

* University of Twente, Drienerlolaan 5, 7522 NB Enschede, Netherlands
ⱡ International Computer Science Institute, 1947 Center Street, Suite 600, Berkeley, California, 94704
§ Lawrence Berkeley National Lab, 1 Cyclotron Rd, Berkeley, California, 94720

This work was partially supported by funding provided to ICSI through National Science Foundation grants CNS‐
1032889 and CNS‐1314973. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the authors or originators and do not necessarily reflect the views of the National Science Foundation.

Through the Eye of the PLC:
Towards Semantic Security Monitoring for

Industrial Control Systems

Dina Hadziosmanovic*, Robin Sommerⱡ§, Emmanuele Zambon*,
and Pieter Hartel*

TR‐13‐003

August 2013

Abstract

Attacks on industrial control systems remain rare overall, yet they may carefully target their
victims. A particularly challenging threat consists of adversaries aiming to change a plant's
process flow. A prominent example of such a threat is Stuxnet, which manipulated the speed
of centrifuges to operate outside of their permitted range. Existing intrusion detection
approaches fail to address this type of threat. In this paper we propose a novel network
monitoring approach that takes process semantics into account by (1) extracting the value of
process variables from network traffic, (2) characterizing types of variables based on the
behavior of time series, and (3) modeling and monitoring the regularity of variable values over
time. We implement a prototype system and evaluate it with real‐world network traffic from
two operational water treatment plants. Our approach is a first step towards devising intrusion
detection systems that can detect semantic attacks targeting to tamper with a plant's physical
processes.

1. INTRODUCTION
Industrial control systems (ICS) monitor and control phys-

ical processes, often inside critical infrastructures like power
plants and power grids; water, oil and gas distribution sys-
tems; and also production systems for food, cars, ships and
other products. As these environments differ significantly
from traditional IT systems, they also face quite unique se-
curity challenges.

Off-the-shelf intrusion detection systems prove a particu-
larly ill fit. Classic signature matching requires precise pat-
terns of anticipated intrusions—an unrealistic assumption in
a setting where attacks remain rare overall, yet may carefully
target their victims—and existing behavioral approaches fail
to incorporate the domain-specific context of operation in
these specialized environments. While a few network in-
trusion detection systems now include ICS-specific protocol
support, their capabilities remain limited to finding network-
level attacks, such as protocol violations and buffer overflow
exploits. They fail, however, to address the fundamentally
different threat of adversaries aiming to change a plant’s pro-
cess flow. A prominent example is Stuxnet [12], which ma-
nipulated the speed centrifuges to operate outside of their
operational range eventually causing hardware damage.

Our work targets finding such semantic attacks: mali-
cious actions that drive an ICS into an unsafe state without
exhibiting any obvious network-level red flag. At a high-
level our approach derives behavioral models of a plant’s
state from past activity, which then facilitates monitoring of
future changes for unexpected deviations. Our starting hy-
pothesis is that ICSs—with their narrow focus, a relatively
small and homogeneous set of actors, and mostly automated
activity—display an overall regularity that we can exploit for
finding a stable baseline separating common activity from
attacks. However, since our approach reconstructs process
data, the generation of behavioral models becomes more
complex by the inevitable data noise in real environments
and the existence of semantically different types of process
variables. As such, a significant part of our contribution
indeed concerns validating the regularity assumption.

We focus on operating at the network-layer where we can
passively collect a comprehensive picture of a plant’s activ-
ity without interfering with its operation. More specifically,
we monitor the network traffic of programmable logic con-
trollers (PLCs), extracting updates of process variables from
their communication with other devices. As PLCs represent
the interface between a plant’s operators and the field de-
vices (e.g., a pump), any state changes—including malicious
commands—go through them to take effect. Their network
traffic hence provides an ideal vantage point for monitoring.

We present a prototype implementation of our approach
that focuses on Modbus, a common legacy ICS protocol. In
Modbus, each PLC defines a memory map representing an
internal table of process variables (typically a few thousand).
Modbus’ data model proves particularly challenging due to
its flat structure and the frequent programmer practice of
misusing its simple structure (e.g., arbitrary addressing of
variables), which makes it harder to characterize process
variables accurately.

In the training phase, our system extracts memory map
operations from raw network packets and constructs a cor-
responding time series for each process variable. We then
deploy different techniques to derive variable-specific pre-
diction models as the basis for the detection phase. When

future memory operations deviate from a model’s forecast,
the system flags them for manual inspection as potentially
undesirable activity. We evaluate our prototype with a par-
ticular focus on the accuracy of the behavioral models, aim-
ing to understand where they work well, yet also cases that
fail to yield a stable baseline. By using our testbed setup,
we demonstrate how proposed techniques perform in the de-
tection of semantic attacks. To evaluate our approach in
a real world environment, we use packet traces from two
operational water treatment plants recorded over two-week
periods. We find that in these environments we can indeed
retrieve and capture models of 98% of all used process pa-
rameters. The vast majority of these parameters refers to
configuration changes that indeed stay constant over time.
For the remaining parameters that performed with limited
capabilities we perform an in-depth analysis to identify, iso-
late and address challenges that represent root causes for
poor performance.

Overall, our work represents a step towards monitoring
process semantics of ICSs that goes beyond scanning for
low-level artifacts that an attack may, or may not, pro-
duce. While in our case study we focus on a particular
protocol, and on a specific industry sector, we believe that
our results generalize to other settings as conceptually ICS
equipment tends to operate similarly across environments.
While we clearly do not put our ambition to replace exist-
ing control mechanisms in ICS automation, we believe that
our approach demonstrates the feasibility of supplementing
network monitoring approaches with the specific context in-
formation required for meaningful interpretation of network
communication in the ICS domain. We also note that our
approach operates orthogonally to any built-in security and
safety mechanisms a plant may have, augmenting them with
an independent, process-aware, perspective. To the best of
our knowledge, this is the first work that aims at under-
standing real-life ICS processes at such level of details from
the network perspective.

We structure the remainder of this paper as follows. In §2
we provide background on the ICS domain. Section §3
discusses the feasibility of reconstructing process semantics
from network traces and presents our threat model. In §4
we present our approach along with a testbed scenario (§4.1)
that we use for demonstrating the capabilities of the pre-
sented techniques. §5 summarizes implementation details,
and in §6 we present our results. Finally, in §7 we discuss
our findings, and in §8 we present related work.

2. BACKGROUND
A typical ICS includes a number of common components:

human machine interface, supervisory infrastructure, field
devices, and communication infrastructure. The human ma-
chine interface (HMI) provides the interface for operators
to monitor and manage the industrial process in the field.
The supervisory infrastructure consists of a group of both
general-purpose and embedded computing devices that facil-
itate communication between operators and field devices (e.g.,
translating operator instructions to low-level field commands,
ICS servers performing automated process field requests,
user management and authentication). PLCs are embed-
ded devices that run custom code to control specific field
devices (e.g., regulate the speed of a pump); depending on
the size of the setup, multiple PLCs may work jointly to
automate the process under control, with each PLC con-

trolling multiple field devices. Finally, the communication
infrastructure provides the substrate to connect the other
components.

Communication. Conceptually, we commonly find two
semantic groups of network communications between ICS
components: (i) process awareness, and (ii) process control.
Awareness propages status information about the controlled
process across devices. In particular, the ICS supervisory in-
frastructure requests regular updates from the PLCs to the
HMI to report the current plant status to its operators. In
addition to escalating critical updates for timely reaction,
awareness also collects trending data for long-term process
analysis. PLCs also propagate awareness information across
themselves to ensure that each device learns sufficient in-
formation about critical variables before entering the next
process stage (e.g., PLC 1 might require information about
the state of a field device connected to PLC 2 before starting
a subsequent process stage).

