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Abstract

In this article we define a multimedia content analysis problem, which we call
multimodal location estimation: Given a video/image/audio file, the task is to determine
where it was recorded. A single indication, such as a unique landmark, might already
pinpoint a location precisely. In most cases, however, a combination of evidence from
the visual and the acoustic domain will only narrow down the set of possible answers.
Therefore, approaches to tackle this task should be inherently multimedia. While the
task is hard, in fact sometimes unsolvable, training data can be leveraged from the
Internet in large amounts. Moreover, even partially successful automatic estimation of
location opens up new possibilities in video content matching, archiving, and
organization. It could revolutionize law enforcement and computer-aided intelligence
agency work, especially since both semi-automatic and fully automatic approaches
would be possible. In this article, we describe our idea of growing multimodal location
estimation as a research field in the multimedia community. Based on examples and
scenarios, we propose a multimedia approach to leverage cues from the visual and the
acoustic portions of a video as well as from given metadata. We also describe
experiments to estimate the amount of available training data that could potentially be
used as publicly available infrastructure for research in this field. Finally, we present an
initial set of results based on acoustic and visual cues and discuss the massive
challenges involved and some possible paths to solutions.

This work was supported by funding provided by the National Geospatial-Intelligence Agency (NGA) through
an NGA University Research Initiatives (NURI) grant. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors or originators and do not necessarily
reflect the views of NGA.



1 Introduction

In the last few decades, branches of machine learn-
ing have been divided along the types of data that
were to be processed because research communities
have developed as soon as a certain data type could
be captured, stored, and processed in a reasonable
amount of time. As a result, artificial intelligence is
split into speech, computer vision, natural language
processing, and so on. Today’s computers have begun
to have the computational power and memory to be
able to process a large amount of data in different sen-
sory modalities. This, in combination with the large
amount of multimedia data freely accessible in the
Internet, provides an opportunity to improve the ro-
bustness of current machine learning approaches and
attack problems that are impossible to solve satisfac-
torily using only a single modality.

In this article, we introduce a new multimedia con-
tent analysis task that has only recently become even
remotely possible to tackle: the estimation of the lo-
cation of a media recording that lacks geo-location
metadata. We call this task multimodal location esti-
mation. Just as human analysts use multiple sources
of information to determine geo-location, it is obvious
that for location detection, the investigation of clues
across different sensory modalities and their combina-
tion can lead to better results than investigating only
one stream of sensor input. Therefore, approaches to
tackle this task should be inherently multi-media.

Let’s imagine a video in which the location is un-
known. Acoustic event detection on the audio track
reveals a siren usually only found in American po-
lice cars, and automatic language identification de-
tects English language spoken with a southern-state
dialect. An image object recognizer finds several tex-
tures that are typical to a specific terrain with vege-
tation found only in a humid, sub-tropical area. The
classification of birds singing in the background indi-
cates that the recording might be from the southern
portion of the US. For a couple of frames, a build-
ing is observed that matches Flickr photos of the
Parthenon. The combination of these clues is suf-
ficient evidence to conclude that the video is from
the Nashville, TN area. Location estimation is an in-
herently hard problem, since in many cases it is com-

Figure 1: A figurative description of multimodal lo-
cation detection.

pletely impossible to assign the location of a piece of
video as there are simply no indicators.

In this article we describe our idea of growing mul-
timodal location estimation as a research field in the
multimedia community. Based on examples and sce-
narios, we propose different research directions to
leverage cues from the visual and the acoustic por-
tions of a video as well as from any given metadata.
We describe experiments to estimate the amount of
available training data and argue that the research
has now become feasible. An initial set of results is
presented based on acoustic and visual cues. It again
indicates the general feasibility of the task but also
serves as a base to discuss the massive challenges in-
volved and some possible paths to solutions.

