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Abstract

When building applications that process large volumes of network traffic — such as firewalls,
routers, or intrusion detection systems — one faces a striking gap between the ease with which
the desired analysis can often be described in high-level terms, and the tremendous amount of
low-level implementation details one must still grapple with for coming to an efficient and
robust system. We present a novel environment, HILTI, that provides a bridge between these
two levels by offering to the application designer the abstractions required for effectively
describing typical network analysis tasks, while still being designed to provide the performance
necessary for monitoring Gbps networks in operational settings. The new HILTI middle-layer
consists of two main pieces: an abstract machine model that is specifically tailored to the
networking domain and directly supports the field's common abstractions and idioms in its
instruction set; and a compilation strategy for turning programs written for the abstract
machine into optimized, natively executable task-parallel code for a given target platform. We
have developed a prototype of the HILTI environment that fully supports all of the abstract
machine's functionality, and we have ported a number of typical networking applications to the
new environment. We also discuss how HILTI's processing can transparently integrate custom
hardware elements where available as well as leverage non-standard many-core platforms for
parallelization.
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1 Introduction

Deep, stateful network packet analysis is a crucial
building block for applications processing network traf-
fic. However, when building systems such as firewalls,
routers, and network intrusion detection systems (NIDS),
one faces a striking gap between the ease with which
one can often describe the desired analysis in high-level
terms (“search for this pattern in HTTP requests™), and
the tremendous amount of low-level implementation de-
tails that one must still grapple with to realize an efficient
and robust implementation. When applications recon-
struct the network’s high-level picture from zillions of
packets, they must not only operate efficiently to achieve
line-rate performance under real-time constraints, but
also deal securely with a stream of untrusted input that
requires fail-safe, conservative processing.

Despite such challenges, however, our community
sees little reuse of existing, well-proven functionality
across networking applications. While individual efforts
invest significant resources into optimizing their particu-
lar implementations, new projects cannot readily lever-
age the experiences that such systems have garnered
through years of deployment, and thus have to build
much of same functionality from scratch each time.

In this work we present a novel platform for build-
ing network traffic analysis applications, providing much
of the standard low-level functionality without tying it
to a specific analysis structure. Our system consists of
two parts: (i) an abstract machine model specifically tai-
lored to the networking domain and directly supporting
the field’s common abstractions and idioms in its instruc-
tion set; and (ii) a compilation strategy for turning pro-
grams written for the abstract machine into optimized,
natively executable code. At the core of the abstract ma-
chine model is a high-level intermediary language for
traffic inspection (HILTI) that provides high-level data
structures, powerful control flow primitives, extensive
concurrency support, and a secure memory model pro-
tecting against unintended control and data flows.

Conceptually, HILTI provides a middle-layer sitting
between the operating system and a host application.
HILTI operates invisibly to an application’s end-users,
and specifically they do not interact with it directly. In-
stead, an application leverages HILTI by compiling the
analysis it wants to perform from its own custom high-
level description (like a firewall’s rules, or an NIDS’s sig-
nature set) into HILTT code; and HILTI’s compiler then
translates it further down into natively executable code.

We have developed a prototype of the HILTI compiler
that fully supports all of the design’s functionality, and
we have ported several sample networking applications
to the HILTI machine model to demonstrate the aptness
of its abstractions, including the BinPAC protocol parser

generator [40] and the Bro NIDS’s script interpreter [41].
HILTI targets production usage, with performance suit-
able for real-time analysis of high-volume network traffic
in large-scale operational environments. While our pro-
totype implementation cannot yet provide such perfor-
mance, we show that its bottlenecks are implementation
deficits that we can overcome with further engineering
effort to eventually build a production-quality toolchain.

One of HILTT’s main objectives is to integrate much of
the knowledge that the networking community has col-
lected over many years into a single platform for appli-
cations to build upon. As such, we envision HILTI to
eventually become a framework that ships with an ex-
tensive library of reusable higher-level components, such
as packet reassemblers, session tables with built-in state
management, and parsers for specific protocols. By pro-
viding both the means to implement such components as
well as the glue for their integration, HILTT can allow ap-
plication developers to focus on their core functionality,
relieving them from low-level technical challenges that
others have already solved numerous times before.

We structure the remainder of this paper as follows.
In §2 we motivate our work by examining the potential
for sharing functionality across networking applications.
We present HILTI’s design in §3 and showcase four ex-
ample applications in §4. Thereafter, we discuss our pro-
totype implementation in §5 and evaluate its design in
86. We highlight specific design choices in §7 and sum-
marize related work in §8. Finally, we conclude in §9.

2 The Potential for Sharing Functionality

Internally, different types of networking applications—
such as packet filters, stateful firewalls, routers, switches,
intrusion detection systems, network-level proxies, and
even OS-level packet processing—all exhibit a similar
structure built around a common set of domain-specific
idioms and components.! While implementing such
standard functionality is not rocket science, coming to
a robust and efficient system is nevertheless notoriously
difficult. In contrast to other domains where commu-
nities have developed a trove of standard tools and li-
braries (e.g., in HPC, cryptography), we find little reuse
of well-proven functionality across networking systems
even in the open-source world. We examined the code
of three open-source networking applications of different
types: iptables (firewall), Snort (NIDS), and XORP (soft-
ware router). All three implement their own versions of

'To simplify terminology, throughout our discussion we use the
term “networking application” to refer to a system that processes net-
work packets directly in wire format. We generally do not consider
other applications that use higher-level interfaces, such as Unix sock-
ets. While these can benefit from HILTI as well, they tend to have
different characteristics that would exceed the scope of our discussion.



Host Application HILTI Machine Environment

OS Toolchain

Application
Core -

-----+-- Clnterface
’—;’ Stubs

Analysis . Analysis . HILTI Machine HILTI . Native Object
Specification | ! Compiler : Code Compiler : Code

System
Linker

. Native
: Executable

Runtime
Library

Figure 1: Workflow for using HILTI.

standard data structures with state management, support
for asynchronous execution, logic for discerning IPv4
and IPv6 addresses, and protocol inspection. We also
compared the source code of three well-known open-
source NIDS implementations (Bro, Snort, and Suricata).
We found neither any significant code shared across
these systems, nor leveraging of much third-party func-
tionality. 1ibpcap is the only external library to which
they all link. In addition, Snort and Suricata both lever-
age PCRE for regular expression matching, while Bro
implements its own engine. In a recent panel discussion,
leads of all three NIDS projects indeed acknowledged the
lack of code reuse, attributing it to low-level issues like
incompatible program structures and data flows. HILTI
aims to overcome this unfortunate situation.

More generally, from our source code analysis we
identified a number of building blocks for networking
applications, as illustrated in Figure 2:

Domain-specific Data Types. Networking applica-
tions use a set of domain-specific data types for express-
ing their analysis, such as IP addresses, transport-layer
ports, sub-networks, and time. HILTI’s abstract machine
model provides these as first-class types.

State Management. Most applications require long-
lived state as they correlate information across packet
and session boundaries. HILTT provides container types
with built-in state management, and timers to schedule
processing asynchronously into the future.

