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Abstract 

This article presents an approach that utilizes audio to discriminate the city of origin of consumer-
produced videos – a task that is hard to imagine even for humans. Using a sub-set of the MediaEval 
Placing Task's Flickr video set, we conducted an experiment with a setup similar to a typical NIST 
speaker recognition evaluation run. Our assumption is that the audio within the same city might be 
matched in various ways, e.g., language, typical environmental acoustics, etc., without a single 
outstanding feature being absolutely indicative. Using the NIST speaker recognition framework, a set of 
18 cities across the world are used as targets, and Gaussian Mixture Models are trained on all targets. 
Audio from videos of a test set is scored against each of the targets, and a set of scores is obtained for 
pairs of test set files and target city models. The Equal Error Rate (EER), which is obtained at a scoring 
threshold where the number of false alarms equals the misses, is used as the performance measure of 
our system. We obtain an EER of 32.3% on a test set with no common users in the training set. We 
obtain a minimum EER of 22.1% on a test set with common users in the training set. The experiments 
show the feasibility of using implicit audio cues (as opposed to building explicit detectors for individual 
cues) for location estimation of consumer-produced “from-the-wild” videos. Since audio is likely 
complementary to other modalities useful for the task, such as video or metadata, the presented 
results can be used in combination with results from other modalities. 



1. INTRODUCTION
With more and more multimedia data being uploaded to

the web, it has become increasingly attractive for researchers
to build massive corpora out of “from-the-wild” videos, im-
ages, and audio files. While the quality of consumer pro-
duced content on the internet is completely uncontrolled,
and therefore imposes a massive challenge for current highly-
specialized signal processing algorithms, the sheer amount
and diversity of the data also promises opportunities for in-
creasing the robustness of approaches on an unprecedented
scale. Moreover, new tasks can be tackled that couldn’t
even be attempted before, even tasks that couldn’t easily
be solved by human subjects. In the following article, we
present the task of city identification using the audio tracks
of a random sample of Flickr videos.

Using only the audio tracks from the videos, the NIST
speaker recognition [11] framework is used to perform the
experiments, where audio from videos in a test set are scored
against pre-trained city models using audio from city-labeled
videos in a training set. While we discard much of the in-
formation in the videos by using only the audio, our ap-
proach provides a simple way to use well-established tech-
niques such as the speaker recognition system, and reduces
computational requirements.

Using only audio information also gives us insight into
the extent to which city-scale geo-locations of videos is cor-
related with their audio features. Listening to the audio
tracks of a random sample of videos, we do not find any
city-specific sounds that would enable a human listener to
accurately perform city identification of the videos. Hence,
this work demonstrates the power of the machine learning
algorithm in performing a task that would ordinarily be dif-
ficult for humans. Because the audio modality is likely com-
plementary to the video and metadata modalities, achieving
success using only the audio modality suggests the poten-
tial for further improvements when different modalities are
combined together.

While speaker recognition evaluations usually follow strict
guidelines concerning the quality and the channel of the
recording, the experiments described here use random videos,
which contain audio tracks with a large variance in length,
content, and quality. Nevertheless, the results of our exper-
iments are far from random. According to the Equal Error
Rate (EER) measure used in a speaker recognition system,
a scoring threshold can be set such that the vast majority
of the scores for which a test set video is correctly classified
at the city-scale are above the threshold, and the vast ma-
jority of the scores for which a test set video is incorrectly
classified at the city-scale are below the threshold.

This article is structured as follows: Section 2 presents re-
lated work; section 3 describes the publicly available dataset;
section 4 describes the technical approach used for the ex-
periment; section 5 describes the results; section 6 discusses
the implications of the results, and section 7 presents a con-
clusion and outlook to future work.

2. RELATED WORK
Recent articles [13, 14] indicate initial results already show-

ing that location estimation is solvable by computers to some
extent. The approaches presented in the referenced articles
reduce the location detection task to a retrieval problem on
a self-produced, location-tagged image database. The idea

is that if the images are the same then the locations must be
the same too. In other recent work [5], the goal is to estimate
a rough location of an image as opposed to its exact GPS
location. For example, images of certain landscapes can oc-
cur only in certain places on Earth. Jacobs’ system [7] relies
on matching images with satellite data. The above work
(along with other work) relies on the detection or matching
of a set of explicit visual features (e.g. landmarks or sun
altitudes) rather than performing an implicit matching of
unknown cues as performed in this article.

Multimodal location estimation, in contrast to visual loca-
tion estimation, was first defined and attempted in [4] where
the authors match ambulance videos from different cities.
The first evaluation on multimodal location estimation was
performed in the 2010 MediaEval Placing task [8]. While the
accuracies achieved there were better than city-scale, none
of the systems presented at MediaEval used audio and all
systems relied on textual (metadata) cues.

3. DATASET
The audio tracks for the experiments are extracted from

videos distributed as a training data set for the Placing Task
of MediaEval 2010 [10], a multimedia benchmark evaluation.
The Placing Task involves automatically estimating the lo-
cation (latitude and longitude) of each test video using one
or more of: metadata (e.g. textual description, tags), vi-
sual/audio content, and social information.

