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Abstract 

This paper studies whether it is possible to identify accounts on different social networks that 
belong to the same user just by using publicly available information in a user's posts. In 
particular, we explore three features to capture a user's online activity: the geo‐location 
attached to a user's posts, the timestamp of posts, and the user's writing style as captured by 
language models. Our analysis, based on correlating user accounts across Yelp, Flickr, and 
Twitter, shows that such otherwise innocuous features can indeed enable attackers to track 
users across site boundaries. This result has significant privacy implications as users tend to rely 
on an implicit notion that social networks remain separate realms. Moreover, current privacy 
controls remain insufficient to contain the risk of cross‐site correlation. 



1. INTRODUCTION
Users of online social networks increasingly scrutinize pri-

vacy protections as they realize the risks that sharing per-
sonal content entails. Typically, however, much of the atten-
tion focuses on properties pertaining to individual sites, such
as specific sharing settings Facebook o↵ers or Google’s terms
of service. What users tend to miss, though, is a broader
threat of attackers correlating personal information across
site boundaries. While on a per-site basis, a user may deem
fine what she posts to her Facebook, Twitter, and LinkedIn
accounts, she might be revealing much more than she real-
izes when considering them in aggregate. As one example,
a social engineering attack could first identify employees of
a victim organization on LinkedIn, and then examine their
Facebook accounts for personal background to exploit while
also following their tweets to understand travel patterns.
Indeed, we already see legitimate business models based on
such correlation techniques, such as services o↵ering “social
media screening” to weed out job applicants (e.g., [1]).

In this work we set out to advance understanding of such
correlation attacks. In general, it is much harder to defend
against cross-site inference than to protect personal infor-
mation on individual social networks where privacy settings
directly control what becomes public. As combined data sets
can often reveal non-obvious relationships—as prior work on
deanonymization [2] convincingly demonstrates—it remains
challenging to assess the correlation threat even for sophisti-
cated users. More fundamentally, as a research community
we lack insight into what precisely enables correlation at-
tacks to succeed, along with counter-measures one can take
for protection.

To further our understanding, we pursue a case study that
examines the initial step of any correlation attack: identify-
ing accounts on di↵erent social networks that belong to the
same user. In contrast to past work, we focus on exploiting
implicit features derived from a user’s activity, rather than
leveraging information explicitly provided—and hence more
easily controlled—such as name or date of birth. Specifi-
cally, we explore matching accounts based on where, when
and what a user is posting. As it turns out, combining these
three types of features provides attackers with a powerful
tool for targeting individuals.

As our example setting, we examine account correlation
across Twitter, Flickr, and Yelp, for which we demonstrate
that they provide su�cient public information for us to link
user accounts. For our study, we deliberately choose social
networks where account correlation is unlikely to cause much
concern. However, similar techniques apply to more sensi-
tive targets as well, in particular to sites where users expect
to remain anonymous such as on dating sites, job portals,
and special-interest forums.

Furthermore, we devise a possible set of attack heuristics,
yet we emphasize that our choices are far from exhaustive.
We also do not strive to fully automate our attacks, but
rather take the perspective of an attacker targeting a specific
individual. In that setting, identifying a small candidate set
of accounts on other networks is su�cient to allow for manu-
ally sifting through for the correct match. Finally, extensive
ground truth is hard to come by for commercial social net-
works, and we thus limit our evaluation to a reduced set of
users for whom we can externally determine their account
relationships.

We profile users with three implicit features of their activ-

ity: the geo-location attached to a user’s posts; the times-
tamps of a user’s posts; and the user’s writing style modeled
with a probabilistic approach. After discussing our method-
ology in §2, we first evaluate the potential of each of these
three features individually to match a user’s accounts across
sites (in §3, §4, and §5, respectively). Then, we evaluate
the improvements in accuracy that result from combining
all three features (§6). Our results show that, when avail-
able, location and timestamps are powerful for correlating
accounts across sites. Although we cannot necessarily find
an exact match between a user’s accounts on two di↵erent
sites, we can often narrow down to a relatively small set of
possible matches. For example, for 70% of users for whom
we have ground truth we can match their Yelp account with
a set of at most 1,000 possible accounts in Twitter, which
is small compared to the total number of Twitter accounts.
For 35% of the users, this set can even be reduced to 250
possible Twitter accounts.

A user’s language model is not as e↵ective by itself, but
it helps further reduce the set of candidate matches when
combined with other features. Generally, we find that our
attacks work better for some users than for others, which we
leverage for gaining insight into the properties that enable
successful correlation and, hence, for giving recommenda-
tions on what users may do to undermine it.

2. METHODOLOGY
Our overall goal concerns understanding how user activity

on one social network can implicitly reveal their identity on
other sites. In §2.1, we first discuss features that we derive
from user activity to build characteristic activity profiles. In
§2.2 we then introduce our basic threat model: an attacker
with moderate resources targeting a specific individual. We
discuss the data sets we use for evaluation in §2.3, and met-
rics for measuring attack performance in §2.4.

2.1 Features
For our case study, we choose three types of features for

building activity profiles that are present on many social net-
works: location, timestamps and language characteristics.

Location: Many social networks provide location infor-
mation directly in the form of geotags attached to user con-
tent, potentially with high accuracy if generated by GPS-
enabled devices like mobile phones. However, even with-
out geotags, one can often derive locations implicitly from
posted content (e.g., when users review a place on Yelp, that
gives us an address). Furthermore, a number of online ser-
vices map images and textual descriptions to locations or
geographic regions (e.g., by identifying landmarks) [3, 4, 5,
6]. For our study, we use the location profile of a user, i.e.,
the list of all locations associated with her posts on a specific
social network. The intuition behind that choice is that the
combination of locations a user posts from may su�ciently
fingerprint an individual across sites.

Timestamps: Many mobile services and applications such
as Foursquare, Gowalla, and Instagram allow users to au-
tomatically send content to multiple sites simultaneously.
The resulting posts then have almost identical timestamps,
which we can exploit to link the corresponding accounts.

Language: The natural language community has demon-
strated that users tend to have characteristic writing styles
that identify them with high confidence [7]. While these
methods typically work best with longer texts, such as blog

Foursquare
Gowalla
Instagram


posting or articles, we also examine them with shorter inputs
to understand if they can contribute to correlation attacks
on sites such as Twitter.