The article is organized as follows. We start with
the definition of multimodal location estimation in
Section 2, followed by a comparison of our definition
with prior work in Section 3. Section 4 then describes
why we think this is an interesting field to work on
and the potential applications of location estimation.
Section 5 continues with proposed initial steps and
research directions towards solving the task. Sec-
tion 6 then reports on our experiments estimating
how much training data would be available for this
task in the Internet before Section 7 presents a very
first attempt of a multimodal location estimation al-
gorithm. Section 8 concludes the article with final
remarks.



2 Definition

We define location estimation as the task of estimat-
ing the geo-coordinates of all the content recorded
in digital media. Figure 1 figuratively describes the
idea. Note that the location of the shown content
might not be identical to the location where content
was created. Also, use of split screen, cutting, and
other techniques might allow a video, for example,
to show multiple locations. For practical purposes,
research will likely concentrate on finding one unique
location per file. Multimodal location estimation de-
notes the utilization of one or more cues potentially
derivable from different media, e.g. audio and video.
Importantly, location estimation as defined above is
only one possible research direction. In many cases,
slight variations of the task might also provide valu-
able information. Location detection, for example can
be defined as the task of finding whether a video
contains any cue that might help find a location.
For example, the detection of a bird singing with-
out actually classifying the bird would be a first step
in a chain of (automatic and non-automatic) anal-
ysis steps towards identifying the coarse location of
a video. Likewise, location wverification is the task
of finding whether a video has been recorded at a
given place. This is not only very valuable for search
and retrieval (“find all videos from Times Square in
Manhattan, NY”) it is also interesting for the vali-
dation of existing databases, i.e. verifying whether
a given description of a video is true; it thus has
direct connections with the fields of cybersecurity
and forensics. Location estimation itself can either
be interpreted as a classification or as a regression
task. While the accurate estimation of concrete geo-
coordinates is a regression task, due to practical con-
cerns with data sparsity and maintaining tractability,
initial work in the field will surely start as a classi-
fication task (compare Section 7). The classification
task takes the following form: Given training data
at m locations assign n test recordings to these lo-
cations. The closed classification tasks would only
include test data recorded at the given trained lo-
cations, the open classification task would include
test recordings from different locations. In the lat-
ter case systems must therefore be able to identify

unknown locations. Finally, we define relative loca-
tion estimation as the task of detecting whether two
recordings were recorded at the same or similar place.
Tasks include whether videos have been located out-
doors/indoors, in a city/outside a city, or near a train
station/far away from a train station. Any of these
tasks might be researched targeting a fully automatic
approach, in combination with (partially descriptive)
metadata, or as interactive approaches.

3 Prior Art

Recent articles [12, 13] indicate initial results that
already show that location estimation is solvable by
computers to some extent. The approaches presented
in the referenced articles reduce the location detec-
tion task to a retrieval problem on a self-produced,
location-tagged image database. The idea is that
if the image is the same then the location must be
the same too. As discussed in Section 1, we think
that only a very small part of the location recog-
nition problem can be solved using image retrieval
techniques. In other recent work [7], the goal is to
estimate just a rough location of an image taken as
opposed to close to exact GPS location. For exam-
ple, many pictures of certain types of landscapes can
occur only on certain places on Earth. All of these
cues, together with acoustic counterparts, could po-
tentially be fused together into a single robust es-
timate of location under our proposed framework.
Krotkov’s approach [3] extracts sun altitudes from
images while Jacobs’ system [8] relies on matching
images with satellite data. In both of these settings
single images have been used or images have been ac-
quired from stationary webcams. In the work of [10],
the geo-location is also determined based on the es-
timate of the position of the sun. They provide a
model of photometric effects of the sun on the scene,
which does not require the sun to be visible in the im-
age. The assumption, however, is that the camera is
stationary and hence only the changes due to illumi-
nation are modeled. This information in combination
with time stamps is sufficient for the recovery of the
geolocation of the sequence. A similar path is taken
in [9].