Concurrent Analysis. High-volume network traffic
exhibits an enormous degree of inherent parallelism [42].
Applications need to multiplex their analyses across po-
tentially tens of thousands of data flows, and they can
also exploit the parallelism for scaling across CPUs on
multi-core platforms (which is however still uncommon
to find in implementations, as data dependencies pose
significant challenges for stateful traffic analysis). HILTI
supports both forms of parallelism via incremental pro-
cessing and a domain-specific concurrency model.

Real-time Performance. With 10 Gbps links stan-
dard even in medium-sized environments, applications
deal with enormous packet volumes in real-time. HILTI

not only parallelizes processing effectively, but also com-
piles analyses into native executables with potential for
extensive domain-specific code optimization.

Robust/Secure Execution. Networking applications
often must process untrusted input: attackers may at-
tempt to mislead the system; and, more mundanely, real-
world traffic contains much “crud” [41] not conforming
to any RFC. While writing robust C code is notoriously
difficult, HILTT’s abstract machine model provides a con-
tained, well-defined environment.

High-level Standard Components. HILTT facilitates
reuse of higher-level functionality across applications by
providing (i) a lingua franca for expressing their inter-
nals, and (ii) interfaces for integration and customization.

3 The HILTI Abstract Machine Model

At the heart of HILTT lies an abstract machine model tai-
lored to network traffic analysis, consisting of an instruc-
tion set with corresponding runtime semantics and an ac-
companying runtime library. The HILTI compiler turns
code written for the abstract machine into native executa-
bles. Our primary design goals for HILTT are: (i) func-
tionality that supports a range of applications; (ii) ab-
stractions that enable transparent parallelization, opti-
mization, and acceleration; (iii) a comprehensive API
for customization and extension; and (iv) performance
eventually suitable for operational deployment. In the
following we discuss HILTT’s design in more detail. For
convenience we use the name HILTI for both the abstract
machine model itself and the framework that implements
it, i.e., the compiler toolchain and runtime library.

3.1 Workflow

Figure 1 shows the overall workflow when working with
HILTI. A host application leverages HILTI for provid-
ing its functionality. Typically, the host application has
a user-supplied analysis specification that it wants to de-
ploy; e.g., the set of filtering rules for a firewall, or the set
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Figure 2: Building blocks of network traffic applications and how HILTT supports them.

# cat hello.hlt
module Main

import Hilti

void run () {
call Hilti::print("Hello,

# Default entry point for execution.
World!")

}

# hilti-build hello.hlt -o a.out &&
Hello, World!

./a.out

Figure 3: Building a simple HILTI program.

of signatures for a NIDS. The application needs to imple-
ment a custom analysis compiler that translates its speci-
fications into HILTI code, which the HILTI compiler then
turns into object code native to the target platform. The
compiler also generates a set of C stubs for the host appli-
cation to use to interface with the resulting code. Finally,
the system linker combines compiled code, stubs, and the
host application into a single program (either statically
or JIT). Our prototype includes two tools, hiltic and
hilti-build, which compile HILTI code into objects
and executables, respectively (see Figure 3).

Generally, there are two ways to structure a host ap-
plication. First, the HILTI code can be the main entry
point to the execution, with the application providing ad-
ditional functionality via external functions called out to
as necessary (per Figure 3). Alternatively, the applica-
tion can drive execution itself and leverage HILTI-based
functionality on demand (e.g., a NIDS could feed pay-
load into a HILTI-based protocol parser; see §4).

3.2 Instruction Set

Syntax.
HILTI’s

To keep the syntax simple, we model
instruction set after register-based as-
sembler languages. A program consists of
a series of instructions of the general form
<target> = <mnemonic> <opl> <op2> <op3>,
with target/operands omitted where not needed. In
addition, there are primitives to define functions,
custom data types, and local and thread-local vari-

ables.2 By convention, mnemonics are of the form
<prefix>.<operation>, with the same prefix
indicating a related set of functionality. For data
types in particular, <prefix> refers to the type and
the first operand is the manipulated instance (e.g.,
list.append mylist 42 appends the integer 42
to the specified list reference, mylist). Generally, we
deliberately limit syntactic flexibility to better support
compiler transformations. Recall that HILTT is itself
a compiler rarget, and not a language that users are
expected to write code for directly.

Rich Data Types. While being parsimonious with
syntax, we provide HILTI with a rich set of high-level
data types relevant to the networking domain. First,
HILTT features standard atomic types such as integers,
character sequences (with separate types for Unicode
strings and raw bytes), floating-point, bitsets, enums, and
tuples. In addition, it offers domain-specific types such
as IP addresses (transparently supporting both IPv4 and
IPv6), CIDR-style subnet masks, transport-layer ports,
and timestamp / time interval types with nanosecond res-
olution. All these types provide crucial context for type
checking, optimization, and data flow/dependency anal-
yses. Second, HILTI offers a set of high-level container
types (lists, vectors, sets, maps) that all come with built-
in state management support, such as automatic expira-
tion of elements. Iterator types, along with overloaded
operators, provide safe generic access to container ele-
ments. Further domain-specific types are overlays for
dissecting packet headers into their components; chan-
nels for transferring objects between threads; classifiers
for performing ACL-style packet classification; regular
expressions with support for incremental matching and
simultaneous matching of multiple expressions; input
sources for accessing external input (e.g., network in-
terfaces and trace files); files; and timer managers for
maintaining multiple independent notions of time [46].

Memory Model. HILTT’s memory model is statically
type-safe, with containers, iterators, and references pa-

2By design, HILTI does not provide any truly global variables visi-
ble across threads; exchanging state requires explicit message-passing.



rameterized by type and no explicit cast operator avail-
able. A new instruction makes dynamic memory alloca-
tions explicit. The HILTT runtime automatically garbage-
collects objects that have become no longer accessible.
Flexible Control Flow. Network traffic analysis is
inherently both incremental and parallel: input arrives
chunk-wise on concurrent flows. HILTI provides timers
to schedule function calls for a future time, snapshots to
save the current execution state for later resumption, ex-
ceptions for robust error handling, and cooperative multi-
tasking for flexible scheduling (see §3.3). Internally, the
main building block for all of these is first-order support
for one-shot continuations [14]. In addition, hooks allow
host applications to non-intrusively provide blocks of ex-
ternal code that will run synchronously at well-defined
times during execution, with access to HILTT state.