Process Control is generally exercised in one of two ways:
(i) by PLCs according to their embedded logic; and (ii) by
operator commands that override such internal logic. Note
that in either case it is the PLC that carries out the action,
and hence will reflect the process change as updates to its
internal state.

Process Variables. Inside the PLC, two components
determine the process control: (i) the process control code,
and (ii) the transient state in the form of process variables.
The code consists of logic that regulates connected field de-
vices, and drives interaction with the external infrastructure.
For example, the code defines the procedure for filling in a
tank, along with necessary preconditions that need to be
satisfied (e.g., the water level and pressure). PLCs are typi-
cally programmed in derivatives of languages such as Pascal
and Basic.

The PLC’s process variables characterize the current op-
eration state. Examples of typical variables include the set-
point for a physical process, the current value of a valve
sensor, and the current position in a cycle of program steps.
Process variables serve as input to the PLC code. For exam-
ple, a variable value representing a high pressure level might
trigger the start of a draining stage. Likewise, the PLC car-
ries out operator commands by writing into corresponding
variables. For example, a command to open a valve would
update a variable that the program code is regularly check-
ing; once it notices the update, it outputs the corresponding
analog signal to the physical device.

Within the device, process variables map directly to PLC
memory cells. At the network-level, ICS protocols define
corresponding network representations to refer to variables
as part of commands, e.g., to specify the target variable for
a read operation. In our work we focus on analyzing the
Modbus protocol. Modbus represents process variables in
the form of a PLC-specific memory map, consisting of 16-
bit registers and 1-bit coils. Some vendors also deploy vari-
ations of the default specification, such as combining 2 or 4
registers to hold 32-bit or 64-bit values, respectively. The
layout of a Modbus memory map remains specific for each
device instance, and is generally determined by a combina-
tion of device vendor, programmer, and plant policies (see,
e.g., [25] for generic vendor version, which typically act as a
starting point).

Further common ICS protocols include Profinet, Ether-
NET/IP, MMS, DNP3, and the IEC 6X series, which all use

different network representations. For example, Profinet de-
fines slots, subslots, and channels; while MMS uses objects
to address process variables [18].

3. RECONSTRUCTING PROCESS
SEMANTICS

At the core of our work lies the assumption that one can
infer process semantics from ICS network traffic. PLCs hold
the relevant status information that we strive to monitor, yet
due to their closed and embedded nature it remains chal-
lenging to tap their information directly. However, PLCs
exchange comprehensive status information with the ICS
server (that updates HMI) on a regular basis, and in turn
the HMI issues control commands to the PLCs to initiate
process changes. We find both activities reflected at the net-
work level in the form of requests and replies that report and
manipulate PLC process variables, encoded in their corre-
sponding network representation. Hence, a network monitor
following this communication can derive an understanding
of the controlled process that, in principle, is a superset
of the information available in the HMI’s perspective. For
example, except exchanging values of relevant process pa-
rameters from the field, HMI and PLCs exchange a set of
internal variables that are critical for process infrastructure
but are not explicit part of the field process (e.g., program
counters, timers, process stages). By contrast to the pro-
cess field parameters, these variables are not directly mon-
itored by operators. Crucially, malicious commands have
to traverse the network. This implies that typically either
their cause or their consequences will likewise be reflected as
changes to process variables. As a trace of the attack cause,
we will see the attack stage when a command modifies vari-
ables that control the process. As a trace of the attack con-
sequence, variables tracking the current process state will
begin reflecting the malicious update. There are a number
of practical challenges to overcome for reliably reconstruct-
ing process semantics from the network layer, including the
need for gaining access to tapping points that provide broad
coverage, technical ambiguities with interpreting protocols,
and semantic context required for interpreting observations.
However, a number of ICS-specific properties come to our
advantage here. First, these networks tend to be relatively
small with few key devices, and hence they exhibit signif-
icantly reduced complexity and variety compared to more
general environments. Furthermore, the supervision process
tends to repeat frequently, often with update cycles in the
order of the seconds, which enables the monitor to keep its
state up-to-date with little delay. Finally, the interpreta-
tion of process variables remains challenging, yet consistent
over time as changes to the PLC configuration remain rare.
Nevertheless, as in any real-world environment, we expect
to find a significant level of irregularities that may mislead
a detector and need to accommodate that in our approach.

Threat Model. We consider the scenario that an unau-
thorized user achieves unfettered access to one or more sys-
tems inside an ICS environment. We focus on attacker ac-
tivity after they have already gained access, since the initial
break-in typically proceeds similar as in regular IT environ-
ments (e.g., stealing credentials, exploiting vulnerable soft-
ware exposed to the outside world, or accessing backdoors
intended for maintenance). We focus our analysis on attacks
that, for a successful execution, need to deviate at least one

Valve 1

Valve 2
Heater

Temperature
sensor

Level
sensor

Figure 1: Process setup of the testbed environment

variable controlled by PLCs that is part of the awareness
or control flow (i.e., thus is visible in network exchanges).
In practice, such attacks represent activity that is legal at
the protocol level, yet violates semantics constraints that a
process imposes, including both semantically incorrect mes-
sages (e.g., conflicting commands) and operations that lead
the site into an undesirable state (e.g., a command to start a
pump when it must remain shut). Plant operators confirm
that an ICS, although designed with safety constraints in
mind, cannot address misuses on the logical and functional
level of operation [19]. For a more comprehensive discussion
on the context of attacks we target, including a survey of
known Modbus-based attacks, we refer to Appendix A.

Finally, we assume that it is feasible to obtain a com-
plete copy of all network packets from the observed system,
which is technically straight-forward to set up in local area
networks without impacting ongoing operations (e.g., via
physical wire taps, hubs, or SPAN ports on switches).

4. APPROACH
We now present our approach to detect attacks in ICS

that aim at manipulating process variables. It consists of
three main phases: (i) extraction distills current variable
values out of network traffic; (ii) characterization divides
the observed process variables into three categories that we
examine separately; and (iii) modeling and detection derives
behavioral models for each variable and reports when new
observations deviate from what they predict. We discuss
these phases individually in §4.2–4.4, after first introducing
a small testbed setup in §4.1 that we use for illustration.

4.1 Testbed Scenario
To illustrate our approach, we set up a small testbed en-

vironment consisting of one PLC and one HMI workstation.
We base the design on a demonstration kit from a known
ICS vendor that models a simple water tank setup. The
controlled process comprises six plant components (see Fig-
ure 1): a tank, a heater, two valves, a level sensor and a
temperature sensor. The process consists of three opera-
tions which are repeated continuously: tank filling, water
heating, and tank draining.

Although in a real-world environment an ICS server would
collect data from the PLC and the HMI would use the pro-
cess data collected by the ICS server, to simplify our ar-
chitecture we configure the HMI to request process updates
directly from the PLC once per second. The HMI collects
nine variables: two for measurements (i.e., tank level and

water temperature), five for control (i.e., valve 1 and 2 sta-
tus, heater status, tank level setpoint and water temperature
setpoint), and two for reporting (i.e., tank level and water
temperature high/low alarms).

Table 1: Testbed PLC memory map
Reg. Name Type Desc
HR0010 V1On bool Status of valve 1
HR0011 V2On bool Status of valve 2
HR0012 HeaterOn bool Status of the heater
HR0020 TankLevelSP fixpoint SP tank level (L)
HR0021 TankLevel fixpoint Level of the tank (L)
HR0022 TempSP fixpoint SP water temp.
HR0023 Temp fixpoint Water temp (celsius)
HR0030 TankLevelAl enum Alarms tank level
HR0031 TempAl enum Alarms water temp.