There are potentially many artificial intelligence
tasks that could assist in determining geo-location,
such as keyword spotting, language identification,
and sign recognition. In general, however, the sys-
tematic investigation of automatic location estima-
tion has a very short research history. As far as we
know, the problem of automatically estimating geo-
location has been considered only for images and only
under specific constrained conditions. Despite the
potential, described in the next Section, there has
never been an attempt on video or audio data and a
multimodal attempt has never even been considered.

4 Potential Impact and Uses

4.1 Research Impact

Work in the field of location estimation will create
progress in many areas of multimedia research. As
discussed in Section 5 cues used to estimate locations
can be extracted using methods derived from cur-
rent research areas. Acoustic processing fields that
could contribute mostly would be speech recognition,
language recognition, and acoustic event detection.
From computer vision, optical character, sign, and
general object recognition methods will be very use-
ful. We already described the use of image retrieval
methods in Section 3. Similarly, natural language
processing methods would be helpful in many regards
as well. In addition, knowledge from geography, for
example used to calculate distances, will shape the
field as much as new HCI methods for building inter-
faces that allow semi-automatic location estimation
applications. The rather young field of multimodal
integration in computer science will develop further
as new methods for the combination of cues and me-
dia will be demanded. New classification tasks, simi-
lar to the one described in Section 7 on ambulances,
will gain attention. Since found data from the Inter-
net is used, multimodal location estimation work is
performed using much larger test and training sets
than traditional multimedia content analysis tasks
and the data is more diverse as the recording sources
and locations (sic!) differ greatly. This offers the
chance to create machine learning algorithms of po-

tentially higher generality. Overall, multimodal lo-
cation estimation has the potential to advance many
fields, some of which we don’t even know of as they
will be created based on users demanding applica-
tions. Some of these are discussed in the following
two paragraphs.

4.2 Media Organisation and Retrieval

Location-based services are rapidly gaining traction
in the online world. An extensive and rapidly grow-
ing set of online services is collecting, providing, and
analyzing geo-information. Besides major players like
Google and Yahoo!, there are many smaller start-ups
in the space as well. The main driving force behind
these services is the enabling of a very personalized
experience. Foursquare for example encourages its
users to constantly “check-in” their current position,
which they then propagate on to friends; Yowza!!
provides an iPhone application that automatically lo-
cates discount coupons for stores in the user’s current
geographical area; and SimpleGeo aims at being a
one-stop aggregator for location data, making it par-
ticularly easy for others to find and combine informa-
tion from different sources. In a parallel development,
a growing number of sites now provide public APIs
for structured access to their content, and many of
these already come with geo-location functionality.
Flickr, YouTube, and Twitter all allow queries for re-
sults originating at a certain location. Likewise, we
believe retro-fitting archives with location informa-
tion will be attractive to many businesses and enables
usage scenarios we don’t even think of yet. Also, ex-
cept for specialized solutions, GPS is not available
indoors or where there is no line of sight with the
satellites. So multimodal location estimation would
help enabling geo-location where it is not regularly
available. For example, vacation videos and photos
could now be grouped even if location isn’t available.
Movie producers have long searched for methods to
find scenes at specific locations or showing specific
events in order to be able to reuse them. This would
partly be enabled by retrofitting location informa-
tion.



4.3 Law Enforcement

After an incident, law enforcement agancies spend
many person-month to find images and videos, in-
cluding tourist recordings, that show a specific ad-
dress to find a suspect or other evidence. Also,
intercepted audio, terrorist videos, and evidence of
kidnappings is often most useful to law enforcement
when the location can be inferred from the recording.
Until today, however, human expert analysts have to
spend many hours watching for clues on the location
of a target video. Even when there is an obvious
clue that could easily be identified by a computer,
humans have to pay attention and watch the video
carefully until the point where the hint is revealed.
If the human expert happens not to pay attention at
the particular set of frames where the audio or image
clue appears, the location might never be determined.
There are many clues that are hard to perceive for a
human being, such as a masked sound, a small ob-
ject, or slight variations on lighting conditions that
are the result of a unique landscape not captured by
the camera. Therefore, even only partially success-
ful semi-automatic location detection would reduce
the work for human analysts to detect the location
of videos, especially in cases that are obvious. Hu-
man experts could concentrate on the more difficult
cases. The computer might provide confidence out-
put and suggestions that might be judged by the an-
alyst, which will save workload, even on videos that
are not completely classifiable by the computer.