3.3 Concurrency Model

A cornerstone of HILTT’s design is a domain-specific
concurrency model that enables scalable, data-parallel
traffic analysis. We base our approach on the observa-
tion that networking applications tend to structure their
analysis around natural analysis units (e.g., per-flow or
per-source address), which HILTI leverages to transpar-
ently map processing to parallel hardware platforms.
HILTI’s concurrency model is a generalization of
our earlier, preliminary work on parallelizing the Bro
NIDS [46]. There, we found that while generally Bro’s
custom Turing-complete scripting language does not im-
pose any particular analysis structure, in practice tasks
tend to be expressed in terms of domain-specific units,
such as per flow or per host. Our analysis found that there
is typically no need for state synchronization between the
work performed for individual unit instances. For exam-
ple, code that examines the content of a particular flow
rarely needs information about other flows. Likewise, a
scan detector that tracks connection attempts per source
address has no need for correlating counters between
sources. Ideally, we would parallelize such analyses
by assigning one thread to each individual unit instance
(e.g., for the scan detector, one thread for each possible
source address, each maintaining a single thread-local
counter tracking connection attempts for “its” source).
HILTI’s concurrency model follows the spirit of this
approach. Taking inspiration from Erlang, HILTI uses
a large number (10s to 100s) of lightweight, virtual
threads, each in charge of a set of unit instances. A
scheduler steers all processing related to a specific in-
stance to the corresponding thread, which keeps all rele-
vant state in thread-local memory. During execution, the
runtime maps virtual threads to native threads of the un-
derlying hardware platform via cooperative multitasking.
More concretely, a host application specifies a set of

# Definition of execution context for 4-tuple.
context { addr sa, port sp, addr da, port dp }

# Definition of scopes.
scope Flow { sa, sp, da, dp }
scope Source { sa }

# A function scheduled on a per-flow basis.
void check_http_request (ref<bytes> uri) &scope=Flow
{
local bool suspicious
suspicious = regexp.match /param=[aA]lttack/ uri
. # Alarm if regular expression matches.

}

# Thread-local map of counters per source address
# (initialization not shown).
global ref<map<addr, int<64>>> conn_attempts

# A function scheduled on a per-source basis.
void count_conn_attempt (addr host) &scope=Source
{
local int<64> cnt
# Increase the host’s counter (default 0).
cnt = map.get_default conn_attempts host 0
cnt = incr cnt
map.insert conn_attempts host cnt

. # Alarm if threshold reached
}
Figure 4: HILTI example code for parallelizing a NIDS-
style host application.

analysis units by defining an execution context: a cus-
tom composite type consisting of attributes suitable to
describe all unit instances. For example, a typical con-
text for a primarily flow-based application is the 4-tuple
of addresses and ports. In addition, the application de-
fines a set of scheduling scopes, each describing one
particular analysis unit as a subset of the context’s at-
tributes. With the example 4-tuple-context, scopes might
be flow (all four attributes), host pair (the two addresses),
source (just the originating address). Finally, the appli-
cation assigns these scopes to all functions that depend
on any of the units, defining their scheduling granularity.
At runtime, each virtual thread tracks its current analysis
unit as an instance of the execution context, and HILTI’s
scheduler directs function invocations to the correspond-
ing threads, ensuring that the same target thread will pro-
cess all invocations triggered by the same unit instance.
Internally, a hash of the relevant fields of the current con-
text determines the virtual thread in charge.

Figure 4 shows an example demonstrating this
process for a NIDS-style application. We de-
fine a context, two scopes, and two simple func-
tions: check_http_request of scope Flow, and
count_conn_attempt of scope Source. We as-
sume that an HTTP protocol parser calls the former
for each HTTP request found in the input traffic; the
functions then scans the request’s URL for suspicious
activity. The latter implements a basic scan detector
and counts connection attempts per source. Fig-
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. # Get a packet.
thread.set_context
thread.schedule check_http_request
thread.schedule check_http_request
thread.schedule count_conn_attempt

. # Get another packet.
thread.set_context (10.1.1.1,1234/tcp,10.9.9.9,80/tcp)
thread.schedule check_http_request ("/index.html"
thread.schedule check_http_request ("/robots.txt")
thread.schedule count_conn_attempt (10.1.1.1)

[ Thread N ]

(10.1.1.1,1234/tcp,10.2.2.2,80/tcp)
("/index.html")
("/robots.txt")
(10.1.1.1)

[SXCRS)
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Figure 5: Scheduling example for the code in Fig. 4.

ure 5 illustrates the execution. First, the main thread
initializes the current execution context with the 4-
tuple learned from the header of the currently pro-
cessed packet, using HILTT’s thread. set_context
instruction. The scheduler now directs the first two in-
vocations of check_http_request (®,®) to a sin-
gle virtual thread as both originate from the same flow.
The invocation of count _conn_attempt (®) maps to
a different thread because an independent unit triggers
it (i.e., the source address 10.0.1.1). When the main
thread receives the next input packet, it adapts its context
accordingly. The flow-based invocations (®,®) now go
to a different thread than before, while the target for the
source-based invocation (®) remains unchanged since
the context’s originator is still the same. This model
guarantees that all map accesses to a particular map in-
dex in count_conn_attempt will come from a single
thread, which can thus use thread-local state to track all
connection attempts correctly. Furthermore, the schedul-
ing also serializes execution per unit instance, and thus
provides a well-defined processing order. The HILTI en-
vironment statically enforces correctness of this model
by ensuring that functions can schedule only compatible
invocations. In the example, count_conn_attempt
could not call check_http_request since its own
scope would not be a subset of the callee’s.

The scalability of this concurrency model depends
crucially on finding sufficient diversity in the analyzed
traffic to distribute load and state evenly across threads.
Conceptually, HILTI’s scheduler works similar to the ex-
ternal, flow-based load-balancing approach that our ear-
lier NIDS cluster work employs [48]. The evaluation of
that work, and subsequent experience with several op-
erational installations, show that typical traffic patterns
balance well at the flow-level. Moreover, earlier simula-
tions revealed that extending the model to further units
provides excellent thread-scalability [46].

While our current prototype focuses on systems with

general-purpose commodity CPUs, HILTI’s concurrency
model also maps well to other parallel architectures. One
example is Tilera’s many-core CPUs [10], which we ex-
amine in §6.2. Another is the massive parallelism offered
by today’s GPUs. While GPUs are more constrained in
their capabilities, we believe that the HILTI compiler has
enough analysis context at its disposal that it could au-
tomatically identify parts of a HILTI program suitable
for outsourcing to a GPU. Finally, HILTT also supports
unconstrained manual scheduling across arbitrary virtual
threads, allowing for concurrent analysis schemes that do
not fit with the context-driven approach.

3.4 Profiling

A key challenge for high-volume traffic analysis is as-
sessing and optimizing runtime performance [20]. HILTI
supports measuring CPU and memory properties via pro-
filers that track attributes such as CPU cycles, mem-
ory usage, and cache performance for arbitrary blocks
of code. During execution, the HILTT runtime records
measured attributes to disk at regular intervals, enabling
for example tracking of CPU time spent per time inter-
val [20, 21]. Our HILTI prototype compiler can also
insert instrumentation to measure per-function perfor-
mance, and comes with a tool, hilti-prof, that con-
verts the raw profiling records into a human-readable for-
mat. HILTT also provides extensive debugging support,
which we omit discussing for space reasons.

3.5 API

HILTT comes with an extensive C API that offers di-
rect access to all of its data types. In addition, control
flow can transfer bi-directionally between external appli-
cations and HILTI. C programs call HILTT functions via
automatically generated interface stubs, whereas HILTI
code can invoke C functions directly. The C interface
also integrates exception handling and thread scheduling
between HILTI and host application.