2.2 Attacker Model
As our basic threat model, we assume a targeted individ-

ual : the attacker knows the identity of his victim on one
social network, and she wants to find further accounts else-
where that belong to the same individual. More precisely,
for two social networks SN1 and SN2, we assume having one
account a 2 SN1 and aiming to identify account b 2 SN2 so
that user(a) = user(b).

We assume that we are facing an attacker with moderate
resources–e.g., with access to a small number of computers
and the ability to rent further cloud services for a limited
period of time. For such an attacker, it is not practical to
compare the known account a with all accounts of SN2 as
that would require exhaustively crawling the target network.
Hence, we assume an attack that proceeds in three steps.
First, the attacker selects a subset of accounts g

SN2 ⇢ SN2

that will plausibly include b. She then measures the simi-
larity between a and all the bi 2

g
SN2 using an appropriate

metric (a, b) 2 SN1 ⇥

g
SN2 �! s(a, b) 2 R. Finally, he

selects the account b̂ 2 g
SN2 that is most similar with a:

b̂ := argmax
b
i

2gSN2

s(a, bi),

The attack is successful if b̂ equals b.
Besides defining an appropriate metric (which we discuss

in the following sections), a successful attack requires select-

ing a candidate set g
SN2 so that b 2

g
SN2 while keeping its

size su�ciently small to allow for collecting features from
all of the included accounts. The key to that is selecting
the accounts in g

SN2 based on the features considered. For
example, if the attacker aims to link accounts by their lo-
cation, she may assume that users who post regularly from
within a certain region will most likely live there, and thus
their postings on other sites will originate there as well. He
can then build g

SN2 by extracting all users from SN2 who
have posted from that region. Likewise, if she strives to
link accounts based on timestamps, he may select g

SN2 as
those accounts for which she finds a temporal overlap with
postings from a 2 SN1. Furthermore, one can also select
accounts based on multiple features at once.

2.3 Data Sets
For our case study, we analyze correlation attacks with

data collected from the three social networks Flickr, Twit-
ter, and Yelp. We choose these sites because of their popu-
larity and because they represent di↵erent types of social
networks: photo sharing, micro-blogging, and service re-
viewing. We note that users will not necessarily consider
account linking across these networks as a compromise of
their privacy; however, a similar approach would apply to
other, more sensitive sites as well. In the following, we de-
scribe the sets of users we select for our evaluation and the
information we collect about them.
To assess the performance of our attacks, we collect a

ground truth set of users for whom we know their accounts
on the three sites. We obtain this set by exploiting the
“Friend Finder”mechanism present on many social network-
ing sites, including the three we examine. As the Finders of-

GT
Active

GT
Location

GT
BayArea

Twitter 93,839 4,311 239
Flickr 59,476 4,826 379
Yelp 24,176 24,176 4,937

Twitter-Flickr 6,196 396 27
Twitter-Yelp 2,363 342 57
Flickr-Yelp 2,497 476 75

Twitter-Flickr-Yelp 569 70 8

Table 1: Number of users in the GT dataset.

ten return pages that embed HTML in extensive Javascript,
we use browser automation tools (Watir and Selenuim) to
extract the results. We give the Friend Finders an existing
list of 10 millions emails1 and check if the emails correspond
to accounts on any of the networks. Table 1 shows the num-
ber of active2 accounts we have identified for each social
network, as well as the corresponding number for the inter-
sections. The second column, GTLocation, shows the number
of accounts that have location information attached to at
least one post, either as geotags or, for Yelp, in the form of
addresses.

Given the ground truth set, we could evaluate correlation
attacks by directly following the attacker model discussed
in §2.2: for each ground truth user, we collect correspond-
ing sets g

SN2 from a target social network; and our attack
would then identify an account b̂ 2

g
SN2 as a likely match.

However, this would require us to collect separate sets g
SN2

for each ground truth user, which is not feasible.
Instead, we limit our evaluation to users living in the San

Francisco Bay Area, which allows us to use a single set
g
SN2 for all of them. We identify this subset GTBayArea ⇢

GTLocation as those users who have more posts inside the
San Francisco Bay Area than outside of it. We also limit
the language and timestamp analyses to this subset. We
note that such a geographical pre-filtering is consistent with
what an attacker in the wild might do as well: inferring
where a victim lives tends to be easy and hence location
gives an obvious hint to reduce the size of the candidate set
for language and timestamp.

We obtain the corresponding sets SNBayArea
2 by crawling

the three social networks for users from the Bay Area. We do
not strive for completeness but instead emulate an attacker
aiming to get a su�cient set of accounts from the targeted
region that likely includes his victim. In this paper, our focus
is to correlate Yelp and Flickr accounts to Twitter accounts.
Thus, we only present how we obtain the SN

BayArea
2 set for

Twitter.
Twitter provides a search API to get the posts around

a specific longitude/latitude but it only returns results for
a maximum of one week. This makes it unusable to get a
satisfying set of users who live in the BayArea. Instead, we
use the Streaming API3 to collect in real-time all the tweets
tagged with a Bay Area location. We collect all the tweets
from the Bay Area during October 2011 to November 2011.

1This list comes from an earlier study by colleagues ana-
lyzing email spam. The local IRB approved collection and
usage.
2Users often create accounts on social networks but never
post anything; we only include accounts with at least one
posting.
3While the Streaming API generally returns only a sample
of tweets, limiting a query to a region the size of the Bay
Area seems to indeed return the complete set.



We then use all 26,204 users who have sent at least one of
these tweets. We find 75% of the Twitter GTBayArea users
are already included in this set 4.

Finally, for all the GTBayArea and SN

BayArea
2 accounts,

we download the publicly available profile information from
the corresponding social network, including text, timestamps,
and location of each posting. For Twitter, we use its API
to get all the tweets and the metadata attached. Flickr’s
API likewise provides us the metadata attached to the pho-
tos. For Yelp, we again manually crawl and parse the profile
pages.5 The median number of tweets in GTBayArea and
SN

BayArea
2 is 26 and 49 per user, respectively. For Yelp, we

find 4 and 33 reviews per user, respectively. For Flickr, the
medians are 10 (GTBayArea) and 151 (SNBayArea

2 ) photos.
The total set of tweets, reviews, and images covers the time
interval from 2007 and 2011.