SP: setpoint

Table 1 shows the relevant parts of the PLC’s memory
map. The PLC’s code implements the following logic:

while (true)
V1On := (TankLevel < TankLevelSP && !V2On);
HeaterOn := (Temp < TempSP && !V1On && !V2On);
V2On := (Temp >= TempSP && TankLevel > 0 && !V1On);
TankLevelAl := 0;
if (TankLevel > hthreshold) -> TankLevelAl := 1;
if (TankLevel > hhthreshold) -> TankLevelAl := 2;
if (TankLevel > hhhthreshold) -> TankLevelAl := 3;
TempAl := 0;
if (Temp > hthreshold) -> TempAl := 1;
if (Temp > hhthreshold) -> TempAl := 2;
if (Temp > hhhthreshold) -> TempAl := 3;

For the sake of simplicity we did not include safety con-
straints in our process logic, except for the alarming system.
This also simplifies the illustration of our two attack scenar-
ios: (i) changing the level setpoint to overflow the tank; and
(ii) sending tampered measurements information to PLC to
trigger process changes.

4.2 Data extraction
The data extraction phase is a preprocessing step that

distills the values of process variables out of the ICS net-
work traffic. It consists of two subparts: (i) parsing the
application-layer network protocol to extract the relevant
commands, including all their parameters; and (ii) con-
structing shadow memory maps inside the analysis system
that track the current state of all observed process variables,
providing us with an external mirror of the PLCs’ internal
memory.

For this work we focus on parsing Modbus, in which each
command comes with a set of parameters as well as a data
section. Basic parameters include function/sub-function codes
that define the operation, an address reference specifying
a memory location to operate on, and a word size giving
the number of memory cells affected. The data section in-
cludes the actual values transmitted, i.e., the current value
for a read operation and the intended update value for a
write. We maintain shadow memory maps by interpreting
each command according to its semantics, updating our cur-
rent understanding of a PLC’s variables accordingly.

The following (simplified) commands from our testbed
setup (see §4.1) illustrate the extraction step.

Time 1: PLC 1, UID: 255, read variable 21, value: 10
Time 2: PLC 1, UID: 255, read variable 21, value: 14
Time 3: PLC 1, UID: 255, read variable 21, value: 18

After processing the commands, the shadow memory map
will report 18 as the current value for variable 21. Looking
more closely at variable 21, we know from the testbed con-
figuration that it corresponds to the tank level and, hence,
will reflect three distinct types of behavior: an increasing
trend during filling, a constant value during heating, and
a decreasing trend during the draining phase. Indeed, our
extraction step confirms this expectation: The following list
represents a small excerpt from variable 21’s values, as ex-
tracted from actual network traffic in the testbed:

...490,492,494,496,498,500,500,500,500,500,500,

...496,492,488,484,480,476,472,468,464,460,456, ...

We have confirmed that these extracted values indeed
match what the PLC stores internally over time.

4.3 Data characterization
Next, we perform a characterization phase that separates

variables into different categories based on the knowledge ob-
tained during focus groups sessions with plant engineers. In
general, PLC process variables fall into four groups: (i) con-
trol : variables for configuring plant operation (e.g., device
setpoints, configuration matrix); (ii) reporting : variables for
reporting alarms and events to operators through HMI or
other PLCs (e.g., pump load is too high); (iii) measurement :
variables reflecting readings from field devices and sensors
(e.g., current tank level, current water flow), (iv) program
state: variables holding internal PLC state such as program
counters, clocks, and timeouts. While the character of vari-
ables varies significantly with their groups, we observe three
cases that suggest specific models for predicting future be-
havior: most variables either (i) change continuously, and
gradually, over time; (ii) reflect attribute data that draws
from a discrete set of possible values; or (iii) never change.
The first is typical, e.g., for sensor measurements, program
state and reporting tend to use the second, while the third is
typical for process settings (e.g., setpoints). Unfortunately
there is no definite resource to directly tell what type of
data a variable reflects—recall from §2 that memory maps
are specific to each PLC instance. Thus, we apply heuristics
to categorize process variables according to the behavior we
observe. In our testbed we can directly cross-check if the
results indeed match the configuration. In the actual en-
vironment we examine later in §6, we compare our results
with labels extracted from PLC project files.

During discussions with engineers, we learned that report-
ing variables are encoded in bitmaps which, depending on
the number of distinct reporting events, appear as a discrete
set of 2k values. We use this information to build heuristics
that allows us to distinguish between attribute, continuous
and constant series. For us, a series that consists of only
2k, where k = 0..8 discrete values in the whole training set
is considered as an attribute series. A special case of an
attribute series with k = 0 represents constant series (i.e.,
the whole dataset consists of only one distinct value). A
series that consists of more than 2k distinct values is con-
sidered as a continuous series. In our testbed environment,
we set the parameter k = 3 (i.e., series with up to 8 values
are considered as attribute). We run the characterization on
the network traffic of over 2h of operation and classify the 9
variables as 4 constant, 3 attribute and 2 continuous series.

4.4 Data modeling and detection

Once we distinguish between constant, attribute and con-
tinuous time series, we can proceed with building behavioral
models.

Modeling. To model constant and attribute data, we
derive a set of expected values (e.g., enumeration set for
attribute data, one observed value for constant series). To
model continuous data, we leverage two complementary tech-
niques,(autoregression modeling and control limits, to cap-
ture the behavior of a series and understand operational lim-
its. Autoregressive model represent a common technique to
capture the behaviour of correlated series, such as sucessive
observations of an industrial process [31]. An autoregres-
sive model of order p states that xi is the linear function
of the previous p values of the series plus a prediction error
term [7]:

xi = φ0 + φ1xi−1 + φ2xi−2 + ...+ φpxi−p + εi

where φ1, ..., φp are suitably determined coefficients and εi
is a normally distributed error term with zero mean and
non zero variance σ2. There are several techniques for esti-
mating autoreregressive coefficients (e.g., least squares, Yule
Walker, Burg). We choose to use Burg’s method, as it has
proven as a reliable choice in control engineering, a field
closely related to ICS processes [16]. To estimate the order
of the model, we use the common Akaike information cri-
terion [27]. Using the autoregressive model, we can make
one step estimation for future values of the process variable
underlying the time series. This way, the model can be used
to detect stream deviations. However, as for any regression,
a set of small changes can take the stream outside of oper-
ational limits without exhibiting regression deviations [31].
To address this, we use a complementary strategy, namely
Shewart control limits [31]. This is a common technique
used for controlling mean level and preventing the system
shift from normal operation. The control limits represent a
pair of values {Lmin, Lmax} that define the upper and lower
operation limit of the process variable. Typically, the limits
are calculated as values that are three standard deviations
from the estimated mean.

Detection. For constant and attribute series we raise an
alert if a value in a series reaches outside of the enumeration
set. To detect deviation in continuous series, we raise an
alert if the value (i) reaches outside of the control limits or
(ii) produces a deviation in the prediction of the autoregres-
sive model. More specifically, for estimating the deviation in
the autoregressive model, we compare the residual variance
with the prediction error variance. The residual variance
describes the deviation of the real stream from the stream
predicted by the model during training. The prediction error
variance describes the deviation of the real stream from the
stream predicted by the model during testing. A prediction
error variance that is significantly higher than the residual
variance implies that the real stream has significantly devi-
ated from the estimated model, thus we raise an alert. We
apply this techniques since it is commonly used for the de-
tection of anomalies during instrument operation in control
engineering [16]. To estimate the “significance” of deviation
we use hypothesis testing (see §5).