5 Directions of Research

In this section we indicate some potential directions
and first steps for location estimation research by
breaking up the tasks by media type, i.e. the search
for visual and acoustic cues as well as the cues from
accompanying metadata.

5.1 Visual Location Estimation

As discussed in Section 3, research on image-based
location estimation has already begun with an ap-
proach of reducing the location estimation problem
to an image retrieval problem in a large database of

environmental images. In order to tackle the loca-
tion estimation problem at a larger scale, using a
broader class of media (image, video, audio, text),
a hierarchy of tasks and associated techniques needs
to be developed. In addition to feature matching and
large scale indexing techniques at a fine scale, a va-
riety of visual/non-visual clues (such as text, street
signs, landmarks, specific architecture) can be used
for determining the location at an intermediate scale,
for example at the level of specific countries or cer-
tain county regions (urban, rural). At the coarsest
scale, broader image/video categories can be deter-
mined and correlated with various geographical loca-
tions based on whether they have been taken in ur-
ban areas, suburban areas, mountainous landscape,
etc. The following is a non-exhaustive list of visual
cues that could be exploited for location detection:

e Visual landmarks: “Eiffel tower” or “Berlin Re-
ichstag”, architecture styles, structure and color
of buildings

e Landscapes: Mountain and river shapes,
desert illuminations, sand color, street shapes,
urban/non-urban

e Written text: Recognition of character-types,
language recognition, word recognition (e.g.,
street names), localized information (e.g., how
dates and times are expressed)

e Signs: Traffic signs, car license plates

e Lighting: Indoor/outdoor, night/day, weather,
position of the sun (related to time stamp of the
video)

For written text recognition, it is well known that
state-of-the-art video OCR methods can be applied
to cellphone imagery; coarse illumination detection
and direction estimation (e.g., for time-of-day con-
straints on location) may also be feasible — this
approach is especially appealing when rich camera
metadata is available in the image file (see below).

5.2 Acoustic Location Estimation

A similar taxonomy of acoustic cues is available to in-
fer location. At the scale of a city, speech recognition



of named entities and environmental sound classifi-
cation, such as the presence or absence of car sound
or the presence or absence of noise produced by a
crowd, will help to determine location. For example,
a farmers’ market might include car noise in the back-
ground, crowd noise, and spoken words such as the
names of fruits and vegetables. At an intermediate
scale, dialect identification, as well as noise classifi-
cation (police siren, bird calls) could be very useful.
At a large scale, language and localized information
(what are the units for dates, times, distances, vol-
umes, mass, temperature?) are among the cues that
will contribute to an overall confidence score. Acous-
tic landmarks, such as the sound of London’s Big Ben
or the playing of the UC Berkeley Campanile, should
be among the top providers of a high-confidence level
at all scales. The following is a non-exhaustive list of
acoustic cues that could be exploited for location es-
timation:

e Acoustic landmarks: Specific church bell, spe-
cific reverberation inside a certain building,
50/60Hz power hum

e Recorded noise: Cars/no-cars, police car siren
types, birds, water flowing, crowd noise

e Recorded speech: Language and dialect iden-
tification, word recognition of named entities,
recognition of directions

e Environments: Jungle (fauna), street noise (fre-
quency and types of vehicles), urban/non-urban
(acoustically), airport proximity, room shape
through reverberation

5.3 Metadata-based Estimation

Internet multimedia repositories such as YouTube,
Flickr, and WikiMedia Commons, store (sometimes
exhaustive) accompanying metadata close to the me-
dia object. The metadata might sometimes contain
the actual location or a vague descriptions of it (e.g.
“Berlin” or “USA”). Of course, metadata descrip-
tion might be wrong and then location verification
needs to be developed (see Section 2). Other meta-
data might indirectly give hints to a possible location,
including:

e Words used: Terms used to describe the video
might clearly indicate locations, such as land-
marks, localized information, street and city
names

e Language used: Combinations of words together
with specific language can identify location, e.g.
a Finish description of finish traffic laws is most
likely pointing to a video in Finland

e Relative location is often implicitly described in
metadata, e.g. garden party, will most likely
point to an outdoor video as do activity words
such as “sailing”, “driving”, “boating”.