2.4 Performance Metrics
We use two metrics to measure the performance of an

attack. Recall from §2.2 that an attacker chooses b̂ from all
bi 2

g
SN2 so that it maximizes similarity with a 2 SN1. If

successful, b̂ = b.
Our primary performance metric determines the number

of similarity scores higher than s(a, b), which we term a
user’s rank for a given attack:

rank(a, b) := #{bi 2
g
SN2 : s(a, bi) � s(a, b)} (1)

rank(a, b) = 1 means the matching is perfect and the at-
tacker will pick the right account b̂ = b directly. Since a per-
fect matching is however hard to obtain, we typically check
if the rank is below a threshold X, i.e., the correct answer
is part of the top X matches. For small X, an attacker can
inspect that set manually.

The second metric is a verification metric, which considers
false alarm rate and miss verification error given all pairs of
similarity scores. Here, we consider the set of all similar-
ity scores s(ai, bi), where ai 2 SN1 and bi 2

g
SN2. Some

of these pairs correspond to user matches, i.e., user(ai) =
user(bi). After first establishing a threshold for s(ai, bi), we
consider matches below as misses and non-matches above as
false alarms. Tuning for a low false alarm rate allows attack-
ers to target a larger set of users simultaneously, with high
probability that reported matches will be correct. Hence,
we primarily consider the threshold at a 1% false alarm rate
and then examine the miss rate. In addition, we also ex-
amine the Equal Error Rate (EER), for which we establish
the threshold such that miss rate and false alarm rate are
equal. The EER is informative in terms of the general dis-
criminability of our correlation approaches, but may not be
too useful in narrowing down the range of user pairs that
are matches.

2.5 Limitations
We emphasize that we see our work as an initial step to-

wards a better understanding of cross-site correlation. Pri-
marily, we aim to explore the potential and provide evidence
that such attacks are feasible when relying on activity fea-

4A set of users taken from the Bay Area from August 2010
to December 2011 achieves 95% coverage.
5Our collection is subject to the limits that the Twitter and
Flickr API impose on the number of query results; 3200 and
1500, respectively.

tures that are hard to control for users. As such, we are less
concerned about the specific tuning at which our heuristics
yield their best results, nor do we claim that, e.g, thresh-
olds we derive apply universally. Our set of ground truth is,
in fact, too small to come to such conclusions. Rather, we
explore the qualitative nature of our correlation techniques,
and we make headway towards understanding the character-
istics of the features we capture that facilitates their success.

Furthermore, we note that the approaches we use assume
that we have an entire set of accounts for pairs of social net-
works, with which we can apply any technique or analysis to
determine matches between user pairs. Due to the limited
amount of data, our approaches do not assume the exis-
tence of an independent dataset for developing and tuning
our techniques. The results we provide in this paper sug-
gest certain best-case scenarios, and future implications for
the power of our approaches when more data would likely
become available. Nevertheless, our results are useful in
identifying important directions that attackers can take in
correlating social network accounts.

3. LOCATION PROFILES
We first examine location information in more detail. Our

goal is to understand the degree to which locations attached
to user content are su�ciently unique to identify an individ-
ual. Matching locations involves two parts, which we discuss
in turn: (i) representing a user’s location profile in the form
of a fingerprint suitable for comparison; and (ii) defining
a similarity measure between two such profiles. For eval-
uation, we focus on matching accounts from the Yelp and
Flickr GTBayArea sets to the Twitter SN

BayArea
2 . Based

on the results, we also investigate what properties enable
correlating users successfully by their location profiles.

3.1 Building Profiles
To motivate the use of locations, we start by examining

the set of zip codes that user content originates from. Out of
the 26,204 Twitter users in SN

BayArea
2 , 23,395 exhibit sets

of zip codes that are unique. Almost all the users without
unique sets come with only a very small number of zip codes:
2,155 have only one zip code, 571 have two zip codes, 66 that
have three, and 12 have four. For more than four zip codes,
all the sets are unique except for 5 accounts that have more
than 14 zip codes. We manually investigated these, and we
found them to belong to 2 users both maintaining separate
personas—which, incidentally, means we just linked related
accounts by their location information. For Flickr, out of
1,907 users (we collected from the BayArea) only 66 don’t
have a unique set of zip codes. Out of them, 61 have only
one zip code and 5 have two. For Yelp, out of 10,076, only
181 are not unique; 26 of them have one zip code, 120 have
two, 31 have three, and 4 have four zip codes. Thus, given
the large number of unique sets, we conclude that locations
may indeed fingerprint users well.

Encouraged by that observation, we define a user’s loca-
tion profile as a histogram that records how often we observe
each location in her posts. The histogram’s bins represent
“location units”, such as zip code, city, or coordinates in an
appropriate longitude/latitude grid. We normalize all his-
tograms such that they represent probability distributions
of posts in a particular “location unit”. We also investi-
gated other ways than histograms to represent location pro-
files but found them less e↵ective. In particular, using lat-



itude/longitude directly and computing the Euclidean ge-
ographical distance is sensitive to the small deviations of
geo-coordinates within a user’s activity profile.

As location units, we test three di↵erent types of choices:

Administrative Region: We map each latitude/longitude
geo-coordinate to an address using the Bing Maps API.
Trying alternative address granularities (streets, zip codes,
cities, counties, states), we find zip codes yielding the best
results.

Grid: We map each latitude/longitude geo-coordinate to
the cell within a spatial grid with the center closest to the
coordinate. Considering cell sizes ranging from 1x1 km2 to
12x12 km2, 10x10 km2 proves most e↵ective in our experi-
ments.

Clusters: As a more dynamic scheme to group geo-coordinates
into regions, we use a clustering approach that considers
population densities. A small cluster represents a popular
small area (e.g., blocks of downtown San Francisco), while
larger clusters represent bigger, less populous regions (e.g.,
a park or forest). Using the k-means algorithm with an Eu-
clidean distance, we group latitude/longitude geo-coordinates
from all users in SN

BayArea
2 into corresponding clusters. We

then associate a specific location with the N closest clusters.
We found that using N=20 produces the optimal results. We
assign weights to each of the N clusters based on a Gaussian
distribution.

Figures 1a and 1b compare the performance of di↵erent
location representations at their best configurations. The
plots show the cumulative distribution function (CDF) of
the rank (see §2.4) for all pairs (a, b) corresponding toGTBayArea

users, matching Yelp and Flickr with Twitter, respectively.
The plots use a standard Cosine distance to measure the
similarity between histograms (in the next section, we ex-
plore alternative choices). The solid line represents the min-
imum rank (the number of scores strictly greater than the
GT score), the dashed line represents the maximum rank
(the number of scores that are greater or equal to the GT
score).