To illustrate the detection capabilities we test our ap-
proach on two semantic attacks crafted for the process op-
erating in our testbed. The first attack effectively consists
of a command that changes the tank level setpoint (HR0020
in Figure 2). As a result, the tank filling phase (HR0021 in

Figure 2: Illustration of the configuration change

Figure 3: Illustration of measurement tampering

Figure 2) continues until the water level overflows the tank
capacity. Results show that this attack is detected as (i) a
deviation in setpoint variable and (ii) a value reaching max-
imal control limit Lmax. The second attack consists of a
set of commands that set tampered information about the
temperature level measurement (HR0023 in Figure 3). As a
result, the tank filling phase is terminated early, the heating
process starts and then immediately stops and the draining
process starts. As a consequence, both the heater and the
boiler may get damaged. In this second scenario no alarm
is generated by the PLC and thus presented to operators.
Our results show that this attack is detected as a deviation
in autoregressive model.

Our results demonstrate known capabilities of both ap-
proaches [31]. In particular, an autoregressive model is ef-
fective for detecting sudden changes (e.g., detection of the
second attack). However, a sufficiently slow deviation (i.e.,
slower than the model order p), can still take the system be-
yond specification limits without triggering an alarm (e.g.,
the first attack was not detected by the autoregressive model).
On the other hand, control limits are generally a good strat-
egy for maintaining the process mean level (thus, can detect
the process drift in the first attack). However, control limits
cannot detect a deviation that is within the defined limits
of operation (e.g., cannot detect the second attack).

5. IMPLEMENTATION
We implement a prototype of our approach using a combi-

nation of Bro [24] and custom C++ code. Bro performs the
initial data extraction step. We develop a Modbus analyzer
for Bro that extracts the main protocol commands from net-
work traffic and makes them available to scripts written

in Bro’s custom policy language. We leverage Bro’s Bin-
PAC [23] parser generator to automatically generate much
of the Modbus-specific code from a corresponding grammar.
Our Modbus analyzer is fully integrated into Bro, and is
scheduled to be part of the next public release. We also add
a custom analysis script to Bro that records each Modbus
command into an ASCII-based log file that we then process
with external code implementing the subsequent character-
ization, modeling, and detection phases.

For the data characterization we test different values for
k in the range [2..8] to distinguish between attribute and
continuous series. For our tests with real environments we
choose k = 3 since for this value our preliminary analysis
showed the least number of mismatches for attribute series.
For the data modeling of continuous series, we build the au-
toregressive model and derive process control limits. We
leverage an open source implementation of the autoregres-
sive model1. To derive control limits, we implement Shewart
control limits following the description in [31]. For each con-
tinuous series we derive and estimate of the behaviour on
both the autoregressive and control limit model. Finally,
for the detection of deviations in continuous series by using
the autoregressive model, we use two variance hypothesis
tests (commonly known as F-test). For both tests we set
p = 0.05% as significance level.

6. EVALUATION
Our work represents a first step towards accurately mod-

eling ICS processes from a network vantage point. As such,
we are primarily interested in understanding properties of
the setting that impact security monitoring at the semantic
level, and less in specific true/false positives rates. With
that perspective, we evaluate our memory map modeling
with two overarching objectives: (i) understand the degree
to which our approach can successfully predict typical pro-
cess behavior; and (ii) gain insight into the underlying activ-
ity that improves, or weakens, accuracy. In the following we
first present the two real-world environments in §6.1 that
we use for the evaluation. We evaluate the characteriza-
tion and modeling phases independently and describe the
corresponding methodology and results in §6.2 and §6.3 re-
spectively. We do not analyze in depth the data extraction
here as it constitutes primarily a pre-processing step which
proved to work without problems also with the real-world
traffic.

6.1 Environments and data sets
Our data comes from two real-life water treatment plants

that serve a total of about one million people in two ur-
ban areas. They are part of a larger system of over 30 sites
controlled by one company. The two plants are of compara-
ble size, and they perform semantically similar tasks (e.g.,
water pumping, purification, ozone treatment). However,
their setups still look quite distinct. They deploy different
numbers of PLCs (3 vs. 7), and chose different strategies
to divide processes among them. The PLC memory maps
differ both between the two environments, and also among
PLCs of the same site. While both plants use equipment
from the same (well-known) vendor, they deploy different
software versions.2

1Available at https://github.com/RhysU/ar.git
2According to agreements with the two sites, we cannot

We have access to one 3 day and one 14 day long packet
trace from the two plants, respectively, both containing the
complete network traffic captured from the mirroring port
of the switches that connect the different PLCs and the ICS
servers. The traces include 64GB and 101GB of network
traffic, respectively, with bandwidths varying between 9 and
360 packets/sec during the recorded periods. We find two
ICS protocols and six non strictly ICS protocols in use. The
ICS protocols are Modbus, which is used for communication
between PLCs and from PLCs with ICS servers and a ven-
dor proprietary protocol which is used for communication
between ICS server and HMI. The non ICS protocols are
VNC, SSL, FTP, HTTP SMB and DCOM and are used by
the servers and workstations in the network. The non ICS
traffic is an negligible fraction of the overall network trace.
Of the 20 and 28 hosts active in the two traces, 7 and 11
receive or send Modbus messages. While we see the vendor
proprietary protocol in use among hosts that are part of the
supervisory infrastructure, we observe only Modbus for all
communication involving PLCs. We see three types of Mod-
bus messages in the traces: read multiple registers (function
code 3), write multiple registers (16), and parallel reading
and writing on multiple registers (23). In the following, we
focus our discussion on the Modbus traffic. According to the
plant operators, there were no security or operational inci-
dents during out measurement periods. To present our test
results, we select 5 PLCs taken from both plants, namely:
all 3 PLCs from the first plant, and 2 PLCs from the sec-
ond plant. The second plant operates with 7 PLC in total,
of differing complexity: The number of process variables
goes as low as 135 for three of them and as high as 3500
in one; the remaining four PLCs operate on approximately
2200 variables. We select two PLCs that representative the
most complex and the most simple PLC setup, respectively.

In addition to the traces, the plant operators provided
us with project files that describe each PLC’s memory map
layout, exported by PLC programming environments in the
form of CSV files holding information on addressing, data
type, and process role for each process variable defined by
a PLC. In practice, such project files closely resemble the
information shown by the example memory map in Table 1.

6.2 Data characterization
Recall that the goal of variable characterization is to ap-

ply to each variable (register) the most appropriate tech-
nique in the modeling step based on the variable semantics.
For example, we want to use a set of values for setpoints
and alarms, while we want to use autoregressive model and
control limits for measurements and counters. In §4.3 we
propose a characterization heuristic that separates registers
into constant, attribute and continuous time series based
on the value of the variables over time. Another approach
to data characterization leverages the semantic information
contained in the project files. In fact, project files con-
tain as human readable text the semantics of a specific pro-
cess variable (e.g., variable X is the “throughput rate of
pipe Y ”). Under the assumption that project files are avail-
able, this approach would in theory achieve the characteri-
zation goal without the need to process the network traffic.
In this section we aim to evaluate the practical applicabil-
ity and quality of results of our heuristic-based approach
compared to the extraction of the same information from

name the equipment vendor.