A second part of HILTI’s API is an extensive Python-
based AST interface for constructing HILTI programs in
memory. hiltic and hilti-build are indeed just
small wrappers around this API, and host applications
can likewise use it for compiling their higher-level anal-
ysis specifications into HILTI code. We plan to provide
similar interfaces for further languages in the future.

3.6 Performance via Abstraction

HILTI’s machine model preserves high-level semantics
that offer extensive potential for automatic, transparent
optimization. We now discuss optimizing individual
functionality as well as the generated code in general.



Optimizing Functionality. By providing platform-
independent abstractions, HILTI enables transparent op-
timization of the underlying implementation. As an ex-
ample, consider HILTI’s map data type. While con-
ceptually simple, optimizing its internal hash table for
real-time usage requires care to avoid CPU spikes [20].
With HILTI, we can perform such fine-tuning “under the
hood” while immediately improving all host applications
built on top. Likewise, we are currently working on a
JIT compiler for HILTI’s regular expressions (similar in
spirit to re2c [8], yet supporting advanced features such
as set matching and incremental operation). Switching to
the new JIT version will be an internal change that does
not require any modifications to host applications.

HILTT’s abstractions also facilitate transparent integra-
tion of non-standard hardware capabilities where avail-
able. Traditionally, integrating custom hardware ele-
ments (such as FPGA-based pattern matchers or network
processors) into a networking application has required
significant effort for manually adapting the codebase,
typically with little potential for reuse in other applica-
tions. With HILTI, however, we can adapt the runtime li-
brary to leverage the capability transparently while keep-
ing the interface exposed to host applications unchanged.
In §6.3 we examine a particular example.

Optimizing Code. HILTI’s execution model also en-
ables global, whole-program code optimization by pro-
viding crucial high-level context for control and dataflow
analyses [30]. While we leave a more detailed examina-
tion to future work, we believe that state management
in particular is an area that can benefit from extensive
compile-time optimization. For example, with HILTI’s
built-in state-management support, we expect the com-
piler to have sufficient context available to group mem-
ory operations for improved cache locality. In addition
to purely static optimization schemes, we also plan to in-
tegrate approaches driven by runtime profiling [21].

4 Applications

To support our claim that HILTI can accommodate a
range of common network processing tasks, we built
four example host applications: (i) a BPF-style packet
filter engine; (ii) a stateful firewall; (iii) a parser gener-
ator for network protocols; and (iv) a compiler for Bro
scripts. All four implementations are early prototypes at
this time. While we consider the former two primarily as
proofs-of-concept, we intend to further develop the latter
two into production systems as HILTI matures.

Berkeley Packet Filter. As an initial host application,
we implemented a compiler for t cpdump-style BPF fil-
ters [36]. BPF normally translates filters into code for

bool filter (ref<bytes> packet) # Ref. to raw data.
local IP::Header iphdr # Overlay instance.
local iterator<bytes> start
local addr al, a2
local bool bl, b2, b3

bgn = begin packet
overlay.attach iphdr bgn

# Iterator to lst byte.
# Attach overlay.

# Extract fields and evaluate expression.
al = overlay.get iphdr "src"

bl = equal al 192.168.1.1

a2 = overlay.get iphdr "dst"
b2 = equal a2 192.168.1.1

bl = bool.or bl b2

b2 = equal 10.0.5.0/24 al

b3 = bool.or bl b2

return.result b3

}

Figure 6: Generated HILTI code for the BPF filter
host 192.168.1.1 or src net 10.0.5.0/24.

its custom internal stack machine, which then interprets
the code at runtime. Compiling filters into native code
via HILTI avoids the overhead of interpreting, enables
further compile-time code optimization, and allows ex-
tending the filtering capabilities easily.

Figure 6 shows example HILTI code that our com-
piler produces for a simple BPF filter. The generated
code leverages a predefined overlay type for the IP packet
header. Overlays are user-definable composite types that
specify the layout of a binary structure in wire format and
provide transparent type-safe access to its fields while ac-
counting for specifics such as alignment and byte-order.

While our proof-of-concept BPF compiler supports
only IPv4 header conditions, adding further t cpdump
options would be straight-forward. The compiler could
also easily go beyond standard BPF capabilities and, e.g.,
add sampling and stateful filtering [25].

Stateful Firewall. Our second proof-of-concept host
application is a basic stateful firewall, implemented as
a Python script that compiles a list of rules into cor-
responding HILTI code. To simplify the example,
our tool supports only rules of the form (src-net,
dst-net) — {allow,deny}, applied in order of
specification. The first match determines the result, with
a default action of deny. In addition, it provides a sim-
ple form of stateful matching: when a host pair matches
an allow rule, the code creates a temporary dynamic
rule that will permit all packets in the opposite direction
until a specified period of inactivity has passed.

Figure 7 shows the code generated for a simple rule
set, along with static code that performs the matching.
The code leverages two HILTI capabilities: (i) the clas-
sifier data type for matching the provided rules; and (ii) a
set indexed by host pair to record dynamic rules, with a
timeout set to expire old entries.



### Compiled rule set (netl -> net2) -> {Allow, Deny}.
### Generated by the application’s analysis compiler.

void init_rules (ref<classifier<Rule, bool>> r) {
# True —-> Allow; False -> Deny.
classifier.add r (10.1.1.1/32, 10.1.0.0/16) False
classifier.add r (192.168.1.0/24, 10.1.0.0/16) True
classifier.add r (10.1.1.0/24, %) True

}

### The host applications also provides the following
### static code.

type Rule = struct { net src, net dst } # Rule type.

# Dynamic rules: a set of address pairs allowed to

# communicate. We configure it with an inactivity

# timeout to expire entries automatically (not shown).
global ref<set<tuple<addr, addr>>> state

# Thread-local timer manager controlling expiration
# of dynamic rules (initialization not shown) .
global ref<timer_mgr> tmgr

# Function called for each packet, passing in

# timestamp and addresses. Returns true if ok.

bool match_packet (time t, addr src, addr dst) {
local bool action

# Advance time to expire old state entries.
timer_mgr.advance tmgr t

# See if we have a state entry for this pair.
action = set.exists state (src, dst)
if.else action @return_action @lookup

@lookup: # Unknown pair, look up rule.
try { action = classifier.get rules (src, dst) }
catch Hilti::IndexError { # No match, default deny.
return.result False

}
if.else action @add_state @return_action

@Qadd_state:
set.insert state (dst, src)

@return_action: # Return decision.
return.result action

}

Figure 7: HILTI code for firewall example.

While we have greatly simplified this proof-of-
concept firewall for demonstration purposes, adding fur-
ther functionality would be straight-forward. In practice,
the rule compiler could support the syntax of an existing
firewall system, like iptables.

A Yacc for Network Protocols. To provide a more
complete example, we reimplemented the BinPAC parser
generator [40] as a HILTI-based compiler. BinPAC is a
“yacc for network protocols”: provided with a protocol’s
grammar, it generates the source code of a correspond-
ing protocol parser. While the original BinPAC system
outputs C++, our new version targets HILTI. As we also
took the opportunity to clean up and extend the syntax,
we nicknamed the new system BinPAC++.