The data set consists of 5125 Creative Commons licensed
Flickr videos uploaded by Flickr users. Flickr requires that
a video be created by its uploader (if a user violates this pol-
icy, Flickr sends a warning and removes the video). Manual
inspection of the data set leads us to initially conclude that
most visual/audio contents of the videos lack reasonable in-
formation for estimation of their origin [2]. For example,
some videos are recorded indoors or in private spaces such
as the backyard of a house, which makes the Placing Task
nearly impossible if we examine only the visual and audio
contents. This indicates that the videos are not pre-filtered
or pre-selected in any way to make the data set more rele-
vant to the task, and are therefore likely representative of
videos selected at random.

From an examination of 84 videos from the data set, we
find that most of videos’ audio tracks are quite “wild”. Only
2.4 % of them were recorded in a controlled environment
such as inside a studio at a radio station. The other 97.6 %
are home-video style with ambient noise. 65.5 % of the
videos have heavy ambient noises such as crowds chatting
in the background, traffic noise, wind blowing into micro-
phone, etc. 14.3 % of the videos contain music, either played
in the background of the recorded scene, or inserted at the
editing phase. About 50 % of the videos do not contain
any form of human speech at all, and even for the ones
that contain human speech, almost half are from multiple
subjects and crowds in the background speaking to one an-
other, often at the same time. 5 % of the videos are edited
to contain changed scenes, fast-forwarding, muted audio, or
inserted background music. While there are some audio fea-
tures that may hint at the city-scale location of the video –
features such as the spoken language in cases where human
speech exist, type and genre of music, etc – such factors are
not prevalent, and are often mixed with heavy amounts of
background noise and music.

For the task of city identification, all videos in the data



Figure 1: A diagram of the city identification system
as described in Section 4.

set have been labeled by their city location according to the
video’s metadata, and a video is considered to be located
within a city if it’s geo-coordinates are within 5 km of the
city center.

4. TECHNICAL APPROACH
The city identification system is derived from a GMM-

UBM speaker recognition system [12], with simplified factor
analysis and Mel-Frequency Cepstral Coefficient (MFCC)
acoustic features C0-C19 (with 25 ms windows and 10 ms
intervals), along with deltas and double-deltas (60 dimen-
sions total) [3]. The GMM-UBM system is a widely-used
approach to speaker recognition, and is easy to implement.
Specifically, for each audio track, a set of MFCC features
are extracted and one Gaussian Mixture Model (GMM) is
trained for each city, using MFCC features from all its audio
tracks (i.e. city-dependent audio tracks). This is done via
MAP adaptation from a universal background GMM model
(UBM), which is trained using MFCC features from all audio
tracks of all cities in the training set (i.e. city-independent
audio) [12]. For testing, the log-likelihood of MFCC features
from the audio tracks of each test video are computed using
the pre-trained GMM models of each city. A total of 128
mixtures are used for each GMM. Figure 1 illustrates the
GMM-UBM system.

A likelihood score for each test video as a match to each
of the cities is obtained as follows: Scores for which the
city of the test video matches the city of the GMM model
are known as true trial scores; scores for which the cities
do not match are known as impostor trial scores. Dur-
ing scoring, a threshold is established for distinguishing the
true trial scores from the impostor trial scores. The sys-
tem performance is based on EER, which is the false alarm
rate (percentage of impostor trial scores above the thresh-
old) and miss rate (percentage of true trial scores below the
threshold) at a threshold where the two rates are equal. The
open-source ALIZE speaker recognition system implementa-

Table 1: Results of different runs of the city identi-
fication system, as explained in Section 5

Training Testing Common EER
set set users (%)

trn all tst No 32.3
trn s1 trn s2 Yes 22.6
trn s2 trn s1 Yes 22.1
trn s1 tst No 31.0

trn s1noSFLon tst noSFLon No 37.8
trn s1rand tst No 46.4

tion is used [1], and the 60-dimensional MFCC features are
obtained via HTK [6].

5. EXPERIMENTS AND RESULTS
Experiments are run using the GMM-UBM system to ob-

tain city identification results. The entire duration of each
audio track is used, and MFCC features are mean- and
variance-normalized prior to GMM training. We’ve per-
formed a series of experiments examining different combi-
nations of data used for training and testing. Our main
experiment uses 1,080 videos in the training set (denote as
trn all) and a 285-video test set (denote as tst) with no com-
mon users in the training set. The 285-video test set gives
5,130 trials (with 285 true trials). The reason for not having
common users in the training and test sets is that previous
work showed that one can match videos of the same user
with better-than-chance-accuracy based on the audio track
of a video [9], and we thus want to eliminate this factor.