We see that the zip code profiles perform the best for Yelp
to Twitter, and the longitude/latitude clusters perform the
best for Flickr to Twitter. The grid-based profiles perform
worse than zip codes, perhaps due to the fact that the lat-
ter better reflects population densities and places of interest
than uniform grid cells. The cluster-based profiles perform
worst for Yelp to Twitter matching and slightly better for
Flickr to Twitter matching than the zip codes, but are far
more expensive to compute. We believe, the cluster ap-
proach might get better results for countries and regions
where zip codes do not reflect population density.

We also examine the verification EERs and miss rates at
the 1% false alarm (FA) rate for the zip code and longi-
tude/latitude clusters and grid approaches for Yelp to Twit-
ter and Flickr to Twitter, shown in Table 2. The results
confirm that the zip code and longitude/latitude clusters ap-
proach perform better in general. We note that the Flickr
to Twitter correlations have lower FA rates than Yelp to
Twitter correlations, implying that the former is easier.

We also examine di↵erent time intervals over which to
build location profiles: one month, one year, two years, three
years, and everything. Our results show that by aggregat-
ing at smaller time intervals we remove many data points
from the profiles, such that the profiles become less precise.

Table 2: EER and miss rate (at 1% false alarm) verification
results for Yelp to Twitter and Flickr to Twitter correlations
based on location profiles.

Yelp to Twitter
Method EER(%) Miss rate at 1% FA
Zip code 32.3 70.2

Long/Lat clusters 28.1 73.7
Long/Lat grid 28.1 89.5

Flickr to Twitter
Method EER(%) Miss rate at 1% FA
Zip code 29.6 85.2

Long/Lat clusters 31.8 66.7
Long/Lat grid 29.6 85.2

While doing so helps to better identify a few prolific users,
it impacts most others negatively.

Conclusion: Zip code-based profile representation pro-
vides the best trade-o↵ between accuracy and computational
cost. Building profiles over all of the available time range
generally performs best and allow lower miss rates.

3.2 Similarity Metrics
So far we have used a Cosine distance to compare the

histogram-based location profiles. We now investigate fur-
ther choices to compare histograms of zip codes. The statis-
tics literature o↵ers a variety of metrics for measuring the
similarity between two probability density functions P and
Q [8]. We test a series of candidates, including Cosine
and Jaccard from the Inner Product family; Euclidean and
Manhattan from the Minkowski family; Hellinger from the
Squared-chord family and Kullback-Leibler (KL) divergence
from the Shannon Entropy family (see formulas in §A).

Our analysis shows that Cosine, Jaccard and Hellinger dis-
tances have similar performances, ⇡ 20% of users with rank-
ing less than 50, 35% less than 250, and 70% less than 1000.
The Euclidean distance has much higher rankings than other
distances (75% of users have ranking above 1000). This is
because the Euclidean distance is sensitive to the di↵erence
between the two values of a histogram’s bin, and especially
sensitive to large di↵erences. In contrast, similarity metrics
such as Cosine are sensitive to bins with non-zero values
in both profiles, which better suites our goal. We use the
Cosine distance for the rest of the experiments.

One issue with similarity metrics is that some accounts
bi 2

g
SN2 have high scores even when they do not share many

locations with the account a 2 SN1. This happens because
all the metrics normalize their results by the total number
of data points, which would give a higher score to bi with
fewer locations over another account, say bj 2

g
SN2, with

more locations. This occurs even if bj has more locations in
common with a than bi.

We address this issue by introducing two weights to pe-
nalize accounts with few common locations with account
a 2 SN1. The mathematical definition of these weights are
in Appendix B. The first weight, weight1, considers if the
set of common locations between a and bi 2

g
SN2 is popu-

lar in other accounts bj 2

g
SN2, j 6= i and a. It gives lower

weight if the set of common locations is popular, because it
is harder to uniquely identifying a good match. The second
weight, weight2, accounts for the popularity of each loca-
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(a) CDFs for Yelp to Twitter.
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(b) CDFs for Flickr to Twitter.

Figure 1: CDF of the rank of the ground truth score for GTBayArea users for di↵erent location representations for Yelp to
Twitter, and Flickr to Twitter. The solid and dashed lines represent the minimum and maximum ranks of the Twitter users
for each approach.

tion within the sets of common locations across all account
pairs (a, bi). For example, if a and bi have a very popu-
lar location in common such as Downtown San Francisco,
weight2 will give less weight to this location than if a and
bi shared a less popular location such as East Palo Alto.
Applying weight1 to the Cosine distance increases the num-
ber of users with ranking less than 50 by ⇡ 7% and applying
weight2 increases the number of users with ranking less than
250 with ⇡ 10%. As we discuss in the next section, the main
advantage of applying the weights is that the weighted met-
rics lead to more consistent predictions of the ranking from
simple parameters.

Conclusion: The Cosine, Jaccard, and Hellinger dis-
tances perform best in our experiments. We modify these
metrics with two weights to account for di↵erences in pop-
ularity of locations.

3.3 Implications
The previous sections show that location profiles based on

zip codes using cosine*weight as similarity metric perform
the best to match accounts that belong to a single user in
Yelp and Twitter, as well as in Flickr and Twitter. We fo-
cus on the zip code curves in Figures 1a and 1b to study the
performance of correlating accounts with location alone. Say
that an attacker is willing to search more exhaustively at a
set of at most 1,000 candidate Twitter accounts. By search-
ing the first 1,000 accounts based on the location ranking
using the location profile of a user’s Flickr account, he would
find the correct Twitter account for 60% of our ground truth
users; this percentage increases to 70% for Yelp accounts.

Our verification miss rates of 70.2% and 66.7% at 1% false
alarms for Yelp to Twitter and Flickr to Twitter also have
strong implications. Consider as a toy example a small com-
pany with 10 employees, each having a Flickr and Twitter
account. There is a total of 100 Flickr vs Twitter account
pairs, among which 10 correspond to matches between the
users and 90 correspond to mis-matched users. Roughly one
of those scores fall above the 1% false alarm scoring thresh-
old. Given the 66.7% miss rate, roughly 7 out of the 10
scores of matching users fall below the threshold, while 3

fall above the threshold. Hence, if we only consider scores
above the 1% false alarm threshold, 3 of them are matches,
while 1 is a mismatch. This means that, in this simple sce-
nario, 30% (3 out of 10) of the actual matches are detected
and 75% (3 out of 4) of the retained pairs correspond to
actual matches. Given the volume of information on the in-
ternet, there are likely many other scenarios in which our
techniques can be used by a layman attacker targeting a set
of users rather than a particular individual.