In addition, embedded metadata, such as EXIF
might be helpful even if geo-coordinates are not
present: Indoor and outdoor camera settings, time
and date, and other specific information might be
able to limit the search domain further. Also, GPS
coordinates, even when embedded are often only em-
bedded with a certain accuracy and might be refined
using location estimation.

5.4 Multimodal Integration

As described previously, location detection is inher-
ently multimodal since the output of individual clas-
sifiers will often only result in vague assumptions.
Given a video, a typical output would consist of a
bag of categories and their associated probabilities.
Example output could have the following structured
form:

1. Outdoor: 70 %,
2. Urban area: 80 %,
3. Language: East German dialect: 35 %,

4. Landmark similarity to Brandenburg Gate:
35 %,

5. Recording channel: amateur camera 70 %

In order to enable fully automatic location estima-
tion, i.e. in order to interpret the bag of categories
and probabilities, an appropriate scheme for multi-
modal integration is a key challenge in this approach.



Traditional schemes for “late fusion” (see for exam-
ple [6]) may be inappropriate, as the specific set
of candidate locations may not be obvious a-priori,
and/or there may be an extremely large number of
them, rendering a classic product or sum late fusion
inaccurate. On the other hand, it is unfeasible to
adopt a pure early fusion approach, as the image and
video measurements come from distinct spaces with
differing observation properties; a naive concatena-
tion of features from different modalities will likely be
biased inappropriately to one modality or the other.
The multimodal location estimation problem is in-
teresting and somewhat unique in that the fusion re-
quired can change depending on the situation: When
a Boston accent is heard and a Boston landmark im-
age is observed, our confidence of the video being in
Boston should be high. However, the presence of a
German voice is not necessarily a significant negative,
as it may well be the voice of the tourist. So fusion
schemes must amplify when there is agreement, but
when there is disagreement, it may be appropriate to
maintain distinct location estimates to fill different
“roles” in the video interpretation.

6 Training Data

A major distinguishing point of this task as proposed
is the availability of directly useable training data “in
the wild”. In 2006, our planet hosted about two bil-
lion cell phones of which about 50 million had a built-
in video camera. As these numbers grow, more and
more videos are uploaded to the Internet for public
access on sites like YouTube, Flickr, and Liveleak.
For a significant amount of these data, correspond-
ing geolocations in the form of GPS coordinates ex-
ist. This represents a massive amount of annotated
training data for the task that can be taken from
the Internet, i.e. there is no need for explicit record-
ing and hand-annotation. In this Section, we discuss
experiments, also presented in [5], that quantify our
claim about the availability of geo-tagged data.

6.1 Background

The most common mechanism to associate locations
with photos are EXIF records, which were originally
introduced by the Japan FElectronic Industry Devel-
opment Association for attaching metadata to im-
ages such as exposure time and color space. Since
then EXTF has been extended to also cover geograph-
ical coordinates in the form of latitude and longi-
tude. Currently, EXIF is used only with JPEG &
TIFF (image) and WAV (audio) files. However, most
other multimedia formats can contain metadata as
well, often including geo-tags. In addition, most
camera manufacturers specify proprietary metadata
formats. For videos, these “maker notes” are the
most common form for storing locations. Both Flickr
and YouTube have comprehensively integrated geo-
location into their infrastructure, and they provide
powerful APIs for localized queries. Leveraging these
APIs, we can estimate the number of public geo-
tagged photos/videos they offer.