project files. To this end, we translate the semantic infor-
mation of project files into labels that define what we expect
the characterization phase to return. We assign the labels
semi-automatically by constructing a table that maps key-
words commonly found in the descriptions into the three
categories. For example, we consider descriptions including
“measurement”, “counter”, or “usage” to indicate variables
holding continuous values. On the other hand, words like
“command” or “alarm” suggest attribute data, and “config-
uration” indicates a process variable of generally constant
value. In total, we identify 24 keywords, which allow us to
classify all PLC variables defined in the project files. We
then run our heuristic-based algorithm on the network traf-
fic exchanged by three PLCs from the first plant during three
days and we calculate an average percentage of variables be-
longing to the specific series across three PLCs. Our results
show that the characterization phase classifies 95,5% of all
variables as constant series, 1,4% of variables as attribute,
and 3,1% as continuous series. Further analysis with dif-
ferent batches shows that these results remain consistent
over time for intervals longer of one day. Table 2 shows the
comparison with the classification we derive independently
from the PLC project files. Our analysis shows that the re-
trieved information from project files covers only 35% of all
observed variables in all three PLCs. As we found out, the
main reason for such small coverage are implicit definitions
of multiple variables (e.g., PLC programmers use tailored
data structures to define a range of variables by only defin-
ing the starting variable in project files). We now analyze
the results of the comparison. We see an excellent match
for constant variables. However, only about half of the con-
tinuous variables match, and even less in the attribute cat-
egory. Closer inspection reveals two main reasons for the
discrepancy. First, ambiguities in the project file mislead
the keyword-based heuristic. Generally, the descriptions
are not standardized but depend on the PLC programmer,
and hence keywords sometimes overlap. For example, one
PLC has several fields that include the description “Con-
trolForAlarm”. Yet, we consider the keyword “control” to
indicate a constant variable, and “alarm” to suggest an at-
tribute series. While this example could be addressed easily,
similar ambiguities would remain. This difficulty shows that
in practice it is not so easy to extract meaningful semantic
information from project files, as initially assumed.

Table 2: Comparison of obtained characterizations
against the labels from project files
Type of
data stream

Matched process variables (in %)

PLC1a PLC1b PLC1c
Constant 96.2 95.0 97.0
Attribute 33.3 20.0 40.1
Continuous 44.3 56.7 68.3

The second cause of mismatches is that variables that, ac-
cording to the PLC configuration, contain attribute or mea-
surement data, in practice exhibits a constant behavior. For
example, in PLC1b a variable describing the measurement
level of a specific tank always remains constant, and hence
the characterization step classifies it as such.

Although both approaches show advantages and pitfalls,
our heuristic-based approach is the only one that allows us
to characterize all the variables. In general, we would be in

favor of combining the two approaches, providing our heuris-
tics additional context information. However, for this initial
work, we chose not to do so in order to (i) understand the
step’s capabilities on its own, and (ii) use the PLC informa-
tion as a cross-check. Furthermore, as our analysis shows,
integration would raise a different challenge due to the in-
herent ambiguities.

6.3 Data modeling
To evaluate our modeling approach, we examine how well

its predictions capture common plant behavior. In a first
step, we measure the number of deviations that the models
report on network traffic representing typical plant opera-
tions. In a second, more interesting step, we then dig deeper
into these results and focus on understanding the underly-
ing reasons and situations in which our approach (i) indeed
models process activity correctly; and (ii) fails to capture
the plant’s behavior, flagging benign deviations as alarms.
Our objective here is to gain insight into the capabilities
and limitations of our approach, as well more generally into
potential and challenges of modeling process activity at the
semantic level.

We point out that we do not evaluate the detection rate (i.e.,
true positives), due to the inherent difficulty of achieving
meaningful results in a realistic setting. As actual attacks
are rare, we cannot expect our traces to contain any mali-
cious activity (and as far as we know, they do not). However,
it also remains unrealistic to inject crafted attacks into the
traces; we would be limited to trivial cases like those already
demonstrated in §4.4 (which our detector would find for the
same reasons as discussed there). On the other hand, we
cannot inject more complex attack data sets, like from sim-
ulations carried out elsewhere, as any ICS activity has little
meaning outside of its original environment (e.g., recall how
Stuxnet tailored its steps to its specific target setup; inter-
preting that activity inside a different setting would make
little sense). Hence, we see more value in our semantic anal-
ysis of capabilities and limitations than measuring detection
rates on unrealistic input.

We now start with measuring the number of deviations
that the models report. Generally, we consider our approach
to generate an“alert”on a process variable when, at any time
during testing a batch of data, an observation deviates from
the prediction—i.e., when observing an unexpected value
for constants and attributes, or a value outside the autore-
gressive/control limit models for a continuous time series.
We perform 3-fold cross validation using the rolling fore-
casting procedure [17] on a set of 3-day batches of data ex-
tracted from the two plant’s network traces. The rolling
forecasting procedure is a common technique for performing
cross validation in time series and implies two key modifica-
tions compared to the traditional cross validation procedure:
(i) the training length is increasing through different folds
and (ii) the training set never includes data occurring af-
ter test set (i.e., the model should not train on the data
that is later than test data). The first two batches of data
come from the first plant, each representing a randomly cho-
sen continuous range from the first and the second weeks,
respectively. The third batch represents the complete trace
from the second plant (recall that we only have 3 days of net-
work trace available from that plant). At a technical level,
a 3-day batch size gives us a reasonable volume of data suit-
able for processing repeatedly with our implementation. At

an operational level, operators confirm to us that one day
matches a typical PLC work cycle.

In Table 3 we summarize the results of the testing across
different behavior models. For each pair of category and
PLC, we compute the percentage of variables deviating, show-
ing mean and standard deviation over the batches.

In the following, we discuss the three categories separately.

Table 3: Testing model capabilities
Deviating variables across different
types of series (mean %/ st.dev)

Constant Attribute Continuous
PLC 1a 0.5/0.29 19.05/0.2 57.49/5.78
PLC 1b 0.31/0.04 19.80/1.4 44.64/5.41
PLC 1c 0.14/0.02 19.55/4.0 37.58/2.98
PLC 2a 0.64/0.0 26.92/0.0 63.63/0.0
PLC 2b 0.0/0.0 0.0/0.0 0.0/0.0

6.3.1 Constant series
Our results show that by far the most variables that we

classify as constant indeed stay stable over time. Examing
the small number of deviating variables in this category, we
observe two main causes for false positives: (i) configura-
tion changes, and (ii) misclassifications of the variable type.
The former typically relates to a previously unobserved sta-
tus change of specific field device. For example, in PLC1 we
find a pump device that is enabled only after about 40 hours
of normal operation. In another similar, but more extreme
case, we observe a burst of alarms: 60 variables all trigger at
the same time even when the training was longer than two
days. Upon closer inspection we find them all to belong to
a “configuration matrix”, a large data structure that defines
an operation mode in terms of a set of values controlling
multiple devices simultaneously. As it turns out, it is a sin-
gle packet from the HMI that performs a “multiple register
write”, triggering the deviation for all of them. We verified
that this occurrence represents the only time that the op-
erators change the matrix over the two weeks interval that
our traces cover. As such, it is a significant yet rare change
that one could either whitelist or decide to keep reporting
as a notification.

The second cause for false alarms represents shortcom-
ings of our data classification phase. For example, during
one of the folds in PLC2a we find that it misclassifies 9 out
of 15 measurement variables representing aggregated flow
information as constant due to a lack of activity during the
training period. Similarly, in the same fold we find that 7
out of 18 device statuses (thus assumed attribute data) are
misclassified as constants. This is because in both cases the
values remain constant for more than 20 hours, yet then
change during the testing period. Interestingly, we see sev-
eral such situations that first trigger an alert for a configura-
tion change (e.g., the status of a filter in PLC1b changes for
15mins after it has spent 21 hours in a previous state), fol-
lowed by a burst of further ones reflecting the change being
in effect now (i.e., variables representing activity linked to
that filter start to deviate from constant behavior: status,
volume, throughput/hour, total throughput). In this case,
the two main causes of errors are hence related.

Discussions with the plant operators confirm that daily
cleaning activities on that PLC might cause such sudden
changes for a short amount of time. The misclassification in

this case was avoided in the next fold with a longer train-
ing interval, confirming that when training spans the corre-
sponding work cycle, the modeling of constants indeed works
as expected.