Figure 8(a) shows a small excerpt of a BinPAC++
grammar for parsing an HTTP request line (e.g., GET

# Add rule allowing opposite direction.

const Token = /" \t\r\nl+/;
const NewLine = /\r2\n/;
const WhiteSpace = /[ \tl]+/;

type RequestLine = unit {

method: Token;

: WhiteSpace;
uri: URI;

: WhiteSpace;
version: Version;

: NewLine;

bi

type Version = unit {
: /HTTP\// # Fixed string as regexp.
number: /[ T+\. 1+/;

}i

(a) BinPAC++ grammar excerpt for HTTP.

struct http_requestline_object ({
hlt_bytes* method;
struct http_version_object* version;
hlt_bytesx uri;
[... some internal fields skipped ...]
bi

extern http_requestline_objectx
http_requestline_parse (hlt_bytes x,
hlt_exception *x);

(b) C prototypes generated by HILTI compiler. The host application
calls http_-requestline_parse function to parse a request line.

[binpac] RequestLine

[binpac] method = ‘GET’
[binpac] uri = ‘/index.html’
[binpac] Version

[binpac] number = ‘1.1’

(c) Debugging output showing fields as input is parsed.

Figure 8: BinPAC++ example (slightly simplified).

/index.html HTTP/1.1). In Figure 8 (b) we show
the C prototype for the generated parsing function as ex-
posed to the host application, including a struct type cor-
responding to the parsed PDU. At runtime, the generated
HILTI code allocates instances of this type and initial-
izes the individual fields as parsing progresses; see Fig-
ure & (c) for debugging output showing the process for an
individual request. In addition, when the parser finishes
parsing a PDU field, it executes callbacks that the host
application can optionally provide.

BinPAC++ provides the same functionality as the orig-
inal implementation, and we converted parsers for HTTP
and DNS over to the new system. Internally, however,
we structured BinPAC++ quite differently by taking ad-
vantage of HILTI’s abstractions. While BinPAC needs to
provide its own low-level runtime library for implement-
ing domain-specific data types and buffer management,
we now use HILTI’s primitives and idioms, which re-
sults in higher-level code and a more maintainable parser
generator. Leveraging HILTT’s flexible control-flow, we
now generate fully incremental LL(1)-parsers that post-
pone parsing whenever they run out of input and trans-



parently resume once more becomes available. In con-
trast, BinPAC’s C++ parsers need to rely on an additional
PDU-level buffering layer that often requires additional
hints from the grammar writer to work correctly. Finally,
while the original version requires that the user write ad-
ditional C++ code for anything beyond describing ba-
sic syntax layout, HILTI enables BinPAC++ to support
defining protocol semantics as part of the grammar lan-
guage (e.g., to specify higher-level constraints between
separate PDUs). Accordingly, BinPAC++ extends the
grammar language with semantic constructs for annotat-
ing, controlling, and interfacing to the parsing process,
including support for keeping arbitrary state.

Bro Script Compiler. Our final application is a com-
piler for Bro scripts [41]. Different from other, purely
signature-based NIDS’s, Bro has at its heart a domain-
specific, Turing-complete scripting language for express-
ing custom security policies, as well as prewritten higher-
level analysis functionality that ships with the distri-
bution. The language is event-based, with event han-
dlers executing as Bro’s C++ core extracts key activ-
ity from the packet stream. For example, the internal
TCP engine generates a connection_established
event for any succesful 3-way handshake, passing along
meta-data about the corresponding connection as the
event’s argument. Likewise, Bro’s HTTP parser gen-
erates http_request and http_reply events as it
parses HTTP client and server traffic, respectively. Many
event handlers track state across invocations via global
variables, for example to correlate HTTP replies with
the earlier requests. Currently, Bro interprets all scripts
at runtime, which proves to be the primary performance
bottleneck in many operational installations.

To demonstrate that HILTI can indeed support such
a complex, highly stateful language, we developed a
Python-based Bro compiler prototype that translates
event handlers into HILTT functions, mapping Bro data
types and constructs to HILTI equivalents as appropriate.
Using the HILTI toolchain, we can compile these func-
tions into native code that Bro can call directly instead of
using its interpreter. While we have not yet implemented
the interface between the two systems, we show in §6.1
that the generated code indeed produces the same output
as Bro’s interpreter when driven by the same event series.

Our compiler supports most features of the Bro script-
ing language. With HILTT’s rich set of high-level data
types, we found mapping Bro types to HILTI equiva-
lents straightforward. While Bro’s syntax is complex,
the compiler can also quite directly lower its constructs
to HILTI’s simpler register-based language. For exam-
ple, it transforms loops that iterate over a set of elements
into a series of code blocks that use HILTT’s operators for
type-safe iteration and conditional branching.

There is a small set of Bro language features that the
compiler does not yet support, including function point-
ers (which HILTT does not yet provide) and optional at-
tributes for defining variable properties such as default
values for containers and timed expiration of their entries
(which HILTT provides but we have not yet implemented
for the Bro compiler). Furthermore, the Bro scripting
language uses an opaque any type to provide function-
ality like variadic arguments. While by design HILTI’s
type model does not expose an equivalent to the user, the
compiler can either substitute functionality from HILTI’s
runtime library where available (e.g., HILTT’s print £
equivalent), or use individual versions of a function for
all necessary types. In the future, we may add generic
functions to HILTI to better support such use cases.

S Implementation

We now discuss the prototype HILTT implementation that
we built for studying our design, which consists of a
Python-based compiler along with a C runtime library.
Unless indicated otherwise, this prototype fully imple-
ments all functionality discussed in this paper, and we
will release it to the community as open-source software
under a BSD-style license. The compiler comes with an
extensive test suite of more than 400 units tests. As much
of the implementation is a straight-forward application of
standard compiler technology, in the following we high-
light just some of the more interesting areas.

Code Generation. As shown in Figure 1, the com-
piler, hiltic, receives HILTI machine code for com-
pilation. However, instead of generating native code
directly, we compile HILTI code into the instruction
set of the Low-Level Virtual Machine (LLVM) [33],
which we leverage for all target-specific code generation.
LLVM is an industrial-strength, open-source compiler
toolchain that models a low-level yet portable register
machine. We also compile HILTI’s runtime library into
LLVM’s representation, using its accompanying C com-
piler, clang [3]. We then link all of the parts together with
LLVM'’s linker, and finally compile the result into a na-
tive executable. Alternatively, we could also use LLVM’s
JIT compiler to perform the last step at runtime.?