From the user’s perspective, it is important to understand
the properties of her location profiles which help or prevent
the attacker from successfully correlating her accounts. Al-
though the location profile is a powerful feature to correlate
accounts of a single user across sites, some of our ground
truth users in Figures 1a and 1b have high rank and so the
attacker would have to search tens of thousands of accounts
before finding the correct match. A user concerned about
his privacy would like to fall in this category.

We now investigate the impact that an account’s location
properties have on the success of our matchings to develop
a set of guidelines for users to avoid falling victim to such
attacks. Take an individual user with two accounts a 2 SN1

and b 2

g
SN2. We study the following parameters that could

impact an attacker’s ability to match a and b: number of
posts on each (#a, #b), the number of zip codes in their lo-
cation profiles (#za,#zb), the minimum number of posts on
either account (min(#a,#b)), and the number of common
zip codes between the location profiles (#zab). To establish
the importance of each of these parameters, we compute
the Pearson correlation between the similarity scores and
each of these parameters for Yelp ground truth users in the
Bay Area (i.e., GTBayArea) versus all Twitter users in the
Bay Area (all users, not only ground truth). We find that
#zab and #za (as well as #a, which is strongly correlated
with #za) show the highest correlation. This result is in-
tuitive given our definition of similarity metric incorporates
the number of common locations directly, but it helps us
understand possible defenses for users.

For that, we consider the probability that a user with #za

zip codes in SN1 and #zab common zip codes between SN1



and SN2 will be within the first M best matches:

P

�
rank(a, b)  M | #za,#zab

�
. (2)

Figure 2 plots the probability that rank(a, b)  threshold

as a function of the number of zip codes shared between the
two accounts (each line corresponds to a di↵erent thresh-
old value: 50, 250, 500, and 1000). Figure 2a shows the
probability for accounts with #za  10; Figure 2b shows
10 < #za  100, and Figure 2c shows #za > 100. We see
that (i) as expected, the match quality increase with larger
numbers of common zip codes; and (ii) an increase of #za

inversely impacts the probability of a good match for a given
number of common zip codes.

These results are interesting as they allow a consistent
prediction of the matching performance from simple param-
eters of the accounts. For instance, for a pair with at most
10 review zip codes and 7 common zip codes, the ranking
is less than 50 with probability 40% and the ranking is less
than 500 with probability almost one (see Figure 2). This
interesting feature is due to the weight that we added to
the cosine metric to account for the di↵erent location pop-
ularity. Using the cosine metric alone does not give such
consistent results. For instance, for a pair with at most
10 review zip codes and 7 common zip codes, the ranking is
less than 50 with probability 3% and the ranking is less than
500 with probability 10%. This is because many accounts
bi 2

g
SN2 can have a good similarity score if they share a

few common locations with a and do not have many tweets.
In contrast, using the weight will give low scores to these
accounts. The trade-o↵ is: with the cosine metric alone,
some pairs with few frequent common locations will be well
matched“by chance”but some pairs with rare common loca-
tions will be badly matched, whereas with the weight, pairs
with frequent common locations may be missed but pairs
with rare common locations will be well matched. As we
have discussed in the previous section, the overall matching
performance is fairly similar. However, the weight allows
much more predictable matching performance.
Guidelines: From a user’s perspective, these results sug-

gest two strategies to avoid being vulnerable to matching.
The first, obvious one is that it helps to avoid posting from
the same zip code to separate social networks. The second,
more interesting one suggests that one can correct past mis-
takes (i.e., already having many common zip code between
accounts) by adding further locations to the first social net-
work SN1 (i.e., where one assumes the attacker to already
know one’s identity). Doing so e↵ectively blurs the link to
other networks by adding noise. A corollary is that posting
from a series of di↵erent locations, like when on travel, re-
mains unproblematic as long as one updates only one social
network.

4. TIMING PROFILES
Many third-party applications, in particular on mobile de-

vices, allow users to automatically send updates to di↵erent
social networks simultaneously. For example, when Insta-
gram uploads to Flickr, it can automatically tweet a pointer
to the photo. We exploit this behavior to correlate the in-
volved accounts, based on the timestamps of such automated
postings.
In this section, we focus on our Flickr and Twitter data

sets as Yelp does not provide su�ciently accurate timing in-
formation. Generally, we aim to find accounts where one or

more timestamps of Flickr photos equals the timestamps of
the tweets. However, even for simultaneous postings, times-
tamps may di↵er slightly due to processing delays and desyn-
chronized clocks. Hence, we allow for a small window around
two values when matching. The main question then is what
an appropriate threshold is; a choice too small might miss
actual post matches, while a larger threshold will report
many matches corresponding in fact to unrelated posts.

To answer that question, we investigate the timestamp
di↵erences we see in our ground truth set, considering all
the GTBayArea Twitter-Flickr pairs. For each pair (a, b),
a 2 Twitter, b 2 Flickr where user(a) = user(b), we de-
fine the set of timestamp di↵erences td(a, b) as the set of
di↵erences between timestamps of two consecutive posts on
di↵erent social networks. This set contains all the times-
tamp di↵erences between posts on the two social networks
potentially corresponding to the same content (e.g., a photo
on Flickr and its link on Twitter). For example, assume
that tstmps(a) = {t1, t2, t3}, tstmps(b) = {T1, T2, T3} and
the combined timeline is {t1, t2, T1, t3, T2, T3}; then the set
of timestamp di↵erences is td(a, b) = {T1 � t2, t3 � T1, T2 �

t3}. We want to choose a threshold as small as possible to
minimize matches that do not actually correspond to au-
tomated posts, but while still minimizing the missed au-
tomated posts. First, we discard all timestamp di↵erences
larger than 30 s, as a rough estimate of an upper bound for
the maximal delay between automated posts. Within the re-
maining timestamp di↵erences, we found that 85% are lower
than 5 s. We conclude that a threshold of 5 s ensures to miss
at most 15% of the automated posts (we suggest that the
actual percentage of missed automated posts will actually be
much lower since some fast users can write non-automated
posts within 5-30 s). Moreover, we observed that, out of all
the GT users that have at least one post at an interval less
than 30 s ( which is 13 users), all of them have also one post
at an interval less than 5 s.

We simply define here the similarity metric between two
accounts as the number of timestamp matches (within a cho-
sen threshold). We also performed the analysis with a sim-
ilarity metric defined as the number of timestamp matches
divided by the cardinality of the set of timestamp di↵er-
ences td(a, b), but the results were not as good so we will
not present them here.