6.3.2 Attribute data series
Our test show a stable, but reasonably high number of de-

viating attribute series across all tested folds. By sampling
a subset of deviating variables, we find that the main cause
for mismatches in this model concerns continuous variables
misclassified in the data characterization phase: due to slow
process character some of them exhibit only a limited num-
ber of distinct values during a training interval, and are thus
wrongly labeled as attribute data (e.g., variables describing
time information in the form of date and hour). Apart from
this scenario, the targeted variables (thus commands and
alarms) are captured correctly for training longer than one
day. However, we note that a blind spot for our current
attribute models are alarm/command sequences. With at-
tribute data, sequences carry important semantic informa-
tion as such variables often encode the current process state
within a series of steps (e.g., alarm type X raised to oper-
ator, operator acknowledged, alarm cleared, state normal).
Since some alarms require operator acknowledgment, a se-
quence that, e.g., omits that feedback would be suspicious.
For such variables, we attempted to apply the continuous
models as an alternative, but they only further reduced the
accuracy. That however is not surprising: for attribute data
ordering matters, yet typically not the actual timing (e.g.,
an operator may acknowledge an alarm at any time). Hence,
we consider a sequence-based analysis of process states as a
promising extension of our current attribute model.

When examining the variables that describe attribute data
in detail, we discover further structure that our modeling
does not currently key on, yet which we consider a promis-
ing venue for exploiting in the future. During focus group
sessions with plant engineers, we learn that alarms and com-
mands are typically encoded in bitmaps, and we indeed find
this reflected in the network traffic. For example, for a vari-
able that the PLC project file refers to as “various status
notifications from PLC3 to server” , we observe a series of
what, at first, appears like an arbitrary set of values: 40960,
36864, 34816. However, when aligned in binary format, the
values map to:
1010 0000 0000 0000
1001 0000 0000 0000
1000 1000 0000 0000

This representation reveals patterns of bits that are con-
stant (e.g., the first bit indicates that PLC1c is active). If we
integrated this structure into the characterization step, we
would be able to refine the attribute modeling significantly.
In other words, some variables require a different granularity
than just their numerical value for capturing their semantics.

6.3.3 Continuous data series
We now summarize results from the two models consider-

ing continuous time series: control limits and autoregression.
We observe that autoregressive model generally alerts more
frequently than control limits. In fact, the control limits
contribute to only 28% of all deviations in continuous series.

Control Limits model.
Our results show that, apart from the overlap with au-

toregressive model, control limits report additional 3% se-

ries as deviating. Our inspection reveals that these variables
represent series that are increasing trends during the whole
available trace. For such variables, approaches in statistical
process control commonly accept that the series should be
modeled according to their regression nature only, and not
on the control limits. This means that these variables should
be whitelisted in this model. An alternative approach would
be to obtain absolute process limits (e.g., from process en-
gineers) and enforce those limits for series control.

Autoregressive model.
Our results show that the autoregressive model has no dif-

ficulty in modeling internal process stage and counter vari-
ables. Differently from alarms and commands, which occur
in relation to human interaction, these variables are con-
nected to the automatic process behavior with highly cor-
related and regular sequences of values which are straight-
forward to capture. Of all the deviations, we only find one
related to a counter variable (which delayed an increment
for 2 seconds): since the behavior of this counter was ex-
tremely regular in the training data, the model detector was
not tolerant against the delay.

The remaining deviations refer to measurement variables.
By inspecting them more closely, we distinguish three groups.
A first group of deviations refers to variables that autore-
gression fails to model well, independently of the training
interval. This group accounts for ∼ 80% of the deviations.
We believe the autoregression model fails to model the be-
havior of these variables because we observe the same vari-
ables reported consistently across all folds and batches. By
sampling deviating variables, we find out that 70% of them
have a presumably random behavior with high oscillations.
The remaining 30% behave as series that are nearly constant
(or slow trends) whose deviation is captured when a sudden
peak occurs. To understand the semantics of this behavior,
we look into project files. It turns out that, according to
the project files, all these variables correspond to floating
point measurement values of the same set of field devices
(e.g., measurement from devices concerning purification in
PLC2a). In Modbus, floating point values are represented
by a set of registers. The vendor specification for our PLCs
states that a single precision floating point is encoded ac-
cording to the IEEE 754 standard [3] in two registers, which
represent the actual value as a product of sign, exponent
and mantissa. In Figure 4 we show how these three compo-
nents are projected onto a pair of registers. To understand
how this specification relates to our series, we find a pair
of registers in project files that are labeled as a higher and
lower register of the same floating point value. When re-
constructed, the resulting value represents a value with an
increment in range of 10−4. Independently, the two variables
describing the behavior of the two registers look quite differ-
ent. In particular, while one variable looks pseudo random
(this illustrates the noisy fraction behavior of RegisterB from
Figure 4), the second variable looks nearly constant (this il-
lustrates the exponent part of the RegisterA in Figure 4).
We acknowledge that, depending on the measurement noise,
some registers containing (half of a) floating point variable
are not suitable to be modeled raw. Our current tests show
that, in the analyzed environments, this refers to approxi-
mately %50 of all measurements (since the same variables
are consistently alerted over all batches). To address this
problem, we would need to reconstruct the floating-point

Figure 4: Representation of single precision floating
point in Modbus

values as part of the data extraction phase. Unfortunately,
it is technically challenging to find a unique approach to
identify the two halves of a floating point variable. Vendors
use different approaches and even within the same vendors,
programmers might follow different conventions. For exam-
ple, in the analyzed PLC project files we observe the use of
at least three different conventions: use consecutive pairs of
registers with (i) the register with even address as the upper
register, (ii) the register with the odd address as the upper
register, or (iii) for a set of variables, put all upper registers
first and then all the lower registers.

By observing the peaks in the percentage of deviating vari-
ables across different folds, we find the second group of de-
viations. In more detail, we wanted to understand if the
deviating variables refer to multiple field devices (e.g. one
variable per field device) or to a few field devices (e.g. mul-
tiple variables per field device). We find out that in all
analyzed cases, all the deviating variables correspond to a
limited set of devices (e.g., a peak of 9 deviating variables
in PLC 2a semantically describe different aspects of only
one field device, a pump). We also find several situations in
which multiple variables are linked together and hence ex-
hibit similar (even identical) behavior. For example, we see
10 ozone filters whose flow is described by the same autore-
gressive model, and whose deviation occurred at the same
time and thus resulted in a peak of deviations in one PLC.

In either case, a more sophisticated model could aggregate
variables by incorporating more process context information
into the detection approach, for example by extracting infor-
mation from project files or performing a vertical analysis of
variables, scanning for patterns of similar behavior or group-
ing together variables that refer to the same device.

Finally, the third group of deviations is related to vari-
ables that behave differently over time. For example, the
value remains nearly constant for 20 hours, then it fluctu-
ates for 15 minutes and then it reverts to a constant value.
We believe this group of variables is the same group which
was mischaracterized as constant series, as we described in
§6.3.1. The data series of these variables is not stationary
in a wide sense, and thus it is generally not well suited for
autoregressive modeling. To address this, we envision the
adoption of multivariate modeling approaches.

7. DISCUSSION
In this section we discuss the evaluation results as well as

other aspects that relate to the applicability of our approach,
namely the threat model and generalization to the domain
and other industrial control protocols.