LLVM provides us with standard, domain-
independent code optimizations that are crucial for
efficient execution on modern CPUs. Particularly valu-
able, LLVM performs recursive dead-code elimination
across independent link-time units. We leverage this for
generating code that can accommodate a range of host
applications without sacrificing performance. Consider a
HILTI analysis that derives different sets of information

3We envision that applications will eventually run the HILTI/LLVM
toolchain on-the-fly as they parse a high-level analysis description.



depending on configuration specifics. Some of the
information might be expensive to compute and thus the
corresponding code should better be skipped if unused.
LLVM’s global dead code analysis allows the HILTI
compiler to initially produce “worst-case code” by
including all functionality that a host application could
use. If it does not, the linker will eventually remove the
code and thereby enable further optimizations.
Execution Model. hilticimplements HILTI’s flex-
ible control flow model with first-order continuations
by converting function calls into continuation passing
style (CPS) [13] and generating LLVM code that main-
tains custom stack frames on the heap. The LLVM
compiler performs an optimization pass that replaces
CPS-style invocations with simple branch instructions,
thereby removing the additional call overhead. We are
using a custom calling convention to pass an additional
hidden object into all generated functions that provides
access to the current thread’s state. The generated code
relies on automatic garbage collection for all memory
management, for which we currently use the well-known
Boehm-Demers-Weiser garbage collector [1].

Runtime Library. The runtime library implements
more complex HILTT data types—such as maps, regu-
lar expressions, and timers—as C functions called by
the generated LLVM code. LLLVM inlines function calls
across link-time units and can thus eliminate the extra
overhead involved. The runtime library also implements
the threading system, mapping virtual threads to native
threads and scheduling jobs on a first-come, first-served
basis. We use the PAPI library [7] to access CPU per-
formance counters for profiling (see §3.4). Generally, all
runtime functionality is fully thread-safe, 64-bit code.

Limitations. Our current HILTI implementation is
an early prototype that—while already supporting all the
discussed functionality—does not yet focus on generat-
ing optimized LLVM code. Implementing a compiler
that emits high-performance code suitable for process-
ing large volumes of input concurrently and in real-time
is a significant engineering task by itself, and as such will
entail a significant follow-on effort. Not surprisingly, our
initial measurements in §6 show that hiltic’s code
can be 5-20 times slower than corresponding C code.
In §6, we identify two major contributors to this over-
head: the prototype’s runtime execution model and the
garbage collector. The former incurs a significant penalty
due to its use of custom stack frames managed on the
heap: not only does every function call involve allocating
and initializing new memory, but the approach also pre-
vents holding arguments and locals in registers and thus
further code optimizations. Regarding memory manage-
ment, while the Boehm-Demers-Weiser garbage collec-
tor is straight-forward to use, it is a conservative col-
lector with well-known limitations [29]. In particular,

even when compiled with threading support, it regularly
“stops the world” for the collection phase. We did not
attempt to further tune the collector.

We are confident that we can solve these limita-
tions with further engineering effort. There are well-
known techniques to implement HILTT’s functionality ef-
ficiently without maintaining a custom stack frames (see,
e.g., [17] for an upcoming LLVM-based mechanism);
and hiltic has the context available to either incor-
porate a precise concurrent garbage collector, or alterna-
tively use automatic reference counting instead.*

6 Evaluation

In this section, we assess our design and its prototype
implementation in terms of functionality, scalability, and
potential for transparent optimization. Given the limita-
tions of the initial implementation (see §5), we cannot
present a comprehensive evaluation of the whole system,
as much of that would hinge on further engineering ef-
forts to address the current bottlenecks. However, we ex-
amine a number of individual aspects, sometimes using
simulations as proxies, that demonstrate HILTI’s poten-
tial as a platform for flexible network traffic analysis.

6.1 Functionality

We first verified that the prototype host applications dis-
cussed in §4 produce correct results. To keep that valida-
tion manageable, we used only a relatively small packet
trace captured at the border router of our research in-
stitute. With a size of 12GB for 14M packets, it cov-
ers about three hours of a normal workday. We first
verified that running the compiled filter shown in Fig-
ure 7 (using real addresses triggering for 32% of the
packets) reported the same number of matches as using
libpcap. However, the HILTI version needed about
2.7 times more CPU time on a dual quad-core Xeon
Linux system. HILTI’s profiling showed that the pro-
cess spent about 65% of its cycles just inside stack frame
and glue logic. As oprofile [5] furthermore reported
that 31% of the total process time is due to the garbage
collector, we conclude that the slower execution time is
primarily an artifact of our prototype’s implementation.
We also confirmed the correctness of the firewall ex-
ample by comparing with a simple Python script im-
plementing the same functionality. (We skip the details
for space reasons.) We verified BinPAC++ by compar-
ing the output of a generated HTTP parser with that of
the original C++-based implementation. To that end, we

4As Bro’s implementation shows, the latter works well for the do-
main, and Apple’s recent reference counting implementation in their
LLVM-based Objective C compiler demonstrates using it in LLVM-
based applications [2].



instrumented both versions so that they record for ev-
ery HTTP request its method, path, and version; and for
every HTTP reply, the server’s status code. Note that
for doing so, the parsers need to examine the HTTP ex-
change in depth to correctly process persistent connec-
tions. As both parsers process chunks of application-
layer data (not network packets directly), we modified
Bro to preprocess the packet trace with its TCP engine
and write chunks of in-order application-layer payload
to disk. We then wrote wrappers around both HTTP
parsers to work from this trace so that they receive their
input in the same way as if integrated into the NIDS.
Using the same trace as above, we confirmed that the
BinPAC++ parser correctly recorded virtually all of the
approximately 250,000 requests/replies that the original
version extracted. It missed 16, which upon closer in-
spection however turned out to be incorrectly reported
by the old version. Looking at processing times, we
saw a major difference: the BinPAC++ parser required
about 17 times as much CPU time because the generated
recursive-descendant parser takes a large hit from our
prototype compiler’s high function-call overhead. Ac-
cordingly, the HILTT profiler reported that the code spent
49% of its time just doing custom stack management,
and oprofile credited 51% of the process time to garbage
collection.’> We also ensured correctness of our pro-
totype’s scheduler implementation by parallelizing the
HTTP analysis on the flow-level, verifying that (i) pro-
cessing indeed distributes across threads, and (ii) we see
equivalent output with varying numbers of threads.
Finally, we verified that the functionality of the code
produced by the Bro script compiler matches that of the
original Bro scripts. Here, we focused on HTTP as an
example of a complex, stateful protocol that requires
Bro to correlate client and server activity at the scripting
layer. Bro implements this functionality in two scripts,
http-request.bro and http-reply.bro, that
ship as part of its standard library and produce a log file
of all HTTP request/reply pairs seen in the input traf-
fic. Doing so entails keeping per-session state that tracks
all currently outstanding HTTP requests until the corre-
sponding reply arrives. These two scripts comprise ~3K
lines of Bro script code (including further scripts they
import recursively) and use most of the language’s capa-
bilities. Recall that the Bro compiler generates functions
that correspond to event handlers. For our evaluation, we
compiled the two HTTP scripts and then executed the
corresponding HILTT functions in isolation. To this end,
we recorded the events that Bro’s core generates with a
given packet trace and converted them into a static se-
ries of corresponding HILTT calls to the compiled func-
tions, which we then linked with the compiler’s output.