Figure 3a shows the CDF of the rank of the GT scores for
di↵erent thresholds. We can see that for half of the users the
rank of the score is low (i.e., good). We even have perfect
matchings (i.e., the similarity score for the GT pair is the
highest) for a quarter of them. For the second half of users
the ranks are very high because they do not have any times-
tamp match. We think that these users are not using au-
tomated posting applications.Comparing the CDFs for the
di↵erent thresholds, we observe that a threshold of one sec-
ond gives the best performance (i.e., the lowest rankings) for
users with at least one timestamp match (within 1 s). This
is because it gives the lowest probability to have posts that
match “by chance” in the dataset. However, compared to a
threshold of 3 s, it misses some users for which the small-
est timestamp di↵erence of a matching post is 1-3 s. Those
users appear to have no match and then get the highest
ranking. This illustrates for the entire dataset the trade-o↵
for GT users: a low threshold minimizes erroneous times-
tamp matches but increases the number of missed matching
posts.
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(c) #za > 100 zip codes

Figure 2: Probability of the rank(a, b) of a pair of accounts to be smaller than 50, 250, 500 and 1000 as a function of the
number of common zip codes between two accounts.
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Figure 3: Results for matching based on timestamps.

Implications: We conclude that if one uses applications
that trigger automated postings, we can link their accounts
with high confidence, we have a perfect matching for 20%
of our GTBayArea users for a threshold of one second. As
for the location profiles, we investigate the correlation be-
tween simple properties of two accounts such as the number
of timestamp matches with the ranking of the score, Fig-
ure 3b. The di↵erent symbols correspond to pairs that have
less thank 600, between 600 and 1300 and more than 1300
Flickr photos. We see: (i) a good correlation between the
number of timestamp matches and the rank; and (ii) for the
same number of timestamp matches, a Flickr account with
more timestamps will have a worse rank than an account
with fewer timestamps. Figure 3c shows the probability to
narrow down to a set of 1, 10, 50 and 100 users as a func-
tion of the number of timestamp matches. We see that,
for instance, even with only 4 timestamp matches, the set
of possible matching accounts can be narrowed down to 50
accounts with probability 50%. This implies that even if
people are not frequent users of such applications (e.g, they
might have just tested one briefly) they still match well. In
other words, automated postings are generally a clear give-
away as the probability that timestamps match closely just
by chance is low.

5. LANGUAGE PROFILES

Textual metadata is the final type of feature that we con-
sider for correlating accounts. This approach builds on ex-
isting work demonstrating that free-form text can exhibit
characteristics su�ciently unique to identify an author. To
explore this potential, we examined correlating Yelp reviews
with Twitter postings.6 Reviews tend to consist of multiple
paragraphs of text, and for each Twitter account we consid-
ered the joint set of all its tweets, typically containing one
or two sentences each. A challenge here, however, is that
the same user may adopt drastically di↵erent kinds of tex-
tual structure when writing Yelp reviews (typically complete
paragraphs using words mostly found in the English lexicon)
versus when tweeting (typically short sentences with fewer
standard words).

We found an average of 18,307 words amongst all tweets
per Twitter user, and 4,153 words amongst all reviews per
Yelp user, amongst GTBayArea and SN

BayArea
2 datasets.

Furthermore, we found a total of 13,556 distinct words amongst
all Yelp reviews, and 11,025,682 among all tweets. To ac-
count for the large averages and remove common words with-
out much discriminative power, we applied a simple filter by
creating a list of words to keep, and discarding the rest of

6We skip Flickr for this analysis as its images come with only
few textual metadata in comparison to two other networks.



the words. To create the list, we determined the top 1000
most frequent words amongst the Yelp reviews. Discarding
the top 1000 words gave us a list of 12,556 words. Note
that the reason that the text from Yelp reviews (as opposed
to tweets) are used to create the list is that many of the
words in tweets are not common, and do not occur amongst
Yelp reviews. After applying the filtering, we find the Yelp
and Twitter users’ averages reduced to 721 and 3528 words,
respectively.

We then built probabilistic language models for each Twit-
ter user by constructing normalized word histograms per
user, and computed the likelihood of words from Yelp re-
views to the Twitter language models. We generally followed
the approaches implemented in [9]. We chose words as the
unit for our models because initial experiments showed no
further improvements when broadening to higher n-grams
(i.e., multi-words). This is likely because (i) the stop list al-
ready removes what often links words together, and (ii) tweets
consist mostly of keywords with fewer stylistic expressions.

However, examining the correlation results, we did not
find the language-based approach to be very e↵ective on its
own. We omit the corresponding plot, but we saw that only
10% of ground truth users rank within the top 1000. We
obtained an EER of 29.8% and a miss rate of 94.7% (at 1%
false alarms). The miss rate is higher than those obtained
for the location-based approaches. While the results suggest
that the language-based approach is less e↵ective standalone
compared to the other approaches, we see in the next section
that it is nevertheless e↵ective when used in combination.

6. COMBINING FEATURES
The previous sections discuss matching accounts with scores

computed from individual features (location, timing, and
language). We now turn to exploiting them all simultane-
ously. The premise here is that combining the individual
metrics should (i) achieve stronger correlation by leveraging
their respective strengths, while (ii) making it harder for
users to defend against such attacks.

6.1 Approach
We investigate unsupervised combinations of the individ-

ual scores. Specifically, we consider two approaches. First,
we average the scores as a simple method to join them in an
unsupervised fashion. Second, we examine an unsupervised
combination approach, based on a Gaussian noise model,
whose parameters are estimated via maximum-likelihood (ML).
This method weights the contributions of the individual
scores by attempting to account for the fact that the individ-
ual scores provide di↵erent levels of influence and discrimi-
native power. As we use a standard approach for deriving
the estimator, we skip further discussion here and refer to
Appendix C for the details.

6.2 Results
The similarity estimators we use for the combinations for

Yelp and Twitter are are: (a) zip code (b) longitude/latitude
clusters, and (c) text. For Flickr and Twitter, we use: (a)
zip code (b) longitude/latitude clusters, and (c) timestamps.
For the zip code estimators, we also consider the contribu-
tions of the 2 similarity weights.

The CDFs of the ground truth user’s ranks are shown in
Figures 4a and 4b, respectively. In the CDF plots, we use
the ML approach for combination, which performs better

in general than averaging. For both site combinations, the
CDFs provide evidence for the power of combination: the
curves for joined similarity estimators are generally higher
than for baseline (individual) ones.