Putting our findings into perspective, we show that we
could reliably monitor 98% of the process control variables

used in two real-world plants. 95% of these variables are con-
figuration settings, and according to plant operators changes
in configurations indeed represent one of the most direct
threats for plant control. In fact, our tests confirmed that
we could detect a (although legitimate) configuration change
happening at one of the plants during the monitoring period.
The remaining 2% of the variables are still challenging to
model with the presented approaches. However, when dig-
ging into the causes, we could isolate a number of reasons for
the deviations, rooted not only in the models themselves but
sometimes also in the data characterization and extraction
phases. Specifically, we see mismatches between (i) train-
ing periods and activity cycles; (ii) data representation and
process semantics; and (iii) chaining and cluster effects that
cause individual deviations to propagate to a large number
of variables.

At a higher level, our findings provide a perspective on
ICS environments that may be unintuitive to security re-
searchers. We find a common assumption that ICS activity
follows regular patterns that should be straight-forward to
model with approaches like the one we deploy in this work.
However, we show that when looking at the core of the pro-
cess control, inevitably, the real world is more complex than
one might assume, exhibiting plenty of irregularities, seman-
tic mismatches, and corner-cases that need care to get right.
This is a well known challenge in the process control commu-
nity: operational safety typically requires intensive manual
work on understanding and estimating the process behavior
before enforcing any controls.

In relation to our threat model, we acknowledge that our
approach does not explicitly detect PLC code updates. How-
ever, a PLC code update is an unusual event which involves
issuing special commands to the PLC (function codes in
Modbus). It is therefore trivial to detect such events by ex-
tracting the command from application layer messages and
whitelisting the ones that are used. We also note that some
process manipulation attacks remain outside of what our ap-
proach can conceptually find. By gaining control of a PLC,
Stuxnet recorded the value of measurement variables dur-
ing normal operation and replayed the recorded values after
triggering the process variation to hide its traces. If the
replayed values emulate the normal pattern over time per-
fectly, it will not be possible to detect the anomaly by any of
our models. However, in case that the tampered measure-
ment is not accurate over a long period of time (e.g., because
the period of sampling was too short), our approach would
still have a chance to detect the attack.

We believe that more extensive tests could be conducted
with data coming from other environments, and in partic-
ular from other industrial domains. We are confident that
our approach is applicable to other environments since we
do not use any assumptions that are specific to the water
treatment only. We believe that the choice of focusing on
the Modbus specification for designing our approach is ben-
eficial for extending its use to other (more recent) industrial
control protocols. In fact, the data model of Modbus is
generic and only defines two types of process variables (reg-
isters and coils). This makes decoding Modbus messages
easy, yet renders it hard to extract meaningful semantics
(see the problem with floating point values discussed be-
fore). Other industrial control protocols (e.g. DNP3, MMS
and IEC104) define a much more structured data model,
with a complete set of variable types (booleans, integers,

floating points, etc.) and more fine grained variable seman-
tics (e.g. measurements, setpoints, alarms, etc.). With more
information extracted from protocol messages the impact of
errors in the characterization step would decrease, and in
some cases it might not be needed at all.

Summarizing, we believe that our approach lays the ground
for detecting critical attacks on industrial control systems
that current approaches can fundamentally not find.

8. RELATED WORK
Statistical process control is a well established field which

focuses on modeling and monitoring parameters in indus-
trial processes. Researchers use various techniques (e.g.,
time series analysis, outlier detection, control limits, feed-
back adjustments) to model and validate safety of industrial
processes [31, 7]. In computer science, a set of prior work fo-
cuses on understanding ICS communication patterns, show-
ing that communication flows indeed reflect the regular and
(semi-)automated character of process control systems [5].
Other efforts focus on analyzing security threats in ICS. For
example, some authors analyze protocol vulnerabilities [6,
1, 4], explore the lack of compliance to protocol specifica-
tions in different PLCs [8, 28]. To address security threats
some efforts exploit communication patterns for anomaly-
detection [20, 29] However, the effects that one can find
at the flow-level remain limited; detecting semantic process
changes requires inspection of the application layer. Con-
sequently, some authors propose to parse network protocols
for extracting information that can highlight changes to the
process environment. For example, authors perform partial
protocol parsing to enumerate functionality that Modbus
clients use, aiming to detect unexpected deviations in re-
quests sent to PLCs [10] and interpret events on a higher
level [15], fingerprint and monitor current device configura-
tion remotely [22, 26]. Düssel et al. [11] propose using ap-
plication syntax (not semantics) for network-based anomaly
detection; they use Bro to parse RPC, SMB, NetBIOS ser-
vices inside process control networks, but do not further
examine ICS-specific protocols. In terms of classic IDS sig-
natures, DigitalBond provides Snort preprocessors that add
support for matching on Modbus/DNP3/EtherNetIP proto-
col fields [2]. McLaughlin in [21] proposes a host-based ap-
proach for analyzing PLC behavior; they use a set of meth-
ods to reconstruct PLC configuration and process safety in-
terlocks from PLC program code to build semantically harm-
ful malware.

To the best of our knowledge there are only two prior
efforts that extract and analyze process data values from
network traffic. First, Fovino et al. [13] track current values
of selected critical process parameters and thereby maintain
a virtual image of the process plant that they then use to
detect predefined undesirable system states. Their method
of annotating critical parameters and states requires man-
ual, intensive involvement of plant experts and thus remains
expensive and likely incomplete. Second, Gao et al.[14] use
neural networks to classify between normal and tampered
process variables that are under injection attacks. Both
works validate their approaches in controlled testbed envi-
ronments. By contrast, we perform an unsupervised mod-
eling on real world environement and provide in depth dis-
cussion of semantics that influence our results.

9. REFERENCES
[1] Project basecamp.

http://www.digitalbond.com/tools/basecamp/.
[accessed May 2013].

[2] Quickdraw SCADA IDS.
http://www.digitalbond.com/tools/quickdraw/.
[accessed May 2013].

[3] IEEE Standard for Floating-Point Arithmetic.
Technical report, Microprocessor Standards
Committee of the IEEE Computer Society, 3 Park
Avenue, New York, NY 10016-5997, USA, Aug. 2008.

[4] Common cybersecurity vulnerabilities in industrial
control systems. U.S. Department of Homeland
Security, 2011.

[5] R. R. Barbosa, R. Sadre, and A. Pras. Difficulties in
modeling SCADA traffic: a comparative analysis. In
Proceedings of the 13th international conference on
Passive and Active Measurement, PAM’12, pages
126–135, Berlin, Heidelberg, 2012. Springer-Verlag.

[6] C. Bellettini and J. L. Rrushi. Vulnerability analysis
of SCADA protocol binaries through detection of
memory access taintedness. In L. J. Hill, editor, Proc.
8th IEEE SMC Information Assurance Workshop,
pages 341–348. IEEE Press, 2007.

[7] G. E. P. Box and G. Jenkins. Time Series Analysis,
Forecasting and Control. Holden-Day, Incorporated,
1990.

[8] E. Byres, D. Hoffman, and N. Kube. On shaky ground
- a study of security vulnerabilities in control
protocols. In NPIC HMIT, 2006.

[9] A. Carcano, I. N. Fovino, M. Masera, and
A. Trombetta. Critical information infrastructure
security. chapter Scada Malware, a Proof of Concept,
pages 211–222. Springer-Verlag, Berlin, Heidelberg,
2009.

[10] S. Cheung, B. Dutertre, M. Fong, U. Lindqvist,
K. Skinner, and A. Valdes. Using model-based
intrusion detection for SCADA networks. In
Proceedings of the SCADA Security Scientific
Symposium. Digital Bond, 2007.

[11] P. Düssel, C. Gehl, P. Laskov, J.-U. Busser,
C. Stormann, and J. Kastner. Cyber-critical
infrastructure protection using real-time
payload-based anomaly detection. In Proceedings of
the 4th international conference on Critical
information infrastructures security, CRITIS’09, pages
85–97, Berlin, Heidelberg, 2010. Springer-Verlag.