6.2 Flickr

Flickr’s API allows to directly query for the number
of images that are, or are not, geo-tagged during a
certain time interval. Examining all 158 million im-
ages uploaded during the first four months of 2010, we
found that about 4.3% are geo-tagged. We also exam-
ined the brands of cameras used for taking the photos
that have geo-information, derived from their EXIF
records which can be retrieved via Flickr’s API as
well. Doing so however requires one API request per
image, and hence we resorted to randomly sampling
a 5% set of all geo-tagged images uploaded in 2010.
We found that the top-five brands were Canon (31%),
Nikon (20%), Apple (6%), Sony (6%), and Pana-
sonic (5%). A closer look at the individual models
reveals that today mostly devices at the higher end
of the price scale are geo-tagging. Historically, it has
often been observed that high-end models become the
commonly used one and their features become stan-
dard even for the lower end at some point in time.
We therefore think that the amount of geo-tagged
information is going to accumulate rapidly.



6.3 YouTube

With YouTube, due to restrictions of the API, it is
not possible to directly determine the number of geo-
tagged videos, as we could with Flickr. YouTube re-
stricts the maximum number of responses per query
to 1,000; and while it also returns an (estimated)
number of total results, that figure is also capped
at 1,000,000. Furthermore, the granularity for time-
based queries is coarse: YouTube only allows to spec-
ify the attributes all_time, this month, this week,
and today. Still, we believe we can estimate the
number of geo-tagged videos in the following way:
We submitted an unconstrained query, which results
in an estimation of 1,000,000 results. The query
was then refined by filtering for all videos that con-
tain geo-location. Repeating the experiment a num-
ber of times resulted in total result estimates rang-
ing from about 30,000 to 33,000 videos. In other
words, out of what we assume to be a random sam-
ple of 1,000,000 YouTube videos, roughly 3% have
geo-location. While this number is clearly just an es-
timate, it matches with what we derived for Flickr.
A note: YouTube’s API distinguishes between videos
without location, with coarse location (usually man-
ually added, e.g. “Berlin”), and with ezact location.
For our experiments, we only considered the latter.

If one takes YouTube and Flickr as two samples
representative of the Internet one can say that about
3 % of the consciously uploaded multimedia in the In-
ternet is geo-tagged. Of that, many media might not
be useful as training data for location estimation be-
cause of manual editing, dubbed music, or simply be-
cause they do not contain any clues. However, given
the accumulation effect of persistent storage and the
increasing number of geo-enabled capturing devices,
even if only 1% of the entire geo-tagged multimedia
on the Internet is useable, this represents a training
set of never before-seen magnitudes in the field. Also,
we clearly see that location estimation is needed as
at least 97 % of all videos and photos are not yet lo-
cation enabled.
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Figure 2: Confusion matrix of our GMM/SVM audio-
based ambulance classifier (described in Section 7).

7 A First Experiment

This section exemplifies an ambulance classifier that
has been created as an initial approach towards mul-
timodal location estimation.

7.1 Input Data

As a first task, we considered a scenario that would be
a common case for city-level location estimation: the
classification of distinctive objects commonly found
in cities, and, as an initial detailed case study, we
focused on the classification of ambulances. There-
fore, we collected 200 YouTube videos filmed in 11
cities, manually chosen to contain an ambulance. The
data is inherently challenging as it derives from real
users and is not recorded under controlled condi-
tions. Our first task towards understanding loca-
tion detection is thus limited to classifying which city
an ambulance comes from. The amount of data we
have collected so far is small, making the training of
models challenging. Furthermore, some cities do not
have enough data, and thus we had to make some
classes broader than a city (e.g. Argentina, or Que-
bec/Montreal area).

7.2 Methods

The first system that we considered contained only
audio information. Given the nature of the data,



we expected this system to perform significantly bet-
ter than chance on video data. A Gaussian mixture
model (GMM) was trained on a per-city level on the
acoustic feature space (we extracted 19 dimensional
mel frequency cepstrum coefficients (MFCCs)). Clas-
sification based on likelihood was performed on an
independent set of videos (the split between training
and testing data was 70% and 30% respectively). Be-
sides this generative approach baseline, we also con-
sidered SVM classification on the Gaussian mixture
space (a system with state-of-the-art performance on
the speaker identification task[2]).