We’ve also performed experiments examining the effect of
having common users for the training and test set videos,
having randomized city labels, and removing the two cities
(San Francisco and London) with roughly half the videos in
the training and test sets. Removing the two cities results
in the videos being roughly uniformly distributed across ap-
proximately 70% of the cities. We’ve created two random
splits of the training set, with 542 videos in split 1 and 541
in split 2. Among the 542 × 541 = 293, 222 pairs of videos
across both splits, 3,967 pairs (1.35 % of total pairs) have the
same user. One experiment uses split 1 (denote as trn s1 )
for UBM and city model training, and split 2 (denote as
trn s2 ) for testing, with a total of 9,738 trial scores (539 true
trial scores). A second experiment uses split 2 for UBM and
city model training, and split 1 for testing, with a total of
9,756 trials (434 true trial scores). A third experiment uses
split 1 for UBM and city model training, and the 285-video
test set (denote as tst) – with no common users in split 1
of the training set – for testing. A fourth experiment uses
split 1 of the training videos and the 285-video test set with
San Francisco and London removed from both training and
testing (denote as trn s1noSFLon and tst noSFLon respec-
tively). A fifth experiment uses split 1 with randomized city
labels (denote as trn s1rand) for UBM and city model train-
ing, and the 285-video test set. This last experiment should
approximate random chance. Table 1 shows all results.

Our main experiment (using the training and test sets
trn all and tst respectively) gives a 32.3 % EER. A Detection
Error Tradeoff (DET) curve (which plots the false alarm vs.
miss rates at different scoring thresholds) for this experiment
is shown in Figure 2. We can also obtain a measure of raw
accuracy for this experiment by setting the scoring threshold



Figure 2: The DET curve of the results described in
Section 5.

to the level for the EER, and simply tallying the number of
trials that are correctly identified (i.e. true trial scores that
fall above the scoring threshold, and impostor trial scores
that fall below the threshold). 67.7 % (193 out of 285) of
the true trial scores are correctly classified; 67.7 % (3279 out
of 4845) of the impostor trial scores are correctly classified.
To demonstrate the consistency of this result, we created 100
random splits amongst the 5,130 trial scores, with roughly
2,500 trial scores (roughly 128 true trial scores) per split, and
computed the EER on each of the 100 splits. The average
of the EERs is 32.4 %, with a standard deviation of 1.16 %.
The fact that the EER average is close to the original EER
(32.4 % vs. 32.3 %), along with the low standard deviation,
shows the consistency of our EER result across all trials.

Results for other experiments demonstrate up to a 28.7%
relative EER improvement (31.0% EER vs. 22.1% EER) if
the training and test sets have common users. This demon-
strates that implicit effects, such as channel artifacts from
the recording device, contribute significantly to the accu-
racy. When removing San Francisco and London (the cities
with roughly half the videos), we obtain a 37.8% EER, and
with randomizing the training city labels, we obtain a 46.4%
EER (the result obtained by random chance). Note that
while the result when San Francisco and London are removed
(37.8% EER) is worse than the corresponding result where
the cities are included (31.0% EER), the result is still signif-
icantly better than the random chance result (46.4% EER).
One possible reason why including San Francisco and Lon-
don significantly improves results is the availability of more
training data for its city models. This shows that overall
results would likely improve even more if additional train-
ing data is used for other cities as well. Overall, the results
demonstrate the feasibility of using the audio tracks of videos
to identify their city of origin.

6. DISCUSSION
Audio is one of several possible media to use for this task

and is likely complementary to other modalities, such as
video and textual metadata. Hence, potential improvements
in city identification can be obtained by combining audio
with other media. It is likely that the reason audio per-
forms well in this task, even by itself, is that different cities
have different types of noises, music, languages, as well as
loudness levels at different times during the day. The GMM
models of each city may have learned such distinctive fea-
tures of each city, enabling our system to perform reason-
ably.

Our result is even more interesting considering that even
after listening to a random sample of the videos across differ-
ent cities, we did not get the sense that there are any clear,
distinctive audio features for each city. For instance, there
are no sounds that would clearly identify audio as belonging
to the city of San Francisco. We suspect that it would be
difficult for humans to perform the same task using the same
experimental setup. Hence, we believe that the GMM-UBM
approach may well be better than humans at performing
city identification of videos based on their audio.

7. CONCLUSION AND FUTURE WORK
This work demonstrates the applicability of a GMM-UBM

speaker recognition system to city-identification of Flickr
videos, based only on audio information. Moreover, it shows
the feasibility of using implicit audio cues (as opposed to
building explicit detectors for individual cues) for location
estimation of consumer-produced, “from-the-wild” videos.
Therefore, an EER of 32.3% (meaning that among all the tri-
als, we obtain a 32.3% false alarm and a 32.3% miss rate) on
a test set of 285 videos, with no common users in the train-
ing set (which is a self-imposed constraint to eliminate direct
recording device matching), is a significant result, and is far
from our random baseline result (46.4 % EER). For test sets
with common users in the training set, we obtain an EER
as low as 22.1%. Our result is rather surprising, given that
human observation of the audio tracks of the videos has not
revealed any distinctive characteristics for whether a video
is from one city versus another. However, a conglomeration
of factors, such as differences in music, language, loudness,
among others, may have been taken into account by our
machine learning approach.

We also understand that audio is only one of the modal-
ities that can be used. Future work may involve improving
our system to better handle the audio modality, as well as
incorporating other modalities such as video and metadata
to this task. We suspect that, because audio is likely comple-
mentary to the other available modalities, using these other
modalities as well will result in considerable improvements
to the initial results presented here.
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