connections made via Java’s HTTP
API. More interestingly, 90.8% of proxied sessions showed
evidence of a mandatory in-path proxy for all HTTP traf-
fic. (These are not mutually exclusive—the overlap is ex-
plained by users that are double-proxied.) We detect such
proxies by several mechanisms, including changes to head-
ers or expected content, requests from a different IP address,
or in-network caching. A proxy may announce its location
through Via or X-Cache-Lookup response headers. The
applet follows such clues by attempting a direct connection
to such potential proxies with instructions to connect to our
back-end server, which succeeded in 11.0% of proxied ses-
sions. The reported names can be net-local hostnames (such
as “CLT-PRXY-04" or “Bastion”) or fully qualified do-
main names. Of the announced proxies, 25.2% used a do-
main matching that of the client’s PTR record.

We rarely observed caching of our 67 KB image (5.3% of
sessions cached at least one version of it). Manual exami-
nation reveals that such caching most commonly occurred
in wireless hotspots and corporate networks. Two South
African ISPs used in-path caching throughout, presumably
to reduce bandwidth costs and improve latency.

The infrequency of such caches perhaps represents a
blessing in disguise, as they often get it wrong. A mi-
nor instance concerns the 55.8% of caches that cached
the image we specified it as weakly uncacheable (no
cache-specific HTTP headers). More problematic are
the 37.8% that cached the image despite strong un-
cacheability (use of headers such as Cache-control:
no—cache, no-store, afresh Last-Modified times-
tamp expiring immediately). Finally, 5.3% of these bro-
ken caches failed to cache a highly cacheable version of the
image (those with Last-Modified well in the past and
Expires well into the future, or with an ETag identifier).
Considering that 41.5% of all HTTP-proxied connections
did not gain the benefits of caching legitimately cacheable
content, we identify considerable unrealized savings.

Network proxies seldom transcode the raw images during
this test, but it does occur. 0.05% of the sessions showed
transcoding of one or more of the fetched images, detected
as a returned result smaller than the expected length but
> 10 KB. Manual examination of a few cases verified that
the applet received a proper HTTP response for the image
with a reduced Content-Length header, and thus the
network did indeed change the image rather than merely
truncate.

In-path processes also only rarely interrupt file trans-
fers. Only 0.7% of all sessions failed to correctly fetch the
.mp3 file and 1.0% for the .exe. Slightly more, 1.3%,
failed to fetch the . torrent file, suggesting that some net-
works filter on file type. However, 10% filtered the EICAR
test “virus”, suggesting significant deployment of either in-
network or host-based AV. As only 0.36% failed to fetch all
four test-files, these results do not reflect proxies that block
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all of the tests.

5.6 ISP Profiles

Table 3 illustrates some of the policies that Netalyzr ob-
served for the 15 most common ISPs. As mentioned above,
the relative lack of SMTP blocking amongst several major
ISPs could reflect that some IPS perform dynamic response
to block spam-bots in their network. Likewise, a few ISPs
do not appear to filter Windows traffic outbound from cus-
tomer connections. They might however block these ports
inbound, which we cannot determine since Netalyzr does not
perform inbound scanning. cannot determine if these ports
are unblocked on inbound traffic.

Another characteristic we see reflects early design deci-
sions still in place today. Although DSL always offered the
ability to provide direct Ethernet connections, many DSL
providers initially offered PPPoE connections rather than IP
over Ethernet [32]. DOCSIS-based cable-modems, however,
always used IP-over-Ethernet. We can see the effects of this
transition for Verizon customers, as only 9% of Verizon cus-
tomers whose reverse name suggests they are FiOS (fiber to
the home) customers manifest the PPPoE MTU, while 69%
of the others do.

A final trend concerns the growth of NXDOMAIN wild-
carding, especially ISPs wildcarding all names rather than
just www names. During Netalyzr’s initial release, Comcast
had yet to implement NXDOMAIN wildcarding, but began
wildcarding during Fall 2009.

We also confirmed that the observed policies for Comcast
match their stated policies. Comcast has publicly stated that
they will block outbound traffic on the Windows ports, and
may block outbound SMTP with dynamic techniques [7].
When they began widespread deployment of their wildcard-
ing, they also stated that they would only wildcard www ad-
dresses, but we did observe the results of an early test de-
ployment that wildcarded all addresses for a short period of
time.

6. RELATED WORK

There is a substantial existing body of work on approaches
for measuring various aspects of the Internet. Here we focus
on those related to our study in the nature of the measure-
ments conducted or how data collection occurred.

Network performance. Dischinger et al.  studied
network-level performance characteristics, including link
capacities, latencies, jitter, loss, and packet queue manage-
ment [9]. They used measurement packet trains similar to
ours, but picked the client machines by scanning ISP address
ranges for responding hosts, subsequently probing 1,894
such hosts autonomously. In 2002 Saroiu et al. studied sim-
ilar access link properties as well as P2P-specific aspects
of 17,000 Napster file-sharing nodes and 7,000 Gnutella
peers [24]. They identified probe targets by crawling the P2P
overlays, and identified a large diversity in bandwidth (only
35% of hosts exceeded an upload bandwidth of 100Kb/s,



DNS

BLOCKED (%) WILDCARDING PPPOE

ISP SESSIONS  COUNTRY | WIN SMTP MSSQL | TYPE % (%) MEDIUM
Comcast 13,403 US 99 8 WWW 33 Cable
RoadRunner 5,544 US WWW 63 Cable
Verizon 3,854 US 7 14 WWW 83 33 DSL/Fiber
SBC 2,938 UsS 51 73 DSL
Deutsche Telekom 2,523 DE 76 all 48 56 DSL
Cox Cable 2,187 US 92 77 88 Cable
Charter Comm. 1,665 US 95 23 32 all 62 Cable
Qwest 1,334 UsS 18 6 all 51 70 DSL
BE Un Limited 1,276 UK 49 DSL
Arcor 1,139 DE 33 6 DSL
BellSouth 1,080 usS 62 69 96 16 DSL
Alice DSL 1,032 DE 30 WWW 62 69 DSL
Shaw Cable 1,018 US 6 61 Cable
telecomitalia.it 918 7 14 all 64 65

Optimum Online 866 UsS 97 78 WWW 77 Cable

Table 3: Policies detected for the top 15 ISPs. We indicate blocking when > 5% of sessions manifested outbound
filtering, particularly for Windows services (TCP 135/139/445). We infer PPPoE from path MTUs of 1492 B.