Since the audio features we extracted are optimized
for speech recognition, they may be a poor match
to our data as, a priori, ambulance sound is quite
different from natural speech. Thus, we created an-
other baseline system based on vector quantization:
we form a codebook of 20 clusters using k-means on
the MFCC feature space, and extract the histogram
of these feature occurrences on a per video basis, sim-
ilar to bag of words (BoW) approaches that are typ-
ically used in natural language and computer vision
[1]. The histogram obtained is used as the obser-
vation vector for training a Support Vector Machine
(SVM) classifier.

Lastly, we extracted features based on color SIFT
[11] on a uniform grid on each frame in the videos.
A codebook of 1000 clusters is then extracted, and
histogram features are extracted and fed into a SVM
classifier similarly as in the previously described pro-
cedure.

7.3 Results

Table 1 shows the accuracies of the various systems,
as well as what a random classifier would output
(since all the classes are balanced, chance would give
us an accuracy of 7). We see that even the GMM
model performs significantly better than chance, even
though it is wrong more than half the time. The
simpler bag of words system performed worse than
the GMM approach, which leads us to conclude that
GMM based clustering for audio data is better than
simpler k-means (albeit slower). It is worth noting
than on a smaller development dataset containing
only three cities, the BoW approach performed bet-

System Accuracy
Random 9.1%
GMM (audio) 45.20%
GMM SVM (audio) 47.72%
BoW SVM (audio) 35.5%
BoW SVM (video) 23.1%

Table 1: Results on the testing set for the ambulance
detection task on a set of 11 cities/regions. See Sec-
tion 7 for details.

ter with the same number of clusters. It appears that
more than 20 clusters may be necessary for the more
complex classification task, and thus other clustering
techniques that scale better with number of clusters
and samples should be used.

Some lines of future work could include the training
of purified models. This can be achieved by means of
temporal clustering to avoid fitting non informative
frames in the video (e.g. when someone is speaking on
top of an ambulance sound, or when the ambulance
sound is not present). Different clustering techniques
other than k-means or finite mixture models for code-
word generation could be explored, such as Latent
Dirichlet Allocation [1] or Dirichlet Process mixture
models [4], and features other than MFCC or SIFT
will be explored as we gain more knowledge on which
aspects of data classification are challenging.

Interestingly, our classifier has significantly differ-
ent performance across cities. As can be seen in
Figure 2, the best performing cities/regions are Ar-
gentina, Barcelona, Berlin, Holland, Japan, LA, and
London. Australia and Telaviv get confused with
LA, partially due to the fact that there are several
ambulance companies operating in LA, which may
cause the class to be too broad. Quebec/Montreal
and New York get confused with Argentina and Aus-
tralia, and we cannot explain this behavior. It is
worth noting that, even though the classifier based
on BoW features had worse overall accuracy, the be-
havior per city was more uniform. Again, an indica-
tion of how hard it is to work with heterogenous data
from YouTube.



8 Final Remarks

This article describes a new research problem, pos-
sible directions for tackling it, and our initial work
in the field. While at first glance it is almost im-
possible, and indeed for many media unsolveable,
the multimodal location estimation task offers re-
search opportunities in many fields connected to mul-
timedia. As the solution can be mostly described
as a search for cues, the task is inherently multi-
modal. With the large amounts of training data
available on the Internet, the task offers a chance
to tackle machine learning problems using more and
more heterogeneous input, which in turn might lead
to better understanding and more generalizable so-
lutions. Therefore, we want to encourage multime-
dia researchers to actively engage in the tasks in-
volved and create a brand new community work-
ing on a very challenging but exiting problem. We
want to encourage readers to contact us and visit our
project website http://mmle.icsi.berkeley.edu,
where we will post updates on our progress and, more
importantly, continuously develop publicly available
training and test sets for benchmarking.
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