The EER and miss rate verification metrics are shown in
Tables 3 and 4 for Yelp to Twitter and Flickr to Twitter,
respectively. With either measures, lower values imply bet-
ter similarities. For the miss rate, we again assume 1% false
alarm rate.

Table 3: Results for Yelp to Twitter using EER and miss
rates at 1% FA rates. With either measure, lower values
imply better similarities. w1 and w2 denote the similarity
weights 1 and 2, respectively

SNo Feature/Method EER(%) Miss rate at 1% FA
Scores from each feature

1 Zip code (Z) 32.3 70.2
2 Long/Lat (LL) 28.1 73.7
3 Text (T) 29.8 94.7
4 Zip code * w1 32.2 91.2
5 Zipcode * w2 32.2 85.9

Pairwise combination of features
4 Avg (LL, Z) 24.6 71.9
5 Avg (LL, T) 28.1 73.7
6 Avg (Z, T) 31.6 70.2
7 ML (LL, Z) 29.8 70.1
8 ML (LL, T) 28.0 70.2
9 ML (Z, T) 32.6 70.1

Combination of Zip code, Long/Lat, and Text
10 Avg 24.6 71.9
11 ML 29.8 68.4

For Yelp to Twitter, we see in Table 3 that combination
also yields better miss rates than the baselines. For example,
averaging yields an absolute improvement of 2% miss rate
over the best estimators (zip codes and longitude/latitude),
and ML yields an absolute improvement of 5% miss rate.
The best result (68.4% miss rate) comes from ML combina-
tion of zip code, longitude/latitude, and text. For Flickr to
Twitter correlation, Table 4 also shows that in general, com-
bining approaches such as longitude/latitude clusters and
zip code, along with timestamp, gives better results than
the longitude/latitude and zip code standalone. The best
result (44.4% miss rate) comes from ML combination of lon-
gitude/latitude and timestamp.

6.3 Implications
Our results show that both combination methods can yield

significant improvements over standalone scores, providing
evidence that attackers may leverage such techniques to cor-
relate accounts. In the following, we explore a specific ex-
ample to understand how much information it takes to suc-
cessfully correlate users with the discussed methods.

Consider again the scenario of attempting to correlate
Flickr and Twitter accounts from employees of a small com-
pany, but with 20 employees instead of 10, each having a
Flickr and Twitter account. There are hence a total of
400 Flickr vs Twitter account pairs, among which 20 cor-
respond to matches between the users. Hence, there are 380
pairs with mis-matched users, which means that roughly 4
of those scores fall above the 1% false alarm scoring thresh-
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Figure 4: CDFs of the rank of the ground truth scores for similarity scores for standalone and maximum likelihood-combined
approaches for Yelp to Twitter, and Flickr to Twitter. The approaches are denoted as follows: long/lat clusters (LL), zip code
(Z), text (T), timestamp (TS), zip code multiplied by similarity weight 1 (Z*w1), zip code multiplied by similarity weight 2
(Z*w2).

Table 4: Results for Flickr to Twitter using EER and miss
rates at 1% FA rates. With either measure, lower values
imply better similarities.

SNo Feature/Method EER Miss rate at 1% FA
Scores from each feature

1 Zip code (Z) 29.6 85.2
2 Long/Lat (LL) 31.8 66.7
3 Timestamp (TS) † †

1a Zip code * w1 38.3 85.1
1b Zip code * w2 37.9 70.3

Pairwise combinations of features
4 Avg (LL, Z) 29.6 77.7
5 Avg (LL, TS) 28.9 62.9
6 Avg (Z, TS) 28.5 77.7
7 ML (LL, Z) 33.3 77.7
8 ML (LL, TS) 28.9 44.4
9 ML (Z, TS) 28.5 51.8

Combination of Zip code, Long/Lat, and Timestamp
10 Avg 29.6 70.3
11 ML 29.6 81.4

† Note that the score distributions for the timestamps did
not allow for the setting of appropriate scoring thresholds
for EER and miss rate computation

old for Flickr to Twitter correlation. If we consider the
44.4% miss rate at the 1% false alarm rate (our best miss
rate for Flickr to Twitter correlation, obtained using longi-
tude/latitude clusters and timestamps), we see that roughly
9 out of the 20 scores with matched users fall below the scor-
ing threshold, while 11 fall above the threshold. Hence, if
we only consider scores above the 1% false alarm threshold,
then 11 of them are matches, while 4 are mismatches. This
means that given such a 20-user scenario, with 400 Flickr
vs Twitter account pairs, 75% (11 out of 15) of the account

pairs with scores above the threshold are same-user pairs.
This analysis provides perspective on the types of scenar-

ios that allow our fairly straight-forward correlation tech-
niques to succeed. We note, however, that our main con-
tribution concerns not the specific numbers—which we ex-
pect will only improve as correlation techniques advance,
and more data becomes accessible—but the fact that a sig-
nificant proportion of the users of social networks can po-
tentially be de-anonymized with such cross-site correlation
techniques.

7. RELATED WORK
A variety of e↵orts have examined aspects of information

leakage related to our work, however none of it exploits im-
plicit activity features attached to the content. Most closely
related is a recent series of work aimed at identifying users
across di↵erent social networks, similar in spirit to what we
discuss yet with di↵erent approaches. Perito et al. [10] ex-
plored linking user profiles by looking at the entropy of their
usernames. Irani et al. [11] studied finding further accounts
of a user by applying a set of simple heuristics to its name.
Balduzzi et al. [12] correlate accounts on di↵erent social net-
works by exploiting the friend finder mechanism with a list
of 10 million email addresses. While a straightforward way
to correlate accounts, most social networks have since lim-
ited the number of e-mail addresses that one can query, thus
rendering this attack no longer usable on a large scale. Iof-
ciu et al. [13] used tags to identify users across social tag-
ging systems such as Delicious, StumbleUpon and Flickr.
The authors of [14] show that group memberships present
on many social networks can uniquely identify users; they
leverage this to identify users visiting malicious web sites
by matching their browser history against groups on social
sites.