8% exceeded 10Mbps, between 8% and 25% used dial-up
modems, and at least 30% had more than 3Mb/s downstream
bandwidth) and latency (the fastest 20% of hosts exhibited
latencies under 70ms, the slowest 20% exceeded 280ms).
Maier et al. analyzed residential broadband traffic of a
major European ISP [17], finding that round-trip latencies
between users and the ISP’s border gateway often exceed
that between the gateway and the remote destination (due to
DSL interleaving), and that most of the observed DSL lines
used only a small fraction of the available bandwidth. Var-
ious techniques have been developed for measuring band-
width or latency directly, including Sting [25], IGI [14],
YAZ [27], and Iperf [20]. In addition, numerous websites
offer throughput tests aimed at home users [31]. We could
in principle incorporate the techniques underlying some of
these tools into our measurements, but have not at this point
in order to keep our main focus on ways in which users have
their connectivity restricted or shaped, rather than end-to-
end performance.

Network neutrality. Several studies have looked at the
degree to which network operators provide different ser-
vice to different types of traffic. Dischinger et al. pro-
vided a downloadable tool enabling users detect whether
their ISP imposes restrictions on BitTorrent traffic. They
studied 47,000 sessions conducted using the tool, finding
that around 8% of the users experienced BitTorrent block-
ing [10]. Bin Tariq et al. devised NANO, a distributed
measurement platform, to detect statistically and policy-
agnostically whether a given ISP intentionally or acciden-
tally causes degraded performance for specific classes of
service [28]. They evaluate their system in Emulab, using
Click configurations to synthesize “ISP” discrimination, and
source synthetic traffic from PlanetLab nodes. Beverly et al.
leveraged the “referral” feature of Gnutella to conduct TCP
port reachability tests from 72,000 unique Gnutella clients,
finding that Microsoft’s network filesharing ports are fre-
quently blocked, and that email-related ports are more than
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twice as likely to be blocked as other ports [3]. Reis et al.
used JavaScript-based “web tripwires” to detect modifica-
tions to HTTP-borne HTML documents [23]. Of the 50,000
unique IP addresses from which users visited their test web-
site, approximately 0.1% experienced content modifications.
Weaver et al. examined properties of TCP RST packets ob-
served in the network traffic of four sites [30]. They identi-
fied the operational specifics and apparent policy goals un-
derlying a set of reset injection products, including filtering
implemented by the “Great Firewall of China”. Nottingham
provided a cache fidelity test for XMLHttpRequest imple-
mentations [21], analyzing a large variety of caching prop-
erties including HTTP header values, content validation and
freshness, caching freshness, and variant treatment. NetPo-
lice [35] measured traffic differentiation in 18 large ISPs for
several popular services in terms of packet loss, using mul-
tiple end points inside a given ISP to transmit application-
layer traffic to destinations using the same ISP egress points.
They found clear indications of preferential treatments for
different kinds of service. Finally, subsequent to Netalyzr’s
release, Huang et al. released a network tester for smart-
phones to detect hidden proxies and service blocks using
methodology inspired by Netalyzr [15].

Address fidelity. Casado and Freeman investigated the
reliability of using a client’s IP address—as seen by a pub-
lic server—in order to identify the client [5]. Their basic
methodology somewhat resembles ours in that they used ac-
tive web content to record and measure various connection
properties, but also differs significantly with regard to the
process of users running the measurements. They instru-
mented several websites to serve an iframe “web bug”,
leading to narrow data collection—users had to coinciden-
tally visit those sites, and remained oblivious to the fact that
measurement was occurring opportunistically. They found
that 60% of the observed clients reside behind NAT's, which
typically translated no more than seven clients, while 15%
of the clients arrived via HTTP proxies, often originating



from a diverse geographical region. Maier et al. [17] found
that DHCP-based address reuse is frequent, with 50% of all
addresses being assigned at least twice per day. Finally, Bev-
erly and Bauer’s Spoofer Project [4] employed a download-
able measurement client to measure the extent to which end
systems can spoof IP source addresses. They analyzed an
extensive longitudinal dataset, finding that through the pe-
riod of study a significant minority of clients could perform
arbitrary spoofing.

7. SUMMARY

The Netalyzr system demonstrates the possibility of de-
veloping a browser-based tool that provides detailed diag-
nostics, discovery, and debugging for end-user network con-
nectivity. Visitors who ran the Netalyzr applet conducted
112,000 measurement sessions from 86,000 public IP Ad-
dresses. Netalyzr both reveals specific problems to individ-
ual users and forms the foundation for a broad survey of
edge-network behavior. Some systemic problems revealed
include difficulties with fragmentation, the unreliability of
path MTU discovery, restrictions on DNSSEC deployment,
legacy network blocks, frequent over-buffering of access de-
vices, poor DNS performance for many clients, and deliber-
ate manipulations of DNS results. The tool remains in active
use and we aim to support it indefinitely as an ongoing ser-
vice for illuminating edge network neutrality, security, and
performance.
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