SIt’s a coincidence that these numbers add up to 100%; they are not
disjunct as the stack management involves memory operations.
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We disabled some script code that feeds back into Bro’s
C++ core, such as controlling the BPF filter the system
deploys. For tracking time, we continuously updated a
global HILTI variable to reflect Bro’s “network time”,
which is the timestamp of the most recent packet. For the
comparison, we used one minute of the packet trace de-
scribed above, generating about 12,500 relevant events.’
The resulting HTTP log file matched what an unmodi-
fied Bro produced from the same input, except for some
logging occuring when flushing state at termination that
we did not fully emulate.

6.2 Scalability

Evaluating the scalability of HILTT’s concurrency model
is difficult with the current prototype implementation.
In initial experiments, we found the garbage-collector
to slow down threaded processing to the degree that it
was hard to quantify speed improvements realistically.
We therefore resorted to simulation for understanding the
model’s conceptual properties.As a test case, we simu-
lated the processing of Bro event handlers on a 64-core
Tilera TilePro board [10], assuming the HILTI compi-
lation model discussed in §4. Tilera’s processors use
a hybrid design, close to both the familiar multi-core
paradigm and to proposed many-core architectures [47,
15]. With its large number of parallel computing ele-
ments, and high-bandwidth point-to-point links in be-
tween, this platform also allows us to examine scalability
beyond limits of a conventional commodity architecture.

Currently, however, HILTI code cannot run directly on
Tilera, as LLVM does not provide a corresponding back-
end code generator. We thus used a simulation setup in-
spired by that in [46]: running Bro 1.5 on an x86 Xeon

5We could not use a longer trace as the many function calls pro-
duced by the CPS conversion caused our Python-based compiler to re-
quire large amounts of main memory. We suspect that there is a mem-
ory problem inside the Python-LLVM bindings that we use.



system, we recorded an execution trace of all Bro events
generated with a large real-world packet trace. We then
wrote a custom simulator in C that, running on the Tilera
system, reads the trace and builds event groups consist-
ing of all events triggered, directly or indirectly, by the
same network packet (note that not all packets trigger
events). The simulator then processes each group by
distributing the corresponding events across the avail-
able cores, similar to how a compiled HILTI program
would schedule the work. To determine an event’s target
core, we annotated all trace records with execution con-
texts and scopes that would be appropriate if the same
task was indeed running on the HILTT scheduler. When
receiving an event, a core busy-waited for a time inter-
val proportional to the number of CPU cycles spent dur-
ing the original x86 run. Finally, to take the bandwidth
of Tilera’s on-chip network into account, we simulated
event parameter passing by exchanging messages of re-
alistic size between communicating cores.

We obtained a realistic workload by recording the
original packet trace at a 10 Gbps SPAN port of UC
Berkeley’s campus border router during a weekday after-
noon. To keep the simulation feasible even at slow rates,
we limited the execution trace to 1M event groups, cor-
responding to about 15 seconds of network traffic. We
ran our simulation on a TileExpressPro-20G device with
64 custom Tilera cores and 4GB of main memory, and
configured the device according to manufacturer recom-
mendations for real-time applications, which left up to
32 processors available for simulating the execution. We
then performed 9 experiments with 1,4,8,...,32 proces-
sors, respectively. In each experiment, we controlled the
load by scaling event timestamps proportionally, going
from lower to higher event group rates until the device
could no longer keep up. Figure 9 shows the relation-
ship between number of processors and maximum event
group rate; for reference we also plot the line correspond-
ing to an optimal linear improvement. Although the im-
provement is less than the optimal, overall performance
keeps increasing as we add more processing cores. While
we emphasize that our simulation is unlikely to give us
realistic estimates on absolute throughput—that would
require considering the specifics of implementing Bro on
the Tilera platform —it does consider scheduling depen-
dencies in the same way an actual system would have to.
The results thus show that HILTT’s concurrency model is
conceptually well-suited to exploit the parallelism inher-
ent in real-world workloads.

6.3 Acceleration

One of HILTT’s design goals is supporting transparent of-
floading to specialized hardware, as outlined in §3.6. To
evaluate that approach, we examined integrating the re-
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cently proposed PLUG architecture [18] into the HILTI
runtime. PLUG is a hardware-based parallel lookup en-
gine that accelerates low-level operations frequently per-
formed by packet processing tasks. PLUG takes a deeply
pipelined approach that prioritizes throughput over la-
tency. Since highly parallelized applications can best ex-
ploit its power, HILTIT’s concurrency model could pro-
vide an ideal fit for the platform.

To validate this hypothesis, we developed a PLUG-
based implementation of HILTT’s map data type, enclos-
ing in a PLUG chip the functionality of an associative
container with entry expiration time. Since PLUG is a
research project without a commercial implementation,
we carried out our evaluation through a custom cycle-
accurate functional simulator. The simulator models a
simple HILTT application: a flow table that tracks the
number of bytes seen per flow. The application deploys
per-flow load-balancing across multiple threads, with the
PLUG-based data structure servicing lookup operations
from multiple threads in parallel.

As a realistic workload for the flow table, we captured
5 minutes of network traffic at the UC Berkeley cam-
pus border, and we simulated increasing bandwidths by
scaling inter-packet arrival times. The results show that
while keeping HILTI’s map semantics, a PLUG-based
flow table can sustain an arrival rate of up to 46M packet-
s/s (corresponding to 15 Gbps assuming 40 byte packets).

In addition to these quantitative results, developing
and testing the example application allowed us two inter-
esting observations. First, we were able to map the func-
tionality of HILTT’s map type to a PLUG implementation
without introducing any significant limitations. This im-
plies that one could indeed plug the accelerated container
transparently into the HILTT runtime. Second, HILTI’s
concurrency model—which guarantees serialized execu-
tion of all operations accessing the same piece of pro-
gram state—allowed us to aggressively pipeline part of
the implementation without risking data hazards. For ex-
ample, our map implementation interleaves lookup oper-
ations even though they are not atomic: they first read an
entry and subsequently update its timestamp.

Our simulation assumes sufficient memory to keep the
complete map on the PLUG. In practice, the architecture
would have only a limited amount of SRAM available
(16MB in the current design, allowing for ~ 218,000
concurrent flows; for comparison, our trace would need
128MB if we assume a 1 min inactivity timeout). It is
possible however to envision an hybrid scheme where
the HILTT runtime transparently keeps high-bandwidth
flows on the PLUG, and others in main memory.



7 Discussion

Execution environment. One might wonder about our
choice to build a complete abstract execution environ-
ment rather than assemble reusable functionality into,
say, a C library. The key here is the additional power that
the compilation of HILTI code provides. Typical traf-
fic analysis logic uses a rather small set of conceptual
idioms, and it is precisely such domain-specific context
that allows modern compiler technology to excel. Any
library-based approach would break the tight semantic
link between analysis logic and library functionality, pre-
venting optimization schemes from exploiting their full
potential [30]. We plan to examine this area further in the
future. As one example, consider HILTI’s concurrency
model. While currently HILTT programs still need to ex-
plicitly declare control information in the form of exe-
cution context and scopes (see §3.3), the HILTI compiler
could likely infer much of that information automatically
by tracking their state access patterns.