[12] N. Falliere, L. O. Murchu, and E. Chien. W32.Stuxnet
Dossier- symantec security response. [online], 2011.

[13] I. N. Fovino, A. Carcano, M. Masera, A. Trombetta,
and T. Delacheze-Murel. Modbus/DNP3 state-based
intrusion detection system. In Proceedings of the 2010
24th IEEE International Conference on Advanced
Information Networking and Applications, AINA ’10,
pages 729–736, Washington, DC, USA, 2010. IEEE
Computer Society.

[14] W. Gao, T. Morris, B. Reaves, and D. Richey. On
SCADA Control System Command and Response
Injection and Intrusion Detection. In eCrime
Researchers Summit (eCrime), 2010.

[15] J. Gonzalez and M. Papa. Passive scanning in Modbus
networks. In Critical Infrastructure Protection, volume
253 of IFIP International Federation for Information
Processing, pages 175–187, 2007.

[16] M. Hoon. Parameter Estimation of Nearly
non-Stationary Autoregressive Processes. Technical
report, Delft University of Technology, 1995.

[17] R. J. Hyndman and G. Athanasopoulos. Forecasting:
principles and practice. An online textbook. [last
accessed May 2013].

[18] P. International. Profinet application layer service
definition, 2004. V. 1.95.

[19] R. Langner. Robust Control System Networks.
Momentum Press, 2011.

[20] O. Linda, T. Vollmer, and M. Manic. Neural network
based intrusion detection system for critical
infrastructures. In Neural Networks, IJCNN
International Joint Conference on, pages 1827 –1834,
june 2009.

[21] S. McLaughlin. On dynamic malware payloads aimed
at programmable logic controllers. In Proceedings of
the 6th USENIX conference on Hot topics in security,
HotSec’11, pages 10–10, Berkeley, CA, USA, 2011.
USENIX Association.

[22] P. Oman and M. Phillips. Intrusion detection and
event monitoring in SCADA networks. In Critical
Infrastructure Protection, volume 253 of IFIP
International Federation for Information Processing,
pages 161–173. Springer US, 2007.

[23] R. Pang, V. Paxson, R. Sommer, and L. Peterson.
binpac: A yacc for Writing Application Protocol
Parsers. In ACM Internet Measurement Conference,
2006.

[24] V. Paxson. Bro: a system for detecting network
intruders in real-time. Computer Networks,
31(23-24):2435–2463, 1999.

[25] Schneider Electric. Modbus Protocol and Register Map
for ION Devices, 70022-0124-00 edition.

[26] R. Shayto, B. Porter, R. Chandia, M. Papa, and
S. Shenoi. Assessing the integrity of field devices in
Modbus networks. In Critical Infrastructure Protection
II, volume 290 of IFIP International Federation for
Information Processing, pages 115–128. Springer
Boston, 2009.

[27] N. Sugiura. Further analysts of the data by Akaike’ s
information criterion and the finite corrections.
Communications in Statistics - Theory and Methods,
7(1):13–26, 1978.

[28] A. Treytl, T. Sauter, and C. Schwaiger. Security
measures for industrial fieldbus systems - state of the
art and solutions for IP-based approaches. In
Proceedings IEEE International Workshop on Factory
Communication Systems, pages 201 – 209, 2004.

[29] A. Valdes and S. Cheung. Communication pattern
anomaly detection in process control systems. In
Proceedings of International Conference on
Technologies for Homeland Security, Waltham, MA,
May 11–12, 2009. IEEE.

[30] C. Vulnerabilities and Exposures. CVE-2010-4709 -
heap-based buffer overflow in automated solutions
Modbus/TCP Master OPC Server.
http://www.cvedetails.com/cve/CVE-2010-4709/,
2011. [accessed November 2012].

[31] G. B. Wetherill and D. W. Brown. Statistical process
control : theory and practice. Chapman and Hall,
London, New York, 1991.

APPENDIX
A. THREAT MODEL

To better define the intrusions we are targeting, we sur-
vey plausible ICS attacks carried out over the Modbus TCP
protocol as a case study. We classify the attacks according
to the level of analysis they require for detection.

In Table 4 we aggregate the attacks into three categories.
Basic Level 1 attacks operate at the IP or TCP level, such as
manipulating packet sizes. Level 2 attacks manipulate fields
of the Modbus payload, such as breaking the protocol con-
ventions or transmitting values outside the range of either
the protocol specification or what the receiving side sup-
ports (e.g., invalid function codes). Finally, Level 3 attacks

represent activity that is legal at the protocol level, yet vio-
lates semantic constraints that a process imposes, including
both semantically incorrect messages (e.g., conflicting com-
mands) and operations that lead the site into an undesirable
state (e.g., a command to open a pump when it must remain
shut). The Level 3 attacks represent the most challenging
target for the detection, and we focus our effort on their
detection.

Caracano et al. [9] present a proof-of-concept malware
that aims at diverting process flow in ICS. The malware
performs simple value manipulations and generates Modbus
packets that constitute legitimate commands. More specifi-
cally, the malware tracks the status of current values and
crafts packets that will invert coil values or set registers
to their maximum/minimum allowed value according to the
protocol specification. Such attacks can potentially lead to
fatal consequences on critical process variables. However,
the precise effect on the process remains specific to each en-
vironment.

The most relevant example of a real-world Level 3 attack is
Stuxnet. By attacking PLCs, this malware crossed a bound-
ary as the first publicly known malware that injected seman-

tically meaningful commands into a highly-specific plant en-
vironment. Stuxnet managed to divert process by generat-
ing malicious yet technically valid control commands that
changed the behaviour of centrifuges.

Generally, by performing a Level 3 attack, an attacker can
do the following damage to the system:

1. Impact operator awareness (e.g., corrupt the flow and
content of commands sent towards HMI to prevent the
normal reaction). Such attacks typically involve send-
ing forged alarms/events, or incorrect measurements.

2. Divert the process (e.g., change critical parameters that
will deviate the process). Such attack may involve ac-
tions such as sending a “stop” command to a PLC, or
changing control variables.

Although some semantic attacks do not have specific re-
quirements with respect to timing (e.g., a previously unseen
stop PLC command can be considered as dangerous any
time), we generally view the ICS as a time-dependent sys-
tem, thus the attacks which include value manipulation do
take timing into consideration.

Table 4: Summary of attacks against Modbus implementations
Level Impact Attack description Example

1
Data integrity Corrupt integrity by adding

or removing data to the
packet.

Craft a packet that has a different length than defined in param-
eters or is longer than 260 bytes (imposed by the spec.) [2].

Reconnaissance Explore implemented
functionalities in PLC.

Probe various FC and listen for responses and exceptions [2].

System integrity Exploit lack of specification
compliance.

Manipulate application parameters within spec. (e.g., offset) or
outside of spec. (e.g., illegal FC) [2, 8, 30].

2
Perform unauthorized use of
an administrative command.

Use FC 8-0A to clear counters and diagnostics audit [2].

Denial of service Perform MITM to enforce
system delay.

Send exception codes 05, 06 or FC 8-04 to enforce Listen mode [2].

Perform unauthorized use
of administrative command.

Use FC 8-01 to restart TCP communication [2, 8].

Process
reconnaissance

Explore structure of
memory map.

Probe readable/writable points and listen for exceptions to un-
derstand process implementation details [2].

3 Process
integrity

Perform unauthorized
change of process variable.

Write inverted read values. Write maximal or minimal data values
allowed per data point [9].

FC: Function code defining the type of functionality in Modbus. MITM: Man-in-the-middle attack.

	TR-13-003 cover
	TR-13-003 no cover