In another line of work, researchers used publicly avail-
able information from a social network site to infer specifics



about its users, without however correlating it with further
accounts elsewhere. Hecht et al. [15] derived user locations
from tweets using basic machine learning techniques that as-
sociated tweets with geotagged articles on Wikipedia. Sim-
ilarly, Kinsella et al. [6] leveraged tweets with geotags to
build language models for specific places; they found that
their model can predict country, state and city with simi-
lar performance as IP geolocation, and zip code with much
higher accuracy. Crandall et al. [5] located Flickr photos
by identifying landmarks via visual, temporal and textual
features. Chaabane et al. [16] leverage interests and likes on
Facebook to infer otherwise hidden information about users,
such as gender, relationship status, and age. Further similar
work includes [17, 18].

Language models have been used for data de-anonymization.
For example, Nanavati et al.[7] used language distribution at
the n-gram level to de-anonymize reviews in an anonymous
review process. A recent study showed how text posted on
blogs can be de-anonymized [19]. More generally, a num-
ber of de-anonymization e↵orts demonstrated the power of
correlation. Sweeney [20] de-anonymized medical records
with the help of external auxiliary information. Likewise,
Narayanan et al. de-anonymized Netflix movie ratings. In [21],
a similar approach attacks a social network graph by corre-
lating it with known identities on another. On a more fun-
damental level, Bishop et al. [22] discuss the need to consider
external knowledge when when sanitizing a data set.

8. CONCLUSION
In this work we present a set of experiments that use

straightforward data mining techniques to correlate user ac-
counts across social networks, based on otherwise innocu-
ous information like time patterns or location of the posts.
Our approaches work independent of standard privacy mea-
sures, such as disabling tracking cookies or using anonymiz-
ing proxies. They demonstrate that tracking users just by
their posting activity is a real threat. As such, the privacy
implications of our results are two-fold. First, we point out
that it is the aggregate set of a user’s complete online foot-
print that needs protection, not just content on individual
sites. Second, we find that it is hard to defend against such
attacks as it is the very activity one wants to publish that
enables correlation to succeed.

While our work remains a case study for a particular
setting, it demonstrates the potential of cross-site correla-
tion. Our approaches are conceptually simple, yet we pre-
dict that we will soon see more sophisticated—and further
automated—variants in the wild that will exploit the in-
creasing volume of user information that social networks
now o↵er via convenient APIs. In particular, we expect that
automated content analysis technology—such as face recog-
nizers and natural language processing—will enable correla-
tions much beyond what we demonstrate in this work.

From a research perspective, we encourage our community
to devise novel privacy protections that take such threats
into account and, where hard to prevent, at least support
users in understanding their vulnerability. For example, we
are investigating building tools that help users to identify a
subset of their published content that contributes most to
cross-site attacks, allowing them to modify or even delete
those parts as necessary.
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APPENDIX
A. SIMILARITY METRICS
We note, SIP as the inner product metric, SCos as the

cosine distance, SJac as the Jaccard distance, SH as the
Hellinger distance, dEuc as the Euclidian distance, dM as
the Manhattan distance, and dKL as the Kullback-Leibler
divergence. Amongst these metrics, SIP , SCos, SJac repre-
sent similarity metrics, where higher values denote greater
similarity between distributions P and Q. The other met-
rics are distance metrics, where higher values denote greater
dis-similarity between the distributions. Pi and Qi represent
the set of probabilities corresponding to discrete probability
distributions P and Q.
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B. SIMILARITY WEIGHTS

In §3.2, we discuss the need for adding weights to the
similarity functions. The first weight is the probability of
the set of common locations of two accounts (a, b) to appear

between the other pairs (a, bi), bi 2 g
SN2. For each pair (a, b)

the set of common locations between their location profiles is
CLk = LP (a)\LP (b). The unique sets of common locations
from the list (CLk)kN are denoted by clj , j = 1, . . . ,M .
We denote the frequency of a unique set of common locations
by

f(clj) =
# {k : CLk = clj}

N

, j = 1, . . . ,M,

and we define for each pair (a, b) the first weight

weight1(a, b) = f(clj)
�1

, for j s.t. CLk = clj . (3)

The second weight is the product of the probability of each
location in the set of common locations of two accounts (a, b)
to appear in the list of common locations between all (a, bi)
pairs. All the locations that appear in the list (CLk)kN

are denoted by ai, i = 1, . . . , P . We denote the frequency of
a location by

f(li) =
# {k : li 2 CLk}P

k #CLk
, i = 1, . . . , P,

and we define for each pair (a, b) the second weight

weight2(a, b) =

0

@
Y

l
i

2CL
k

f(li)

1

A
�1

. (4)

C. UNSUPERVISED COMBINATION
We propose a technique based on the assumption that

the output of the similarity estimators can be viewed as
noisy versions of an underlying ground truth similarity score;
furthermore, we assume that this “noise” is Gaussian. We
shall discuss this method in detail.

Let sji be random variables denoting the output of jth sim-
ilarity score estimator for a pair of accounts (i). We shall
assume a simplistic model where we consider that these sim-
ilarity scores are perturbed around a mean score si, with a
variance �

2
j . Furthermore, we assume the errors committed

by each estimator around the true score (si) are Gaussian
distributed with zero mean and variance (�2

j ). More for-

mally, ✏j ⇠ N (0,�2
j ), s

j
i = si + ✏j ,

p(sji |si,�j) ⇠ N (sji |si,�
2
j ) (5)

For estimating the model parameters, we use the maxi-
mum likelihood (ML) formulation.

Let D denote the set of scores, and let ⇥ denote the set of
parameters si,�j , where i 2 1 · · ·N , and j 2 1 · · ·M . Then
the likelihood function can be written as,

L(⇥) = p(D|⇥) =
NY

i=1

MY

j=1

p(sji |si,�j) =
NY

i=1

MY

j=1

N (sji ,�
2
j )



The ML estimate of the parameters can be formulated as,

b⇥ML = argmax
⇥
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Computing the derivatives of L with respect to the param-
eter set {si,�j} and solving, we get

c
�

2
jML

=
1
N

NX

i=1

(sji � si)
2 (7)

bsiML =

PM
j=1

s
j

i

�2
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(8)

As the parameters b�j and bsi are coupled, we iterate the two
steps (4,5) till convergence. The result is intuitive as it es-
timates the ground truth as a weighted combination of the
output of the estimators. The weights themselves are esti-
mated as the inverse of the variance of the estimators. We
note here, that regularization can be done to prevent over-
fitting of the model parameters. However, for simplicity, we
avoid this and use early stopping.

We found that the distributions of the similarity scores are
peaky, and the second mode of these bimodal distributions
are barely perceptible. To reduce the dynamic range of the
similarity scores we use the transformation,

f(sji ) = log
�

s

j
i

1� s

j
i

�
. (9)
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