Middle-layer. HILTI serves as a middle-layer be-
tween an application’s analysis and the low-level code
generated for native execution. A different approach
would be to provide a platform for end users that puts
a complete, easy-to-use scripting language at their dis-
posal. However, our primary goal is to enable reuse of
functionality across applications, and we argue that a
single system likely cannot effectively address the needs
of both users and applications simultaneously. We envi-
sion, however, eventually building a user-level language
on top of HILTI for developing higher-level reusable
components. Doing so will also make it easier for
host applications to provide further custom functional-
ity; currently, one may still need to write a bit of static
HILTI code manually for providing additional runtime
support (as we did for the firewall example in §4).

Inline analysis. Our current HILTT design focuses on
passive network analysis, leaving it to host applications
to provide active components if desired. However, there
are no conceptual limitations preventing HILTT from pro-
viding direct support for traffic manipulation inside the
forwarding path (e.g., for QoS or normalization [28]).
For example, we could interface HILTI to a Shunt [50].

8 Related Work

By their very nature, existing abstract machine imple-
mentations focus on specifics of their respective target
domains, and we did not find any that would fit well
with the requirements of high-performance network traf-
fic analysis. This includes machine models underlying
typical programming languages (e.g., JVM [35], Par-
rot VM [6], Lua VM [9], Erlang’s BEAM/HiPE [43]).
However, these mismatches concern primarily high-
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level, domain-specific functionality, and consequently
we leverage an existing low-level abstract machine
framework, LLVM, in our implementation.

In the networking domain, we find a range of efforts
that share aspects with our approach, yet none is provid-
ing a similarly comprehensive platform for supporting a
wide range of applications. Many could however bene-
fit from using HILTT internally. For example, the C li-
brary libnids [4] implements basic building blocks com-
monly used by NIDS’s, paying particular attention to a
design robust when facing adversaries and evasion [28].
We envision such libraries to eventually use HILTI for
their implementation. Doing so would relieve them from
low-level details (e.g., libnids is not thread-safe and has
no IPv6 support), and also benefit from a tighter semantic
link between host applications and library.

NetShield [34] aims to overcome the fundamentally
limited expressiveness of regular expressions by building
a custom NIDS engine on top of BinPAC to match more
general vulnerability signatures. However, implement-
ing low-level parts of the engine accounts for a signifi-
cant share of the effort. Using HILTI primitives would
be less time-consuming and also enable other applica-
tions to share the developed functionality.

The Click modular router [31] allows users to com-
pose a software router from elements that encapsu-
late predefined primitives, such as IP header extractors,
queues, and packet schedulers. The connected elements
form a directed graph where packets travel along the
edges, and a custom configuration language maps such
graph specifications to C++ code. Click configurations
could alternatively compile into HILTT.

RouteBricks [22] is a multi-Gbps distributed software
router that scales both across cores and machines. To op-
timize intra-node parallelization, RouteBricks uses tech-
niques akin to HILTT’s concurrency model: per-core
packet queues enable an efficient lock-free programming
model with good cache performance. HILTI provides for
such per-flow analysis (within a single system) by rout-
ing related packets to the same thread. HILTI’s concur-
rency model is more general, though, and allows other
scheduling strategies as well. Moreover, its abstract ma-
chine model supports a variety of applications.

NetPDL [44] is an XML-based language to describe
the structure of packet headers. It decouples protocol
parsing code from protocol specifics. The language sup-
ports fixed and variable-length protocol fields as well as
repeated and optional ones. While NetPDL takes a con-
ceptually different approach than BinPAC, it uses similar
building blocks and could thus leverage HILTT.

Xplico [11] is a network forensic tool written in C that
ships with protocol decoders and manipulators, including
web chat protocols inside HTTP. While powerful in its
capabilities, the system’s implementation demonstrates



the challenge of implementing the required low-level
functionality. The HTTP protocol decoder, for example,
reassembles HTTP payload by writing all packet con-
tent into per-flow files on disk, which are then re-read by
higher-level analyzers for further analysis. HILTI makes
it easier to implement such functionality efficiently.

Software-defined networking (SDN) separates a net-
work’s device control and data planes, allowing operators
to program routers and switches. OpenFlow [37] pro-
vides a vendor-agnostic interface to such functionality,
and a number of higher-level languages [26, 32, 23, 38]
use it to control compatible hardware devices. If we
added an OpenFlow interface to HILTI’s runtime, it
could drive the software component of such systems.

NetVM [39] compiles Snort rules into a custom inter-
mediary representation, and from there just-in-time into
native code. It routes packets through a graph of con-
nected network elements, each of which features a stack-
based processor, private registers, and a memory hierar-
chy. NetVM’s functionality is however much more lim-
ited than what HILTI provides: its primary goal is to
achieve portability of signature matching, and, as such,
its intermediary code is lower-level and more narrowly
focused on the task at hand. Moreover, HILTI's compila-
tion into LLVM code enables exploiting that toolchain’s
full optimization support, whereas it appears difficult to
optimize across NetVM elements.

Similar to our example in §4, Linux recently added
support for JIT compiling BPF expressions into native
(x86) assembly [16]. FreeBSD 7 also includes experi-
mental BPF JIT support (x86 and amd64). HILTI pro-
vides a portable, platform-independent approach by em-
ploying LLVM for native code generation.

Finally, there is a large body of work on accelerating
parts of the network traffic analysis pipeline with custom
hardware elements, targeting for example pattern match-
ing (e.g., [45, 24]), parallelization on GPUs (e.g., [49, 12,
27]), robust TCP stream reassembly [19], and high-speed
lookup tables such as PLUG; see §6.3). HILTT’s design
allows to transparently offload specific computations to
specialized hardware when available.

9 Conclusion

We present the design of HILTI, a novel platform for
concurrent, stateful network traffic analysis. HILTI is a
middle-layer located between a host application and the
hardware platform that executes the analysis. Our moti-
vating observation is the fact that many networking ap-
plications share a large set of functionality, yet typically
reimplement nearly all of it from scratch each time, often
running into problems that our community has already
solved numerous times before. HILTI aims to bridge that
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gap by providing common functionality to applications
that they can use to express tasks in higher-level terms.
We have developed a prototype compiler that imple-
ments all of HILTI’s initially targeted functionality, in-
cluding rich domain-specific data types, automatic mem-
ory management, flexible control flow, scalable paral-
lelization, profiling and debugging support, and an ex-
tensive API for host applications. We developed four
example applications that demonstrate HILTT’s ability to
support a range of typical network analyses. Through
transparent optimization and integration of non-standard
hardware elements, HILTT has the potential to fully ex-
ploit the capabilities of its underlying hardware platform.
Our goal is to further develop HILTI into a platform
suitable for operational deployment in large-scale net-
work environments. While our prototype is not yet there,
we are confident that further engineering effort can over-
come the current bottlenecks. In addition, we also envi-
sion HILTT supporting future research by greatly simpli-
fying the prototyping of new traffic analysis approaches.
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